Řešené příklady z Matematiky III. František Mošna

Rozměr: px
Začít zobrazení ze stránky:

Download "Řešené příklady z Matematiky III. František Mošna"

Transkript

1 Řešené příklady z Matematiky III. František Mošna 7. října 7

2 Obsah:.Ortogonálnídoplňky,ortogonalizace....Vzájemnápolohalineálů...6.Příčkymimoběžek Vzdálenostboduodnadroviny... 5.Vlastníčíslamatice Objemaobsahpomocívnějšíhoavektorovéhosoučinu Gradient,divergencearotace Dvojnýatrojnýintegrál Objempomocítrojnéhointegrálu...58.Křivkovýintegrál...6.Plošnýintegrál...7.Greenova,StokesovaaGaussova-Ostrogradskéhověta...78.ŘešenídiferenciálníchrovnicpomocíLaplaceovytransformace...95 Literatura...

3 . Ortogonální doplňky, ortogonalizace. Ortogonální doplňky, ortogonalizace Nechť Ujepodprostorvektorovéhoprostoru V.Ortogonálnídoplněk U obsahujevšechnyvektory,které jsoukolmékekaždémuvektoruzu,neboli v U u U u v cožlzevyjádřitpomocískalárníhosoučinu u v. Ortogonálnídoplněk U kpodprostoru U u,..., u k tedyhledámejakořešeníhomogennísoustavyrovnic u., u k nuly na pravé straně při výpočtu zpravidla vynecháváme. Připomeňme také vztah dimu+dimu dimv. Příklad.: Zjistěte ortogonální doplněk,,),,,5). Hledáme vektorx, y, z), jehož skalární součin se zadanými vektory roven nule. Budeme tedy řešitúpravou na Gaussův tvar pomocí elementárních úprav) homogenní soustavu rovnic zadanou maticí neboli Odtud dostáváme 5 ) 7 z α R, 7y+ z y 7 α, x+ α+α x α x, y, z)α 7 ) 7, 7, α7,, 7). V dalších příkladech budeme nuly na pravé straně soustavy vynechávat a upravovat na výhodnější tvar ) ) ) Odtud již snadno zjistíme, že vektorx,, 7) jistě vyhovuje druhé rovnici. Dosadíme-li ho do první rovnice, dostaneme7x+7 7)ax7. Hledaný ortogonální doplněk je tedy lineární obal 7,, 7). ) Příklad.: Zjistěte ortogonální doplněk,,,),,,,). Hledáme vektorx, y, z, t), jehož skalární součin se zadanými vektory roven nule. Budeme řešit soustavu rovnic zadanoumaticí ) ) ) 5 5 5

4 4 František Mošna: Řešené příklady z Matematiky III. Odtud dostáváme x, y, z, t)α,,, 5)+ β,, 5,). Hledaný ortogonální doplněk je lineární obal,,, 5),,, 5,). Příklad.: Zjistěte ortogonální doplněk,,,),,,,),,,,). Opět hledáme vektorx, y, z, t), jehož skalární součin se zadanými vektory roven nule. Budeme řešit soustavu rovnic zadanou maticí Odtud dostáváme Hledaný ortogonální doplněk je lineární obal x, y, z, t)α,4, 5, 5).,4, 5, 5). Vnásledujícíchpříkladechmámeortogonalizovatskupinuvektorů u, u, u,....užívámevzorce v u, v u v u v v nebonásobek), v u v u v v v u v v nebonásobek),atakdále Příklad.4: Nalezněte ortogonální bázi prostoru,,),,,),,,). Označímevektory u,,), u,,), u,,)aužijemevzorce v u,,) v, u v u v v,,) u v u v v v u v v,,),,),,),,),,),,),, ) vezmeme v,,) v 6,,,),,),,),,),,),,) 6,,) 4,,)+,,),,) vecv,,). Dostáváme ortogonální bázi v,,), v,,).

5 . Ortogonální doplňky, ortogonalizace 5 Příklad.5: Nalezněte ortogonální bázi prostoru,,,),4, 5,5,),, 8,,). Označímevektory u,,,), u 4, 5,5,), u, 8,,)aužijemeuvedenévzorce v u,,,) v 5, v u v u v v 4, 5,5,) 5,,,),,, ) v 5, v u v u v v v u Dostáváme ortogonální bázi v v, 8,,) 5,,,),,, ),,, ). 5 v,,,), v,,, ), v,,, ). Příklad.6: Nalezněte ortogonální bázi prostoru,,,),,,,),,,,),,,,). Označímevektory u,,,), u,,,), u,,,), u 4,,,)aužijemevzorce v u,,,) v 7, v u v u v v,,,) 7 7,,,),,,) v 5, v u v u v v v u v v,,,) 7 5,,,) 7 5,,,),,,) v,,,), u 4 v u 4 v v v u 4 v v v u 4 v v Dostáváme ortogonální bázi,,,) 7,,,) 7 5,,,) 5,8,,5) vezmeme v 4,8,,,5) v,,,), v,,,), v 4,8,,5).

6 6 František Mošna: Řešené příklady z Matematiky III.. Vzájemná poloha lineálů Ovzájemnépolozelineálůafinníchprostorů) K a+u a+ u,..., u k alb+v b+ v,..., v l podává přehled následující tabulka: K L K L U V U, V rovnoběžné U V nebo V U U V U, V mimoběžné U, V různoběžně Na základě následující soustavy rovnic u T,..., u T k v T,..., vt l b a) T) pak rozhodneme. o rovnoběžnosti vektorových podprostorů U a V, neboť U V dimu+ V)maxdim U,dimV), kde dimenze prostorů zjistíme podle hodností částí matice soustavy u T,..., ut k hod dim U v T,..., vt l hod dim V hod dimu+v) b a) T ),.oprůniku K Lb+s v + +s l v l a+t u + +t k u k ),kdehodnotyparametrů s,...,s l nebo t,..., t k )zjistímeřešenímstejnésoustavy u T,..., u T k v T,..., vt l b a) T) t... t k s... s l. Příklad.: Zjistěte vzájemnou polohu lineálů a jejich průnik. K[,,]+,.) L[,,]+,,) V úvodu řešení ukážeme, jak uvedená metoda odpovídá poznatkům ze střední školy. Hledáme vzájemnou polohu polohu dvou přímek, jejichž vyjádření přepíšeme do parametrických rovnic K: x + t y t z + t t R a L: x s y z + s t R. Ze střední školy si pamatujeme, že mezi příslušné rovnicepro x-ové, y-ové, z-ové souřadnice) položíme znaménko rovnosti a vypočítáme parametry s a t + t s t + t + s V rovnicích převedeme výrazy s parametrem s na levou stranu a čísla bez parametrů napravo t+s t + t s..

7 . Vzájemná poloha lineálů 7 Takto vzniklá matice odpovídá maticiuvedené v úvodu této kapitoly), která pro lineály K a+ u a L b+ v vznikne, když do jedné matice zapíšeme po řadě do sloupců - vektor prvního lineálu u) - za čáru vektor druhého lineálu s opačným znaménkem v) -zadvojitoučárupakvektor,kterývznikneodečtením b a Vzniklou matici pak řešíme jako soustavu lineárních rovnic pro neznámé t a s převodem na Gaussůvstupňovitý) tvar u T v T b a) T) t }{{} s }{{} 4. Nejprve potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u av v rovnoběžné.dimenzeprostorů U+ V, Ua V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Prozjištěníprůnikunámstačídruháneznámá s.průnik K Lpakobsahujeprávějedenbod b+s v[,,],,)[,,]. Pro kontrolu můžeme dopočítat neznámou t, průsečík vyjde stejně a+t u[,,],,)[,,]. Lineály Ka Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázjednohobodu[,,]. Příklad.: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u jepopsán K[,,]+,.) L[,,7]+,,) bodem a[,,] avektorem u,,), lineál Lb+ v pak bodem b[,,7] avektorem v,,). Do jedné matice zapíšeme po řadě do sloupců - vektor prvního lineálu u) - za čáru vektor druhého lineálu s opačným znaménkem v) -zadvojitoučárupakvektor,kterývznikneodečtením b a Vzniklou matici řešíme opět jako soustavu lineárních rovnic pro neznámé t a s převodem na Gaussůvstupňovitý)

8 8 František Mošna: Řešené příklady z Matematiky III. tvar u T v T b a) T) ) t }{{} s }{{} 5. Zaměřenílineálů-vektorovéprostory U u av v nejsourovnoběžné, U V,neboťdimU,dim V adimu+ V)apodmínkadimU+ V)maxdimU,dimV)neplatí. Protožesoustavanemářešenízjistímepodletřetířádkymatice s),jeprůniklineálůprázdný, K L. Lineály Ka Ljsoutedymimoběžnéneboť K L au V)aprůnikjeprázdnámnožina. Příklad.: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán K[,,]+,.),,,) L[,, ]+,4,) bodem a[,,] advěmavektory u,,)a u,,), lineál Lb+ v pak bodem b[,, ] avektorem v,4,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T b a) T) 4 t t s }{{}. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) platí, jsou zaměření U a V lineálů rovnoběžná. Soustavaseskládázedvourovnicamámetřineznámé t, t a s,můžemetedyjednuneznámounapříklad s) považovatzaparametr.průnik K Lsepakrovnápřímolineálu L. Prokontrolumůžemedopočítatzbyléneznámé t sat s,průsečíkvyjdestejně a+t u + t u [,,]+ s),,)+s ),,)[,, ]+ s,4,).)

9 . Vzájemná poloha lineálů 9 Lineál Ljetedypodprostoremlineálu Kneboť K LL au V). Příklad.4: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v pak K[,,]+,.),,,) L[,, ]+,4,) bodem a[,,] advěmavektory u,,)a u,,), bodem b[,, ] avektorem v,4,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečnetním bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T b a) T) t t s }{{} 7. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů. Neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) je splněna, jsou zaměření U a V lineálů rovnoběžná. Soustava nemá řešení, průnik K L je proto prázdný. Lineály Ka Ljsoutedyrovnoběžnéneboť K L au V)aprůnikjeprázdnámnožina. Příklad.5: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v pak K[,,]+,.),,,) L[,,7]+,4,),,,) bodem a[,,] advěmavektory u,,)a u,,), bodem b[,,7] advěmavektory v,4,)a v,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) -začáruvektorydruhéholineálusopačnýmznaménkem v, v )

10 František Mošna: Řešené příklady z Matematiky III. - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T v T b a) T) t t s s. Potřebujeme opět zjistit, v jakém vzájemném vztahu jsou zaměření lineálů. Neboli jsou-li příslušné vektorové prostory U u, u av v, v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnosti částímaticesoustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V) maxdim U,dimV)neplatí,nejsouzaměření Ua V lineálůrovnoběžná. Maticichápemejakosoustavulineárníchrovnicproneznámé t, t, s a s.protožemámetřirovniceačtyři neznámé, volíme za jednutřeba poslední) neznámou parametr s. Pro zjištění průniku nám stačí třetí a čtvrtá neznámá s as s.průnik K Lpakobsahujebody b+s v + s v [,,7],4,)+ s,,)[6, 7,5]+ s,,). Prokontrolumůžemedopočítatzbyléneznámé t +s, t s,průsečíkvyjdestejně a+t u + t u [6, 7,5]+ s,,). Lineály K a Ljsoutedyrůznoběžnéneboť K L au V) aprůniksestávázpřímky K L [6, 7,5]+,, ). Příklad.6: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán K[,, 4,]+,,,),,,,) L[,,,]+,,,) bodem a[,, 4,] advěmavektory u,,,)a u,,,), lineál Lb+ v pak bodem b[,,,] avektorem v,,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého

11 . Vzájemná poloha lineálů lineálu L,tedy b a u T u T v T b a) T) t t s }{{} 5. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů. Neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Soustava nemá řešení, průnik K L je tedy prázdný. Lineály Ka Ljsoutedymimoběžnéneboť K L au V)aprůnikjeprázdnámnožina. Příklad.7: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v pak K[,,,]+,6,,),,,,) L[,,,4]+,,,) bodem a[,,,] advěmavektory u,6,,)a u,,,), bodem b[,,,4] avektorem v,,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T b a) T) t t s }{{} 8.

12 František Mošna: Řešené příklady z Matematiky III. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů. Neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Soustava nemá řešení, průnik K L je proto prázdný. Lineály Ka Ljsoutedymimoběžnéneboť K L au V)aprůnikjeprázdnámnožina. Příklad.8: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v pak K[5,, 9,]+,,,),,,,) L[7,,,4]+,,,) bodem a[5,, 9,] advěmavektory u,,,)a u,,,), bodem b[7,,,4] avektorem v,,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T b a) T) t t s }{{} Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Prozjištěníprůnikunámstačídruháneznámá s.průnik K Lpakobsahujeprávějedenbod b+s v[7,,,4]+,,,)[4,5,7,4]. Prokontrolumůžemedopočítatneznámé t 5at,průsečíkvyjdestejně a+t u + t u [5,, 9,]+5,,,),,,)[4,5,7,4]. Lineály Ka Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázjednohobodu[4,5,7,4]. Příklad.9:

13 . Vzájemná poloha lineálů Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán K[,,, ]+,,,),,,, ) L[,,,]+,7, 6,4) bodem a[,,, ] advěmavektory u,,,)a u,,, ), lineál Lb+ v pak bodem b[,,,] avektorem v,7, 6,4). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T b a) T) t t 4 s 4 }{{} 5. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+v).protožejepodmínkadimu+v)maxdim U,dimV) splněna, jsou zaměření U a V lineálů rovnoběžná. Soustava nemá řešení, průnik K L je proto prázdná množina. Lineály Ka Ljsoutedyrovnoběžnéneboť K L au V)aprůnikjeprázdný. Příklad.: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v pak K[,,,]+,,, ),,,,) L[,,,]+ 6,4,,) bodem a[,,,] advěmavektory u,,, )a u,,,), bodem b[,,,] avektorem v 6,4,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého

14 4 František Mošna: Řešené příklady z Matematiky III. lineálu L,tedy b a 6 6 u T u T v T b a) T) t t s }{{}. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) platí, jsou zaměření U a V lineálů rovnoběžná. Protožesoustavaseskládápouzezedvourovnicamámetřineznámé t, t a s,můžemejednuneznámou například s) považovatzaparametr.průnik K Lsepakrovnápřímolineálu L.Prokontrolumůžeme dopočítatzbyléneznámé t sat s,průsečíkvyjdestejně a+t u + t u [,,,]+ s),,, ) s,,,)[,,,]+ s 6,4,,). Lineál Ljetedypodprostoremlineálu Kneboť K LL au V)aprůnikjeroven L. Příklad.: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v pak K[,,,4]+,,,),,,, ) L[,,,]+,,, ) bodem a[,,,4] advěmavektory u,,,)a u,,, ), bodem b[,,,] avektorem v,,, ). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za plnou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T b a) T) t t s }{{} 6 6.

15 . Vzájemná poloha lineálů 5 Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Soustava nemá řešení, průnik K L je proto prázdný. Lineály Ka Ljsoutedymimoběžnéneboť K L au V)aprůnikjeprázdnámnožina. Příklad.: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v pak K[,,,5]+,,,),,,, ) L[,, 4, 4]+,,,) bodem a[,,,5] advěmavektory u,,,)a u,,, ), bodem b[,, 4, 4] avektorem v,,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T v T b a) T) t t s }{{} 4. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v rovnoběžné.dimenzeprostorů U+ V, U a V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V).ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Prozjištěníprůnikunámstačídruháneznámá s4.průnik K Lpakobsahujeprávějedenbod b+s v[,, 4, 4]+4,,,)[7,, 8,4]. Prokontrolumůžemedopočítatneznámé t at,průsečíkvyjdestejně a+t u + t u [,,,5],,,),,, )[7,, 8,4]. Lineály K a Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázjednohobodu [7,, 8,4]. Příklad.:

16 6 František Mošna: Řešené příklady z Matematiky III. Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u, u jepopsán K[,,, ]+,6,,),,,,),,,,) L[,,,]+,,, ) bodem a[,,, ] atřemivektory u,6,,), u,,,)a u,,,), lineál Lb+ v pak bodem b[,,,] avektorem v,,, ). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T u T v T b a) T) t t t s Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u, u av v rovnoběžné.dimenzeprostorů U+ V, Ua V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V)4.ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Prozjištěníprůnikunámstačíčtvrtáneznámá s.průnik K Lobsahujeprávějedenbod b+s v[,,,]+,,, )[5,,, ]. Prokontrolumůžemedopočítatneznámé t, t at,průsečíkvyjdestejně a+t u + t u [,,, ]+,6,,),,,)+,,,)[5,,, ]. Lineály K a Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázjednohobodu [5,,, ]. Příklad.4: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u, u jepopsán K[,,,]+,8,,),,5,,),,,,) L[,,,]+,4,5, ) bodem a[,,,] atřemivektory u,8,,), u,5,,)a u,,,),

17 . Vzájemná poloha lineálů 7 lineál Lb+ v pak bodem b[,,,] avektorem v,4,5, ). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u, u ) - za čáru vektor druhého lineálu s opačným znaménkem v) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T u T v T b a) T) t t t s Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u, u av v rovnoběžné.dimenzeprostorů U+ V, Ua V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V)4.ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Prozjištěníprůnikunámstačíčtvrtáneznámá s.průnik K Lpakobsahujeprávějedenbod b+s v[,,,]+,4,5, )[,5,,]. Prokontrolumůžemedopočítatneznámé t, t at,průsečíkvyjdestejně a+t u + t u + t u [,,,]+,5,,),,,)[,5,,]. Lineály Ka Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázjednohobodu[,5,,]. Příklad.5: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u jepopsán lineál Lb+ v, v pak K[,,,6]+,,,),,,, ) L[,,8, ]+,,,),,,,) bodem a[,,,6] advěmavektory u,,,)a u,,, ), bodem b[,,8, ] advěmavektory v,,,)a v,,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) -začáruvektorydruhéholineálusopačnýmznaménkem v, v ) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého

18 8 František Mošna: Řešené příklady z Matematiky III. lineálu L,tedy b a u T u T v T v T b a) T) t t s s Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v, v rovnoběžné.dimenzeprostorů U+ V, Ua V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V)4.ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Prozjištěníprůnikupotřebujemetřetíačtvrtouneznámou s as.průnik K Lpaksestávázbodu b+s v + s v [,,8, ]+,,,),,,)[,,,]. Prokontrolumůžemedopočítatneznámé t at,průsečíkvyjdestejně a+t u + t u [,,,6],,,)+,,, )[,,,]. Lineály Ka Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázjednohobodu[,,,]. Příklad.6: Zjistěte vzájemnou polohu lineálů K[,,,]+,,,),,,,) L[,4,, ]+,,,),,,,) a jejich průnik. Lineál K a+ u, u jepopsán bodem a[,,,] advěmavektory u,,,)a u,,,), lineál Lb+ v, v pak bodem b[,4,, ] advěmavektory v,,,)a v,,,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u ) -začáruvektorydruhéholineálusopačnýmznaménkem v, v ) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého

19 . Vzájemná poloha lineálů 9 lineálu L,tedy b a u T u T v T v T b a) T) t t s s Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u av v, v rovnoběžné.dimenzeprostorů U+ V, Ua V poznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V)4.ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Prozjištěníprůnikupotřebujemetřetíačtvrtouneznámou s as.průnik K Lpakobsahujeprávě jeden bod b+s v + s v [,4,, ]+,,,),,,)[,,,]. Prokontrolumůžemedopočítatneznámé t at,průsečíkvyjdestejně a+t u + t u [,,,]+,,,),,,)[,,,]. Lineály Ka Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázjednohobodu[,,,]. Příklad.7: Zjistěte vzájemnou polohu lineálů K[,, 4, 5]+,,,),,,,),,4,5,8) L[,,,6]+,,, ),,,,4) a jejich průnik. Lineál K a+ u, u, u jepopsán bodem a[,, 4, 5] atřemivektory u,,,), u,,,)a u,4,5,8), lineál Lb+ v, v pak bodem b[,,,6] advěmavektory v,,, )a v,,,4). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u, u ) -začáruvektorydruhéholineálusopačnýmznaménkem v, v ) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého

20 František Mošna: Řešené příklady z Matematiky III. lineálu L,tedy b a u T u T u T v T v T b a) T) t t t s s 4. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u, u av v, v rovnoběžné.dimenzeprostorů U+V, Ua Vpoznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V)4.ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Soustavasestávázečtyřrovnicopětineznámých,protozajednuneznámounapříklad s )zvolímeparametr s.prozjištěníprůnikupotřebujemečtvrtouapátouneznámou s sas s.průnik K Ljepaktvořen body b+s v + s v [,,,6]+s,,, ) s,,,4)[,,,6]+s,, 4, 7). Prokontrolusiopětmůžemedopočítatneznámé t s, t + sat 6s,průsečíkvyjde stejně a+t u + t u + t u [,, 4, 5] s),,,)+ + s),,,)+ 6s),4,5,8)[,,,6]+s,, 4, 7). Lineály Ka Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázlineálu K L [,,,6]+,, 4, 7). Příklad.8: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u, u jepopsán K[,,, ]+,,,),,,,5),,,,) L[,,,]+,,, ),,,4,) bodem a[,,, ] atřemivektory u,,,), u,,,5)a u,,,), lineál Lb+ v, v pak bodem b[,,,] advěmavektory v,,, )a v,,4,). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u, u ) -začáruvektordruhéholineálusopačnýmznaménkem v, v ) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a

21 . Vzájemná poloha lineálů u T u T u T v T v T b a) T) t t t s s 4. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u, u av v, v rovnoběžné.dimenzeprostorů U+V, Ua Vpoznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+ V)4.ProtožepodmínkadimU+ V)maxdim U,dimV) neplatí, nejsou zaměření U a V lineálů rovnoběžná. Soustavasestávázečtyřrovnicopětineznámých,protozajednuneznámounapříklad s )zvolímeparametr s.prozjištěníprůnikupotřebujemečtvrtouapátouneznámou s sas s.průnik K Ljepaktvořen body b+s v + s v [,,,]+s,,, )+ s,,4,)[,,,]+ s,,, ). Prokontrolumůžemedopočítatneznámé t s, t at s,průsečíkvyjdestejně a+t u + t u + t u [,,, ] +s),,,)+,,,5)+ s),,,)[,,,]+ s,,, ). Lineály Ka Ljsoutedyrůznoběžnéneboť K L au V)ajejichprůniksestávázlineálu K L [,,,]+,,,). Příklad.9: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u, u jepopsán K[,,, 5]+,,,),,,,),,,,) L[4,,,]+,,,),,,,8) bodem a[,,, 5] advěmavektory u,,,), u,,,)a u,,,), lineál Lb+ v, v pak bodem b[4,,,] advěmavektory v,,,)a v,,,8). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u, u ) -začáruvektorydruhéholineálusopačnýmznaménkem v, v ) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a

22 František Mošna: Řešené příklady z Matematiky III. u T u T u T v T v T b a) T) t t t s s 7 6. Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů. Neboli jsou-li příslušné vektorové prostory U u, u, u av v, v rovnoběžné.dimenzeprostorů U+V, Ua Vpoznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+v).protožejepodmínkadimu+v)maxdim U,dimV) splněna, jsou zaměření U a V rovnoběžná. Soustava nemá řešení, průnik K L je proto prázdný. Lineály Ka Ljsoutedyrovnoběžnéneboť K L au V)ajejichprůnikjeprázdnámnožina. Příklad.: Zjistěte vzájemnou polohu lineálů a jejich průnik. Lineál K a+ u, u, u jepopsán K[,,,]+,,, ),,,, ),,,,) L[7,,5,]+ 4,,, 4),,,,5) bodem a[,,,] atřemivektory u,,, ), u,,, )a u,,,), lineál Lb+ v, v pak bodem b[7,,5,] advěmavektory v 4,,, 4)a v,,,5). Do jedné matice zapíšeme po řadě do sloupců -vektoryprvníholineálu u, u, u ) -začáruvektordruhéholineálusopačnýmznaménkem v, v ) - za dvojitou čáru pak vektor, který vznikne odečtením bodu příslušného prvnímu lineálu K od bodu druhého lineálu L,tedy b a u T u T u T v T v T b a) T) t t t s s 4 5.

23 . Vzájemná poloha lineálů Potřebujeme zjistit, v jakém vzájemném vztahu jsou zaměření lineálů, neboli jsou-li příslušné vektorové prostory U u, u, u av v, v rovnoběžné.dimenzeprostorů U+V, Ua Vpoznámepodlehodnostičástímatice soustavy,tedydim U,dimV adimu+v).protožejepodmínkadimu+v)maxdim U,dimV) splněna, jsou zaměření U a V lineálů rovnoběžná. Soustavasestávázetřírovnicopětineznámých,protodvěneznáménapříklad s, s )budemepovažovatza parametry.průnik K Ljepaktvořenlineálem L.Prokontrolumůžemedopočítatneznámé t +s s, t +s + s a t,průsečíkvyjdestejně a+t u + t u + t u [,,,]+ +s s ),,, )++s +s ),,, )[7,,5,]+s 4,,, 4)+s,,,5). Lineál Ljetedypodmnožinou Kneboť K LL au V).

24 4 František Mošna: Řešené příklady z Matematiky III.. Příčky mimoběžek Příklad.: Zjistětepříčkudvoumimoběžek pa+ u [,,5]+,, ) aq B+ v [,,]+,,), která je rovnoběžná s vektorem w,, ). Zjistěte také průsečíky příčky s mimoběžkami. Směrhledanépříčkyoznačmeji r)jedanývektorem w,zbývátedyzjistitjedenjejíbod.tentobodnajdeme jako průsečík roviny ρ určené přímkou q a směrem w, tedy apřímky ρa+ u, w [,,5]+,, ),,,) q B+ v [,,]+,,). Při hledání průnikuoznačme bod v něm ležící D) budeme postupovat stejně jako v kapitole, 5 4 t t s zposlednířádkydostávámeparametr s 4,atedybod D[,,] 4,,)[ 4,, ].Zapíšeme hledanoupříčku r D+ w [ 4,, ]+,,). Poznamenejme,žesouřadnicebodu Dmůžemezjistittaképomocíparametrů t 7at dopočítanýchzesoustavy.potom D[,,5] 7,, ),,)[ 4,, ]. Bod Djeprůsečíkpříčky ramimoběžky q.průsečíkpříčky ramimoběžky poznačíme Eavzpočítámeho opět jako v kapitole ) pomocí soustavy u T w T D E) T) t s adostaneme E D+s w[ 4,, ]+,,)[, 6,]nebo E A+t u[,,5] 7,, )[, 6,]. p B A v u rρ w D q Příklad.: Zjistětepříčkudvoumimoběžek pa+ u [,,5]+,, ) aq B+ v [,,]+,,), která prochází bodem C [, 7, ]. Zjistěte také průsečíky příčky s mimoběžkami. Známe jeden bod C hledané příčkyoznačme ji r), potřebovali bychom zjistit ještě jedenoznačme ho D).

25 . Příčky mimoběžek 5 Víme,žehledanápříčkabudeležetvroviněurčenépřímkou pa+ u abodem C,nebolivrovině ρurčené bodem Aavektory uac A 4,9, 5).Bod D,vekterémbudehledanápříčka rprotínatpřímku qtedynajdemejakoprůsečíkroviny ρa+ u, C A [,,5]+,, ), 4,9, 5) apřímky qb+ v [,,]+,,).Přihledáníjejichprůnikubudemepostupovatstejnějakovkapitole , t t s zposlednířádkydostávámeparametr s 4,atedy D[,,] 4,,)[ 4,, ].Zapíšemehledanou příčku r D+ C D [ 4,, ]+ 9,,). Poznamenejme,žesouřadnicebodu Dmůžemezjistittaképomocíparametrů t 59at dopočítanýchzesoustavy.potom D[,,5] 59,, )+ 4,9, 5)[ 4,, ]. Bod Djeprůsečíkpříčky ramimoběžky q.průsečíkpříčky ramimoběžky poznačíme Eavzpočítámeho opět jako v kapitole ) pomocí soustavy u T C D) T D A) T) t s adostaneme E D+s C D)[ 4,, ]+ [,,5]+ 59,, )[ 55 4,47 9,, )[ 55 4,47 6, ]nebo E A+t u 6, ]. p u A C B v D q rρ Příklad.: Zjistětepříčkudvoumimoběžek pa+ u [,,5]+,, ) a qb+ v [,,]+,,),která procházíbodem C[, 4,]. Známe jeden bod C hledané příčkyoznačme ji r), potřebovali bychom zjistit ještě jedenoznačme ho D). Víme,žehledanápříčkabudeležetvroviněurčenépřímkou pa+ u abodem C,nebolivrovině ρurčené bodem Aavektory uac A,, 5).Bod D,vekterémbudehledanápříčka rprotínatpřímku qtedynajdemejakoprůsečíkroviny ρa+ u, C A [,,5]+,, ),,, 5) apřímky qb+ v [,,]+,,).Přihledáníjejichprůnikubudemepostupovatstejnějakovkapitole , 5 4 t t s zposlednířádkydostávámeparametr s 4,atedy D[,,] 4,,)[ 4,, ].Zapíšemehledanou příčku r D+ C D [ 4,, ]+,,). Poznamenejme,žesouřadnicebodu Dmůžemezjistittaképomocíparametrů t 7 a t dopočítaných zesoustavy.potom D[,,5]+ 7,, )+,, 5)[ 4,, ].

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami

Více

Michal Zamboj. December 23, 2016

Michal Zamboj. December 23, 2016 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj December 3, 06 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

10. cvičení z Matematické analýzy 2

10. cvičení z Matematické analýzy 2 . cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

12 Trojný integrál - Transformace integrálů

12 Trojný integrál - Transformace integrálů Trojný integrál transformace integrálů) - řešené příklady 8 Trojný integrál - Transformace integrálů. Příklad Spočtěte x + y dxdydz, kde : z, x + y. Řešení Integrační obor určený vztahy z, x + y je válec.

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

PROGRAMU 2. Obvod D je dán součtem velikostí všech tří stran D=a+b+c= =23.07

PROGRAMU 2. Obvod D je dán součtem velikostí všech tří stran D=a+b+c= =23.07 VZOROVÉ ŘEŠENÍ A VYSVĚTLENÍ PROGRAMU. Ing. Marek Nikodým Ph.D. Katedra matematiky a deskriptívní geometrie VŠB-TU Ostrava 1 Výpočty v trojúhelníku Je dán trojúhelník ABC v prostoru A[, 3, 3], B[4, 5, ],

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,

Více

1.13 Klasifikace kvadrik

1.13 Klasifikace kvadrik 5 KAPITOLA 1. KVADRIKY JAKO PLOCHY. STUPNĚ 1.13 Klasifikace kvadrik V této části provedeme klasifikaci kvadrik. Vyšetříme všechny případy, které mohou různou volbou koeficientů v rovnici kvadriky a 11

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Plošný integrál Studijní text, 16. května Plošný integrál

Plošný integrál Studijní text, 16. května Plošný integrál Plošný integrál tudijní text, 16. května 2011 Plošný integrál Jednoduchý integrál jsme rozšířili zavedením křivkového integrálu. Rozlišovali jsme dva druhy integrálu, přičemž křivkový integrál 2. druhu

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních diferenciálních rovnic y = a (x)y + a (x)y + + a n (x)y n + f (x) y = a (x)y + a (x)y + + a n (x)y n + f (x). y n = a

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Podrobnější výklad tématu naleznete ve studijním textu, na který je odkaz v Moodle. Tam je téma

Podrobnější výklad tématu naleznete ve studijním textu, na který je odkaz v Moodle. Tam je téma Kuželosečky a kvadriky - výpisky + příklady Postupně vznikající text k části předmětu Geometrie. Ve výpiscích naleznete výpisky z přednášky, poznámky, řešené příklady a příklady na procvičení. Podrobnější

Více

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2,

má spojité parciální derivace druhého řádu ve všech bodech této množiny. Výpočtem postupně dostaneme: y = 9xy2 + 2, 4. Parciální derivace a diferenciál. řádu 0-a3b/4dvr.tex Příklad. Určete parciální derivace druhého řádu funkce f v obecném bodě a v daných bodech. Napište obecný tvar. diferenciálu, jeho hodnotu v daných

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Derivace funkcí více proměnných

Derivace funkcí více proměnných Derivace funkcí více proměnných Pro studenty FP TUL Martina Šimůnková 16. května 019 1. Derivace podle vektoru jako funkce vektoru. Pro pevně zvolenou funkci f : R d R n a bod a R d budeme zkoumat zobrazení,

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

VEKTOROVÁ POLE Otázky

VEKTOROVÁ POLE Otázky VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x,

Více

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x). Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

4 Integrální počet funkcí více reálných proměnných

4 Integrální počet funkcí více reálných proměnných Dvojné integrály - 61-4 ntegrální počet funkcí více reálných proměnných 4.1 Dvojné a dvojnásobné integrály Dvojné a dvojnásobné integrály na intervalech z Pod uzavřeným intervalem z rozumíme kartézský

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Veronika Chrastinová, Oto Přibyl

Veronika Chrastinová, Oto Přibyl Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

7. Integrál přes n-rozměrný interval

7. Integrál přes n-rozměrný interval 7. Integrál přes n-rozměrný interval Studijní text 7. Integrál přes n-rozměrný interval Definice 7.1. Buď A = a 1, b 1 a n, b n R n n-rozměrný uzavřený interval a f : R n R funkce ohraničená na A Df. Definujme

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet

Determinant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Obsah Obyčejné diferenciální rovnice

Obsah Obyčejné diferenciální rovnice Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................

Více

VEKTOROVÁ POLE VEKTOROVÁ POLE

VEKTOROVÁ POLE VEKTOROVÁ POLE Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,

Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 =

f(x) = arccotg x 2 x lim f(x). Určete všechny asymptoty grafu x 2 2 = Řešení vzorové písemky z předmětu MAR Poznámky: Řešení úloh ze vzorové písemky jsou formulována dosti podrobně podobným způsobem jako u řešených příkladů ve skriptech U zkoušky lze jednotlivé kroky postupu

Více

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat 6. Extrémy funkcí více proměnných Průvodce studiem Hledání extrémů je v praxi často řešená úloha. Např. při cestě z bodu A do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

Přijímací zkouška na navazující magisterské studium 2018

Přijímací zkouška na navazující magisterské studium 2018 Přijímací zkouška na navazující magisterské studium 208 Studijní program: Studijní obory: Matematika MA, MMIT, MMFT, MSTR, MNVM, MPMSE Varianta A Řešení příkladů pečlivě odůvodněte. Věnujte pozornost ověření

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

11 Vzdálenost podprostorů

11 Vzdálenost podprostorů 11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu

Více