Lineární diferenciální rovnice 1. řádu verze 1.1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární diferenciální rovnice 1. řádu verze 1.1"

Transkript

1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové k přípravě na zkoušku. Mohou se v něm vyskytovat některé chyby; autor ocení, když jej na chyby a nejasnosti upozorníte na u jiri.lipovskyzavináč uhk.cz. 2 Teorie Nyní se budeme zabývat lineárními diferenciálními rovnicemi. řádu s netriviální pravou stranou, tedy y + g()y = f(). Nejdříve nalezneme obecné řešení homogenní rovnice (rovnice bez pravé strany) y + g()y = 0. Toho dosáhneme separací proměnných (viz příslušný studijní tet). Příslušné obecné řešení homogenní rovnice má u sebe konstantu. Druhým krokem bude variace této konstanty. Představíme si, že místo této konstanty je funkce závislá na a dosazením do původní rovnice tuto konstantu vypočteme. 3 Příklady Příklad 3.. Řešte rovnici y + 3y = 2. Nejdříve vypočteme řešení homogenní rovnice y + 3y = 0. dy y = 3 d, ln y = 3 ln + ln c, y = c 3. Nyní si představíme, že místo konstanty c máme funkci c(). Proto výraz y() = dosadíme do původní rovnice. c() 3 c () 3 3 c() 4 + 3c() 3 = 2, c = 4 c() = C 2, y() = C 2 3. Příklad 3.2. Řešte rovnici y = (y cos ).

2 Homogenní rovnice: y = y, d y =, ln y = ln + C, y = c. y = c(), c() = c () + c() 2 cos, c () = cos, c() = sin + c 2, y() = (c 2 + sin ). Příklad 3.3. Řešte rovnici y + ( + )y = 3 2 e. Homogenní rovnice: y + ( + )y = 0, ( dy y = + ) d, ln y = ln + c, y() = e c. y() = c() e, c ()e c()e c() e + ce + c e = 3 2 e, Příklad 3.4. Řešte rovnici y = c () = 3 2 c() = 3 + c 2, ( y() = 2 + c ) 2 e. y 3 y 2. Rovnici si upravíme do tvaru 3 y 2 y dy d =, což odpovídá rovnici (y) = 3 y y. 2

3 Najdeme tedy jako funkci y. Homogenní rovnice: = 3 y, d 3 = y dy, ln = 3 ln y + c, = cy 3. (y) = c(y)y 3, c (y)y 3 + 3c(y)y 2 = 3c(y)y 2 y, Příklad 3.5. Řešte rovnici y + ay = e m. Homogenní rovnice: c (y) = y 2, c(y) = y + c 2, (y) = y 2 + c 2 y 3. y + ay = 0, y = ad, ln y = a + c, y = ce a. y() = c()e a, c ()e a ac()e a + ac()e a = e m, c () = e (a+m) c() = a + m e(a+m) + c 2, y() = m + a em + c 2 e a, a m. Příklad 3.6. Řešte rovnici y + 2y = 2e 2. Homogenní rovnice: y + 2y = 0, dy y = 2d, ln y = 2 + c, y = ce 2. 3

4 y() = c()e 2, c ()e 2 + c()( 2)e 2 + 2c()e 2 = 2e 2, c () = 2 c() = 2 + c 2, y() = ( 2 + c 2 )e 2. Příklad 3.7. Řešte rovnici y + 2y = 3, y(0) = 0. Homogenní rovnice: y + 2y = 0, dy y = 2 d, ln y = 2 ln + c, y = c 2. Z počáteční podmínky y() = c() 2, c () 2 + ( 2) c() 3 + 2c() 2 = 3, c () = 3 2 c() = 3 + c 2, y() = c c 2 = 0 y() =. Příklad 3.8. Řešte rovnici y + y cos = sin cos, y(0) =. Homogenní rovnice: y + y cos = 0, y = cos d, ln y = sin + c, y = ce sin. 4

5 y() = c()e sin, c ()e sin + ( cos )c()e sin + c()e sin cos = sin cos, c() = c () = sin cos e sin, sin cos e sin d = te t dt = (At + B)e t, A + At + B = t A =, B =, c() = (t )e t + c 2 = (sin )e sin + c 2, y() = sin + c 2 e sin, y(0) = = + c 2 c 2 = 2, y() = sin + 2e sin. Příklad 3.9. Řešte rovnici ( 2 )y + y =, y(0) =. Homogenní rovnice: ( 2 )y + y = 0, y = 2 d, ln y = 2 ln 2 + c, y() = c 2. Z počáteční podmínky y() = c() 2. ( 2 )c () 2 + ( 2 )c() /2( 2) 2 + c() 2 =, c () = ( 2 ) 3 2 c = 2( 2 ) /2 + c, Příklad 3.0. Řešte rovnici y y cos sin = 2 sin. Homogenní rovnice: y y cos sin = 0, cos y = sin d, ln y = ln sin + c, y = c sin. y() = 2 + c 2. 5

6 y() = c() sin, c () sin + c() cos c() cos = 2 sin, c() = 2 d = 2 + c 2, Příklad 3.. Řešte rovnici y + y =. Homogenní rovnice: y() = (2 + c 2 ) sin. y + y = 0, y = d, ln y = c, y = ce 2 2. c() = e 2 y() = c()e 2 2, c ()e 2 2 c()e c()e 2 2 =, 2 d = u = 2, du = d 2 = c () = e 2 2, e u du = e u = e c2, y() = + c 2 e 2 2. Příklad 3.2. Řešte rovnici y = Homogenní rovnice: y = y ( ). y y = ( ), ( ( ) d = ) d, ln y = ln + c, y = c. 6

7 c () y() = c(), ( ) + c() = c() 2 ( ), ( ) ( ) + c() 2 = c() 2 ( ), c () Příklad 3.3. Řešte rovnici y + 3y = e 2. Homogenní rovnice: c () = ( ) 2, c() = + c 2, y() = + c 2 = + c 3. y + 3y = 0, y = 3d, ln y = 3 + c, y = ce 3. y() = c()e 3, c ()e 3 + c()e 3 ( 3) + 3c()e 3 = e 2, Příklad 3.4. Řešte rovnici y + y = cos. Homogenní rovnice: y + y = 0, y = d, ln y = + c, c () = e 5, c() = 5 e5 + c 2, y() = 5 e2 + c 2 e 3. y = ce. 7

8 y() = c()e, c ()e + c()e ( ) + c()e = cos, c() = e cos d = 2 e (sin + cos ) + c 2, Příklad 3.5. Řešte rovnici y Homogenní rovnice: y = y() = 2 (sin + cos ) + c 2e. y + =. y = y +, ( ( + ) d = ) d, + ln y = ln + + c, y = c +. y() = c() +, c () + + c() + ( + ) 2 c() ( + ) 2 =, Příklad 3.6. Řešte rovnici (2e y )y =. c () = + = +, c() = + ln + c 2, y() = + ( + ln + c 2). Použijeme triku, že hledáme řešení (y) jako funkce od y. Homogenní rovnice: = + 2e y. =, d = dy, ln = y + c, = ce y. 8

9 (y) = c(y)e y, c (y)e y c(y)e y = c(y)e y + 2e y, c(y) = 2e 2y = e 2y + c 2, (y) = c 2 e y + e y. Příklad 3.7. Řešte rovnici 2 y + 3 2y = 0. y() = + c 2 2. Příklad 3.8. Řešte rovnici y + 2y = 2 3. y() = 2 + c 2 e 2. Příklad 3.9. Řešte rovnici y + 2y = 2e 2. y() = ( 2 + c 2 )e 2. Příklad Řešte rovnici y 2y = y() = 3 + c 2 e 2. Příklad 3.2. Řešte rovnici y + ( )y = e. y() = ( 2 + c ) 2 e. Příklad Řešte rovnici y + (y 2 sin ) cos = 0. y() = 2(sin ) + c 2 e sin. Příklad Řešte rovnici y 2y = s počáteční podmínkou y(0) =. y() = 3e2 2 Příklad Řešte rovnici ( + 2 )y + y = ( + 2 ) 5/2.. ( ) 5 y() = c

10 Příklad Řešte rovnici y + y = e s počáteční podmínkou y(0) = 2. y() = 2 (e + 3e ). Příklad Řešte rovnici y + y = e s počáteční podmínkou y(0) = 3. y() = ( + 3)e Příklad Řešte rovnici y y = s počáteční podmínkou y(0) =. y() = (arctg + )( + 2 ). Příklad Řešte rovnici y + 2 y = 0 s počáteční podmínkou y( ) = 2. y() = 2e +, (, 0). Příklad Řešte rovnici y + +y = 0 s počáteční podmínkou y(0) =. y() = ( + ) >. Příklad Řešte rovnici y +y cos = e sin s počáteční podmínkou y(0) =. y() = ( + )e sin. Příklad 3.3. Řešte rovnici y + y = 2 +. y() = 2 + c 2 e. 4 Rovnice, které lze převést na lineární Nakonec se budeme zabývat rovnicemi, které lze vhodnou úpravou převést na lineární. Prvním příkladem je Bernoulliova rovnice y + a()y = b()y n. Nejdříve tuto rovnici vydělíme y n a poté použijeme substituci z = y n. Příklad 4.. Řešte rovnici y + 2y = 2 3 y 3. 0

11 Zvolíme substituci z = y n+, 2 z + 2z = 2 3. Homogenní rovnice: 2 z + 2z = 0, dz z = 4 d, z = ce 22. z = c()e 22, c() = 2 c ()e 22 2c()e 2 + 2c()e 2 = 2 3, 4 3 e 22 d = t = 2 2, dt = 4d = 2 (22 + )e 22 + c 2, z() = c 2e 22 = y 2, y() = ± c 2e 22 Druhou rovnicí je Ricattiova rovnice y + a()y + b()y 2 = c(). Jestliže známe jedno její partikulární řešení y (), lze ji substitucí y = y + z převést na Bernoulliovu rovnici. 5 Použitá a doporučená literatura. Kopáček Jiří, Příklady z matematiky pro fyziky II., Matfyzpress, Praha, 2003, kapitola ves/difrov.pdf, kapitola.3

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ DIPLOMOVÁ PRÁCE Diplomant: Vedoucí diplomové práce: Zdeněk ŽELEZNÝ RNDr. Libuše Samková,

Více

ě á Ř ú ó Á ý á á ú ú ú š ý á ě á á ú á á á á ž ě ě š ů á á á á ý ž á ž á á ě á á ž á ě Á ě á ó ó á ú ěš á ý úě ú ý ň ý ý á ň ň á ň ý ý á É ý á ý á ě á ú Č Š ÝŤ ú ú ú š ý á á á ú á á á á ě ě š ů á á á

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

MS OFFICE MS WORD. Editor rovnic - instalace

MS OFFICE MS WORD. Editor rovnic - instalace MS OFFICE Může se zdát, že užití kancelářského balíku MS Office při výuce fyziky nepřesahuje běžné aplikace a standardní funkce, jak jsou popsány v mnoha příručkách ke všem jednotlivým částem tohoto balíku.

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY

ŘEŠENÉ PŘÍKLADY K DOPLNĚNÍ VÝUKY ŘEŠENÉ PŘÍKLDY K DOPLNĚNÍ ÝKY. TÝDEN Příklad. K baterii s vnitřním napětím a vnitřním odporem i je připojen vnější odpor (viz obr..). rčete proud, který prochází obvodem, úbytek napětí Δ na vnitřním odporu

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Diferenciální a integrální počet funkcí více proměnných

Diferenciální a integrální počet funkcí více proměnných Fakulta strojního inženýrství VUT v Brně 5. června 9 Diferenciální a integrální počet funkcí více proměnných RNDr. Jiří Klaška, Dr. Sbírka řešených příkladů k předmětu Matematika II pro profesní a kombinovanou

Více

Ť É Á í ý ý ě í í š ě í ý č ě í í ě ý é é ě ě í ý ý ý í ď é ť é é Ú í ř í Ž Ž ý ý í Ž ý í é ý Ž é í š í Ů é í í č ý ý í í ž ý í í í ě ž č í í ě ší č ě ší é í č čí ý ý í Ú č ž í Úč ř í í ší č ý Ú í ř é

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Ť č č ó ó č č č ý č ď ý ď š ě ý ň ě ý ú Ó ý ě č ě č Š ě Ž ý ý ě č č Ú č ý Č ě ě Š ř ěťž ě č É ť Č č ř Ž ě š č č ě ě ú č ó ó č č ů ě ř ě š Ž š ě Ž č š ď č ěž ž č ň š ň ň ř č ň č ý š ě ý Č Ó č É Á Ý Š č

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

ů é Č ů Ú Řď ů ů ý ý ý ů ů ý ň ď Ť Ť Ť é é ý ů ý É ň é ů ý é ý ů ů ý ý ů ů é ů ý ý ý é é Ť ý é ý ď ý é ý Ó Ů ý Ů Ů Ů ú ů ďů é ý ý é ď ý ý ý ů ů é ů ů é ů é ý é Ů é é é ý Ť ů Ť é é é é ů é ý ý é Ť é é Ú

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14

Definiční obor funkce, obor hodnot funkce. Funkce. Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště. Digitální učební materiály, 2012-14 Funkce Definiční obor funkce, obor hodnot funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah 1 Definiční obor funkce příklady na určení oboru hodnot funkce

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

ř é ů ř ř š Š ě ř é ů Š ě ř é ů ř ř é ě š ů ď ě ý ů ú é ú é ú é ú é ý ú é ř ř ů ř ě ý é ů ě é ř ě Ž é ú ř ý ě ý ř ď ů é Í ě é ě ý Š ěř é ýř é ř ů ó ě ý ř ě ř ě ý ů ě ě š ř ů ú ýš ě ů ú ý ť ě ý ý ď ě ď

Více

Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

ý Í Á ě Ě Á Í ý ě ě ů Š ů ý ě ú ě ě Í ě ý ů ě ý ý ě ě ě ý Ť ě ý Á Ž ě Ěú Á ě ý Í ú ú Ž Í Ž ě ý ý ó ó ď ě ě ý ě ú ý Á ě Ěú Á Š ě ě ý ě ě ý ě ú ě ý ě ě ú ý ě ó Áý Í ť ě Ěú Á Í ě Ž ě ý ý ě ě ý ě ě Á ě ě ý

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016

Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ. strana ze 36 Šárka Hošková Jaromír Kuben Pavlína Račková Vytvořeno v rámci projektu Operačního programu Rozvoje

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

ž ž Č ó Ú ý é ý Ú č č ý ě Ú ť š č ý č Č Č š é ý š é ž é é ď Ě š ú Š č úč ů úč ů ž úč ů ó č ě ž š š š š č č Č é šť é é é é é é š Ú č č ý ň ě č ý ě ě ůč ě č č č Ů ž č ý ě ů ě ě ý ú Ť ě ý ě ů ě ě ý ů Ť š

Více

Ý Ě Ú Ý Ů Ý Ů ě ě ú É Ř É Ý ú š ě Ú ť Ó Ó ó ď ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ě ů ď ů ů ů ě ů ú ů ů ů ů ě ů ú ů ž ěž ěž ú ů Ú ů ú Ř ů ď Ť Ó Ř ů ů ů ů ů ů ů ť ů Ú ú ú ě ů ů ů ó ů ó ď ó ó ů ů ú ó ó ů ů ú Ř

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

Š é ě ěř é ě é ř ě ř Ž é č ř é č Í č ř ě é ř ě č č č ý ý ř č é é ř č é ď ě ř ř ě ň Žď č ř Ž é č š é ú č é č é ř ě ř ě úř úř ý é ě ř ř č š é ř é ý č ř Ž é č š é Ž Ž č é č ě ý ě ň š ěř ěř é ě ěř é ě ď ě

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

šé ř ž ř é ě ý ž ť ý ě ě ž ý š ě š ě ě ý Š ú ž š éř ú é ě é ě ý ř é ř ý ř ř š éř š éř š éř ž š éř ž Ú ů ě ň ý š é é š é ú é ě ě é é ú é Ý ů ě ř ě ě š Ě ň é ř ř ý ř ň ř é é ě š é é ú ě ý ý ř ž š ú ý ů é

Více

Ý Í Á Í Ž ý č ý ů ů ž ž ý č ť ú ď ů ó ž ý ž č ž ž ú č č č ď č ž ť ž ž ž č ž ž ď č ž ž ď ú ť ť ý ň ž ú ž ť č ž ú ž ú ž č ž ý ž ý ň ž ž č ď č ž č ť ú Ď ž č ž č ó ůž ť ú ž č ý ž Ď ď ď ž ž ž ďť ť ú č č ž Ž

Více

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY.

APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGISTICKÝ RŮSTOVÝ MODEL. PRUŽNOST NABÍDKY A POPTÁVKY. APLIKACE DYNAMICKÝCH MODELŮ V ANALÝZE POPTÁVKY. LOGITICKÝ RŮTOVÝ MODEL. PRUŽNOT NABÍDKY A POPTÁVKY. Následující text se věnuje modelům poptávky po předmětech dlouhodobé spotřeby. Na tyto modely bychom

Více

Č É Ú č Ť É á Ú é ť á ť á ž á á á ť Ů ď Ř ó š é č Ů Ě ť Ě ť ý ď ď Ě á á ť É é á á Ě á á ů ť ý ť é á ťó ď á á ů Ť ó á š É É áó á ď ú á ů Š ť Ý Ž Ž Ý É ů É ú ď ů ď á ó á á Ž áó á Ň ť ďť ó Ť á ý áá é ú á

Více

A 9. Počítejte v radiánech, ne ve stupních!

A 9. Počítejte v radiánech, ne ve stupních! A 9 Př.. Je dána rovnice sin + 2 = 0. Najděte interval délky, v němž leží kořen rovnice. Metodou půlení intervalů tento interval zužte až na interval délky 0,25. Pak kořen najděte s přesností ε = 0,00

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Í ý é ď ú Ú Ú Ú Ú é é é ý ú Í Í ž ó ž ž ž éý é ý ď ž ď ý Ž ž Í ž ý ž ý ó ý ž ý é š é ý é ý ó ý ý Ú Ž é ý ý é ýš ď é Í ů ů š ýš š ý ďů ž ý é ý š ýš ů ž ů ž ý ůů ú ů é ó ý é é é ď ý š ý ýš š ž ů Ť ž ý Á

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Modelování fyzikálních dějů numerickými metodami

Modelování fyzikálních dějů numerickými metodami Modelování fyzikálních dějů numerickými metodami Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Obsah 1 Modelování pohybu hmotného bodu 4 1.1 Pohybovérovniceajejichřešení.... 4

Více

Modelování fyzikálních dějů numerickými metodami

Modelování fyzikálních dějů numerickými metodami Modelování fyzikálních dějů numerickými metodami Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Obsah 1 Modelování pohybu hmotného bodu 4 1.1 Pohybovérovniceajejichřešení.... 4

Více

1.7 Magnetické pole stacionárního proudu

1.7 Magnetické pole stacionárního proudu 1.7 Magnetické poe stacionárního proudu Pohybující se e. náboje (e. proud) vytvářejí magnetické poe. Naopak poe působí siou na pohybující se e. náboje. 1.7.1 E. proud, Ohmův zákon v diferenciáním tvaru

Více

á ř é á ů ň Š á Š ě Š ř ř á á á á Ť é á ů á Ť ř é ě š ř ý ů áš á ř é á á á é ř á ř á ú á é á á ú á é á ú á é ý ů á ý ů á ú á ú é ř ě é ř á ý ě á ř á ý ůě é ř á ť é á ě á á ú é á á ě ě ů á á Š Ť á ěř á

Více

7. Slovní úlohy na lineární rovnice

7. Slovní úlohy na lineární rovnice @070 7. Slovní úlohy na lineární rovnice Slovní úlohy jsou často postrachem studentů. Jenţe Všechno to, co se učí mimo slovní úlohy, jsou postupy, jak se dopracovat k řešení nějaké sestavené (ne)rovnice.

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 9. srpna 05 Materiál je v aktuální

Více

Č Š ň ú Č ť Ž Ú Ž Ž Ý Ý ú Í ó ó Ť ť Ť ó ú ť ť ň ť ť Í Á Ú Š Ú Í É É É Í Í Ý ť Ž Ž Í Ý ť Č ď ň Ť ú Ú ó Č Ťť Ž Č Š Č Íú Č Í Č Á ť ť Ž Ú ó Ž ó ó Ž Ž ť Í Í Ý Ý ď ď Í Í ď Í Ú ň Í Ý Ú ó ň óť ú ť ť Č ť ó Ý Ň

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

ÁŠ Š Í É áš Š í é č á ó é á ší ě é š ů ě ě é í é á ž ď ě ů ží ě á í é ě é ě é é č í ž é ý ů ň č í ř ýš í ří í ž í á ů á á ů ď á ý í é á á í á í ě é í ř ž ě ě ě í ř ř ěž ž ě ě ž Š í é ř ž ž ď é č ř š ý

Více

Čistá současná hodnota a vnitřní výnosové procento

Čistá současná hodnota a vnitřní výnosové procento Čistá současná hodnota a vnitřní výnosové procento Co je to čistá současná hodnota? Čistá současná hodnota představuje rozdíl mezi diskontovanými peněžními příjmy z určité činnosti a výdaji na tuto činnost.

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

č úč ř ú úč é š ř úč ř ář ž úč úč ř ň á č á á á ř á ř ř ř úč Č ář é úč é á á ř á č úč š ř áš á á á č úč š ř úč ř č á úč é úč á č á á š ř á č Í š ř č úč č ž á é á é š é úč ď ž č Ýé ř á é ř úč úč ř ž ď š

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více