KOMPLEXNÍ ČÍSLA (druhá část)

Rozměr: px
Začít zobrazení ze stránky:

Download "KOMPLEXNÍ ČÍSLA (druhá část)"

Transkript

1 KOMPLEXNÍ ČÍSLA (druhá část) V prví kaptole jsme se seáml s algebrackým tvarem komplexího čísla. Některé výpočty s komplexím čísly je však lépe provádět ve tvaru goometrckém. Po. V ásledujícím textu předpokládám alost průběhu goometrckých fukcí sus resp. kosus. Goometrcký tvar komplexího čísla Je dáo komplexí číslo = a + b. Záoríme ho v Gaussově rově. Goometrckým tvarem komplexího čísla aýváme áps: cos s a b cos, s., kde Příklad 9 Vyjádřete v goometrckém tvaru čísla: a) = + 5, b) = 5, c) = 4. a) Načrteme s obra čísla = + 5 v Gaussově rově. Sado se přesvědčíme, že leží ve II. kvadratu, tj. argumet α bude úhel tupý. Nejdříve vypočítáme, tj. vdáleost obrau čísla od počátku soustavy souřadc. a cos a b Výsledek: 9 cos48 s 48. b) Číslo = 5 leží a kladé poloose x, argumet α = 0. Vdáleost čísla 5 od uly je 5. 5 cos0 s 0. Výsledek: c) Číslo = 4 leží a áporé poloose y, argumet α = 70, = 4. 4 cos 70 s 70. Výsledek:

2 Souč a podíl komplexích čísel v goometrckém tvaru Máme čísla cos s, cos s Movreova věta cos cos Je dáo komplexí číslo cos s cos s. Pak platí: s s. Pro všecha přroeá čísla platí: Příklad 0 Vypočtěte (3 5). Číslo = 3 5 ejprve převedeme do goometrckého tvaru a potom použjeme Movreovu větu. = Obra čísla leží ve IV. kvadratu, argumet α bude tedy úhel tervalu 70 ; 30. a 3 cos cos s cos80547 s Vyšel ám úhel jak vrata, využjeme proto perodčost goometrckých fukcí sus resp. kosus a přepíšeme teto úhel do ákladího tvaru cos547 s 547 Teď už bývá je posledí krok převést číslo pět do algebrackého tvaru cos547 s ,995 0, ,9 390, 5 Po. Komu přjde výše uvedeý postup přílš komplkovaý, může provést ásledující výpočet: Přej příjemou ábavu.

3 Řešeí kvadratckých rovc s reálým koefcety v C ) Je dáa eúplá kvadratcká rovce ve tvaru ax c 0. Jsou-l koefcety a, c současě kladá resp. áporá čísla, rovce má dva růé komplexě sdružeé kořey. ) Je dáa úplá kvadratcká rovce ax bx c 0. Takovou rovc řešíme přes dskrmat kvadratcké rovce D. Je-l D > 0, pak má rovce dva růé reálé kořey, je-l D = 0, pak má rovce jede dvojásobý koře a je-l D < 0, pak má rovce dva růé komplexě sdružeé kořey. Příklad Řešte kvadratcké rovce v C. a) x + = 0 b) x 5 = 0 c) 5x + x + 8 = 0 a) x x 3 x 3 Rovce má dva růé komplexě sdružeé kořey 3. b) x 5 = 0 5 = x x = ± 5 Rovce má dva růé komplexě sdružeé kořey. c) 5x + x + 8 = 0 D D 8 x, 0 5 Rovce má dva růé komplexě sdružeé kořey Bomcká rovce, tá komplexí odmoca Je dáo komplexí číslo. Pak pro každé přroeé platí: k k cos s, kde k = 0; ; ;... ; Chceme-l odmoct komplexí číslo, převedeme jej ejdříve do goometrckého tvaru cos s. Poté použjeme výše uvedeý vorec, kde a k postupě dosaujeme celá čísla od 0 až po číslo. Dostaeme vždy výsledků, které veme -tým komplexím odmocam čísla. Každé komplexí číslo má právě růých -tých komplexích odmoc. Zdálvě složtý výpočet ořejmíme a příkladu.

4 Příklad Vypočtěte 3 8. Nejprve převedeme číslo 8 do goometrckého tvaru. Jedá se o číslo reálé, ležící a áporé poloose x, jehož absolutí hodota je rova 8. Platí tedy: 8 = 8(cos 80 + s 80 ) Vorec pro výpočet -té komplexí odmocy vyjádříme pro aše potřeby ve stupích. 30 k 30 k cos s, kde k = 0; ; ;... ; = 3, α = 80, a k budeme postupě dosaovat čísla 0,,. = k = 0 k = k = cos s = 3 3 cos0 s 0 = 3 = cos s 3 3 cos80 s 80 = = cos s 3 3 cos300 s 300 = 3 3 = Po. Kdybychom se abýval daou odmocu poue v oboru reálých čísel, dostal bychom poue řešeí =. V oboru C má však každé číslo právě růých -tých komplexích odmoc, jejchž obray vytvoří v Gaussově rově pravdelý -úhelík, jak s ukážeme poděj př řešeí bomckých rovc. Otáka: Co se stae, dosadíme-l a k = 3? Podle výše uvedeých tvreí totž emůže exstovat žádá já třetí odmoca čísla 8. Zkusme. k = cos s 3 3 cos 40 s 40 = 3 4 = Pro k = 3 jsme dostal opět prví koře. Stejě tak pro k = 4 bychom dostal opět atd.

5 Bomcká rovce v C Rovce ve tvaru ax b 0, kde a, b R, a 0, N, se aývá bomcká rovce b s eámou x C. Dělíme-l obě stray rovce číslem a, ačež položíme výra m, a dostaeme ormovaý tvar bomcké rovce x = m. Tato rovce má v C vždy kořeů, jejchž obray v Gaussově rově tvoří vrcholy pravdelého -úhelíku se středem v bodě [0, 0]. Příklad 3 Řešte v C rovc x 4 3 = 0. Rovc ejdříve ormujeme a tvar x 4 = a poté j odmocíme (čtvrtou odmocou). Dostaeme: x 4 Hledáme tedy čtvrté odmocy čísla. Budeme postupovat obdobě jako v příkladu. = (cos 0 + s 0 ) 30 k 30 k cos s, kde k = 0; ; ;... ; = 4, α = 0, a k budeme postupě dosaovat 0,,, 3. = 4 k = 0 k = k = k = cos s = 4 4 cos0 s 0 = = cos s = 4 4 cos90 s 90 = = cos s = 4 4 cos80 s 80 = = cos s = 4 4 cos 70 s 70 = = Dostal jsme čtyř kořey, chž dva jsou reálé (, 3 ) a dva magárí (, 4 ). Nyí tyto kořey áoríme v Gaussově rově.

6 Jak je vdět a obráku vpravo, obray kořeů daé bomcké rovce tvoří vrcholy pravdelého čtyřúhelíku (tj. čtverce) se středem v počátku soustavy souřadc. Absolutí hodota komplexího čísla udává jeho vdáleost od počátku soustavy souřadc. Všechy kořey mají absolutí hodotu rovu dvěma, a proto musí ležet a kružc se středem v počátku [0; 0] a poloměrem r =.

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.

Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2. Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v

Více

Geometrická posloupnost a její užití, pravidelný růst a pokles, nekonečná geometrická řada. 1 n. r s. [ a)22 ; b)31,5 ; c)-50 ; d)0 ; e)

Geometrická posloupnost a její užití, pravidelný růst a pokles, nekonečná geometrická řada. 1 n. r s. [ a)22 ; b)31,5 ; c)-50 ; d)0 ; e) 9 Geometrická posloupost její užití, prvidelý růst pokles, ekoečá geometrická řd Geometrická posloupost Je dá posloupost { }. Tuto posloupost zveme geometrická, jestliže pro kždé dv po sobě ásledující

Více

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat?

3.1.4 Trojúhelník. Předpoklady: 3103. Každé tři různé body neležící v přímce určují trojúhelník. C. Co to je, víme. Jak ho definovat? 3..4 Trojúhelní Předpolady: 303 Každé tři různé body neležící v přímce určují trojúhelní. o to je, víme. Ja ho definovat? Př. : Definuj trojúhelní jao průni polorovin. Trojúhelní je průni polorovin, a.

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly.

c sin Příklad 2 : v trojúhelníku ABC platí : a = 11,6 dm, c = 9 dm, α = 65 0 30. Vypočtěte stranu b a zbývající úhly. 9. Úvod do středoškolského studia - rozšiřující učivo 9.. Další znalosti o trojúhelníku 9... Sinova věta a = sin b = sin c sin Příklad : V trojúhelníku BC platí : c = 0 cm, α = 45 0, β = 05 0. Vypočtěte

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.

2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D. 2. část: Základy matematického programováí, dopraví úloha. 1 Úvodí pomy Metody a podporu rozhodováí lze obecě dělit a: Eaktí metody metody zaručuící alezeí optimálí řešeí, apř. Littlův algortimus, Hakimiho

Více

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY

Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY Gymnázium, Praha 10, Voděradská 2 Projekt OBZORY INDIVIDUÁLNÍ VÝUKA Matematika METODIKA Soustavy rovnic Mgr. Marie Souchová květen 2011 Tato část učiva následuje po kapitole Rovnice. Je rozdělena do částí

Více

Goniometrie trigonometrie

Goniometrie trigonometrie Goniometrie trigonometrie Goniometrie se zabývá funkcemi sinus, kosinus, tangens, kotangens (goniometrické funkce). V tomto článku se budeme zabývat trigonometrií (součást goniometrie) používáním goniometrických

Více

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování

Moravské gymnázium Brno s.r.o. Mgr. Věra Jeřábková, Mgr. Marie Chadimová. Matematika, Mnohoúhelníky, pokračování Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Mgr. Věra Jeřábková, Mgr. Marie Chadimová Tematická oblast Matematika, Mnohoúhelníky, pokračování Ročník 2. Datum

Více

1.7. Mechanické kmitání

1.7. Mechanické kmitání 1.7. Mechanické kmitání. 1. Umět vysvětlit princip netlumeného kmitavého pohybu.. Umět srovnat periodický kmitavý pohyb s periodickým pohybem po kružnici. 3. Znát charakteristické veličiny periodického

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018. 4. Komplexní čísla Moderní technologie ve studiu aplikované fyiky CZ.1.07/..00/07.0018 4. Komplexní čísla Matematickým důvodem pro avedení komplexních čísel ( latinského complexus složený), byla potřeba rošířit množinu (obor)

Více

ž ž ě Ý Ý ž ě ě ě Š É Ý Á ě ě ů ž ě ě ě ě Š ě ž ž ě ě ň ě ž ž ě ě ž ů ě ž ž ů ů ě ě ž ě ě ž ě ž ě ň Á ě ů ů ě ž ě ě ž ě ě ů ů ě ů ě Ž ž ž ň ž ž ě ž ž ů ž ž ě ě ž ž ž ž ě ů ž ž Ů ž Č ů ž ž ž Ů ž ě Č Ž Č

Více

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel.

Výrazy lze též zavést v nečíselných oborech, pak konstanty označuji jeden určitý prvek a obor proměnné není množina čísel. Výrazy. Rovnice a nerovnice. Výraz je matematický pojem používaný ve školské matematice. Prvním druhem matematických ů jsou konstanty. Konstanty označují právě jedno číslo z množiny reálných čísel. Například

Více

Metodika: Goniometrický tvar komplexního ísla, binomická rovnice

Metodika: Goniometrický tvar komplexního ísla, binomická rovnice ! " #$ % # & ' ( ) * + ), - Idvduálí výuka matematka Vít Ržka, kvte Metodka: Goometrcký tvar komplexího ísla, bomcká rovce Úvod Téma goometrcký tvar komplexího ísla je možé probírat soubž s výkladem pojmu

Více

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3)

(3) Zvolíme pevné z a sledujme dráhu, kterou opisuje s postupujícím časem koncový bod vektoru E v rovině z = konst. Upravíme vztahy (2) a (3) Učební tet k přednášce UFY1 Předpokládejme šíření rovinné harmonické vln v kladném směru os z. = i + j kde i, j jsou jednotkové vektor ve směru os respektive a cos ( ) ω ϕ t kz = + () = cos( ωt kz+ ϕ )

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

Příprava na 1. čtvrtletní písemku pro třídu 1EB

Příprava na 1. čtvrtletní písemku pro třídu 1EB Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné

Více

3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu?

3. Slimák lezl na strom 10m vysoký. Přes den vylezl 4m ale v noci vždycky sklouzl o 3m. Za kolik dní dosáhl vrcholu stromu? Logické úlohy 1. Katka přišla k Janě, která krmila na dvoře drůbež. Katka se ptala: Víš, kolik máte kuřat, kolik housat a kolik kachňat? Jana odpověděla: Vím, a ty si to vypočítej: dohromady máme 90hlav.

Více

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.

(k 1)x k + 1. pro k 1 a x = 0 pro k = 1. . Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce

Více

M - Příprava na čtvrtletní písemnou práci

M - Příprava na čtvrtletní písemnou práci M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Periodicita v časové řadě, její popis a identifikace

Periodicita v časové řadě, její popis a identifikace Periodicita v časové řadě, její popis a idetifikace 1 Periodicita Některé časové řady obsahují periodickou složku. Pomocí vybraých ástrojů spektrálí aalýzy budeme tuto složku idetifikovat. Mějme fukci

Více

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15

1) Vypočítej A) 32 B) 44 C) 48 D) 56. 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 A) 12 B) 13 C) 14 D) 15 Varianta A 4 4 4 4 4 4 4 4 1) Vypočítej A) 32 B) 44 C) 48 D) 56 2) Urči číslo, které se skrývá za A ve výpočtu: 8 5 20 120 A. A) 12 B) 13 C) 14 D) 15 3) Najdi největší a nejmenší trojciferné číslo skládající

Více

:6pt;font-style:normal;color:grey;font-family:Verdana,Geneva,Kalimati,sans-serif;text-decoration:none;text-align:center;font-variant:no = = < p s t y l e = " p a d d i n g : 0 ; b o r d e r : 0 ; t e

Více

4. KOMPLEXNÍ ČÍSLA 116. 4.1. Definice komplexních čísel 117. 4.2. Geometrické znázornění komplexních čísel 118. 4.3. Klasifikace komplexních čísel 120

4. KOMPLEXNÍ ČÍSLA 116. 4.1. Definice komplexních čísel 117. 4.2. Geometrické znázornění komplexních čísel 118. 4.3. Klasifikace komplexních čísel 120 KOMPLEXNÍ ČÍSLA 6 Defiice komplexích čísel 7 Geometrické áorěí komplexích čísel 8 Klasifikace komplexích čísel 0 Algebraický tvar komplexího čísla Sčítáí a ásobeí komplexích čísel v algebraickém tvaru

Více

ÍÍ ů Š ý ú ý ú é é ý é Í é é é Í ý é Ž Ž é é ý é ý ý ý ý é ý é é é é é é é é ú é ú ý ý é Í é é ý é Í é ů é é ý Í Ž ů ý é Ž ý ú ý é é ú é é ů é ý ý ý é ů ů é Ž ů é é Ž é é ů Ž é ý ů é ý Í Í é ů é ů é ů

Více

ř ř á á ý é ř é á ň ž ý á ý č ř á ů ř á ř á á ň řá ý á ý č ň ř č ý ř á š č á é ň á ů á ý á á š é č ů š č ů š č é á č š č é ž š á ř ý ř ý š á ř á ř ř ř ř ř á ý č Č ř ř é ý č ž ů á ů á ř é á č č á ý ž ž

Více

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz.

Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X se nazývá obraz. 7. Shodná zobrazení 6. ročník 7. Shodná zobrazení 7.1. Shodnost geometrických obrazců Zobrazení v rovině je předpis, který každému bodu X roviny připisuje právě jeden bod X roviny. Bod X se nazývá vzor,

Více

ř ý š ě š ř ř ř č ř ý š é š ř č Ě ý ů é š ř č é ě é ř ř ý š é š ř š š ř č ý é é é é č č ě ý č é č é č š ř ř ž ý ř Á é č š ř ř Ž ý ř ý č š ý ž ú Í ý č š ý Ž Ú é č č ě ý ý ý Ž é č č ě ý ý ý ý Ž ý ť ý ě ě

Více

Jan Březina. Technical University of Liberec. 17. března 2015

Jan Březina. Technical University of Liberec. 17. března 2015 TGH03 - stromy, ukládání grafů Jan Březina Technical University of Liberec 17. března 2015 Kružnice - C n V = {1, 2,..., n} E = {{1, 2}, {2, 3},..., {i, i + 1},..., {n 1, n}, {n, 1}} Cesta - P n V = {1,

Více

Rostislav Horčík. 13. října 2006

Rostislav Horčík. 13. října 2006 3. přednáška Rostislav Horčík 13. října 2006 1 Lineární prostory Definice 1 Lineárním prostorem nazýváme každou neprázdnou množinu L, na které je definováno sčítání + : L L L a násobení reálným číslem

Více

VY_52_INOVACE_J 05 02

VY_52_INOVACE_J 05 02 Názv a adrsa školy: Střdí škola průmyslová a umělcká, Opava, příspěvková orgazac, Praskova 399/8, Opava, 7460 Názv opračího programu: OP Vzděláváí pro kokurcschopost, oblast podpory.5 Rgstračí číslo projktu:

Více

Š ů Š Á š ů ů Ú Č š ů š ů ů ť ť ů ů Č š ů ů ů š ú Ú š ú Č ů ů š ň š Ú ů ů Á Í ť ú š Ě ů ů š ů š ň ň š ú ň š Í ň Č Í Ý Š Š Í Á š ú Ů Ž Ú š š š ú Č š š ů ů š ť ů ů ů š š š ů š ň š š š Ň ň š š š š ň ú ú Č

Více

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Katedra elektrotechiky Fakulta elektrotechiky a iformatiky, VŠB - TU Ostrava 10. STŘÍDAVÉ STROJE Obsah 1. Asychroí stroje 1. Výzam a použití asychroích strojů 1.2 Pricip čiosti a provedeí asychroího motoru.

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy metrické (skutečná velikost úsečky - sklápění, kolmice k rovině, vzdálenost bodu od roviny, vzdálenost bodu od přímky, rovina kolmá k přímce, otáčení roviny, trojúhelník

Více

KOMPLEXNÍ ČÍSLA (druhá část)

KOMPLEXNÍ ČÍSLA (druhá část) KOMPLEXNÍ ČÍSLA (druhá část) V první kaptole jsme se senáml s algebrackým tvarem komplexního čísla. Některé výpočty s komplexním čísly je však lépe provádět ve tvaru gonometrckém. Pon. V následujícím textu

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha

FINANČNÍ MATEMATIKA. Jarmila Radová KBP VŠE Praha FINANČNÍ MATEMATIA Jarmila Radová BP VŠE Praha Osova Jedoduché úročeí Diskotováí krátkodobé ceé papíry Metody vedeí a výpočtu úroku z běžého účtu Skoto Složeé úrokováí Budoucí hodota auity spořeí Současá

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio

Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Aplikační list Vyvažování tuhého rotoru v jedné rovině přístrojem Adash 4900 - Vibrio Ref: 15032007 KM Obsah Vyvažování v jedné rovině bez měření fáze signálu...3 Nevýhody vyvažování jednoduchými přístroji...3

Více

Í Č Á Í Č Č Ř Á Č Ž Č Á Í Á Ó ň Í

Í Č Á Í Č Č Ř Á Č Ž Č Á Í Á Ó ň Í ť Ť Í Č Á Í Č Č Ř Á Č Ž Č Á Í Á Ó ň Í ň ť Ť Ť Ť ň ň ňí Ž ň Ý ď ň Ž ň ň Í ň Í Ť ň ň ň ď Í Ř Ť Ť ň ň Ť Ť Ť ň Ť Í Ť Í ň Ť ň Ý ň ň Ť ď Ť ň ň Í Ó Ť ň ň ň ň ň ň ť ň Ď ň Ť ň ň ň Ť Ť Í Ť ť Ť ň Á Ť Ž ň ň ň Ť ď

Více

Průniky rotačních ploch

Průniky rotačních ploch Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Průniky rotačních ploch Vypracoval: Vojtěch Trnka Třída: 8. M Školní rok: 2012/2013 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Úlohy domácího kola kategorie C

Úlohy domácího kola kategorie C 50. ročník Matematické olympiády Úlohy domácího kola kategorie 1. Najděte všechna trojmístná čísla n taková, že poslední trojčíslí čísla n 2 je shodné s číslem n. Student může při řešení úlohy postupovat

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou

Shodná zobrazení Zobrazení Z v rovin shodné zobrazení nep ímou shodnost shodnost p ímou Shodná zobrazení Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz; zapisujeme Z: X X. Zobrazení v rovině je shodné

Více

1.9.5 Středově souměrné útvary

1.9.5 Středově souměrné útvary 1.9.5 Středově souměrné útvary Předpoklady: 010904 Př. 1: V obdélníkových rámech jsou nakresleny tři obrázky. Každý je sestaven z jedné přímky a jednoho obdélníku. Jeden z obrázků je středově souměrný.

Více

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU

Opakování. Metody hodnocení efektivnosti investic. Finanční model. Pravidla pro sestavení CF. Investiční fáze FINANČNÍ MODEL INVESTIČNÍHO ZÁMĚRU Metody hodoceí efektvost vestc Opakováí Typy vazeb v uzlové síťové grafu K čeu slouží stude využtelost Fačí odel vestčího záěru Časová hodota peěz Metody vyhodoceí Napšte strukturu propočtu Fačí odel FINANČNÍ

Více

ř ý ý š Ě Á š Á š š š ž é ř ů é ý é š ý ý š ý š é ž é ř ž ř ý ž ý š ř ý ř ý ř ř ž ů ř é ň ů ý é ň ř ř ř ž ý é Ž Í ť ú ř é é Ď Ž é Š ř š Š ý ž ý Ě ž é Š ř š Š ý é ř ý š ý ů é ř é ž é š ř š Š ý ž é ř ž ý

Více

š ó š ó ů š ó ů ú ó ů š Ž Á Č Ž Í Ž š Í Í ÁČÁ Á É š ó š ó ů ó š ťí ó ů ó š š š ó Í Í ď ň Á ů š ů ů Ň Ž š ů Í š ú ů š š ď š ů š ů Ž Č Í ČÍ Í ů Ž ů ó Ý Í ň š Í Š š ť Ž Ž š Í Ž š ů ÁČ š Ž š Ž š Ž Ž ů Ě š

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Ž Ý ř ý ý é á ý á ř ý ů ý Í ář á ý ř ý ů ý ř ů á ř é ř ř á Í ř Ž ý ý ř é Í á Í Í ý é ř Ž ý Í á Ýý ý ň Š é ř ť ý á á á á ř ý ý é á á é é ů ř é á ř é ř á ř ř á á ů ý Ž é é é ý ý ý á á ř é ř á ř á ó á Ř ř

Více

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy:

IRACIONÁLNÍ ROVNICE. x /() 2 (umocnění obou stran rovnice na druhou) 2x 4 9 /(-4) (ekvivalentní úpravy) Motivace: Teorie: Řešené úlohy: IRACIONÁNÍ ROVNICE Motivace: V řadě matematických úloh je nutno ovládat práci s odmocninami a rovnicemi, které obsahují neznámou pod odmocninou, mj. při vyjádření neznámé z technických vzorců. Znalosti

Více

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů

4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů 4. cvičení: Pole kruhové, rovinné, Tělesa editace těles (sjednocení, rozdíl, ), tvorba složených objektů Příklad 1: Pracujte v pohledu Shora. Sestrojte kružnici se středem [0,0,0], poloměrem 10 a kružnici

Více

á Í Ž á á á ý č Í é ů š ě ž říš ě č í í Í č í á í í č í Ží í ů ů ě ř ě á á é í í ě á é ů ě ň ž é é áš ě í á í ř š í á í á á ý ý š ř ů á ž ž á ž é ě ř š ě š ý é é á í á Ž š ů ří í ř é ě š ž ý í Š Ř áš ř

Více

Mechanismy. Vazby členů v mechanismech (v rovině):

Mechanismy. Vazby členů v mechanismech (v rovině): Mechanismy Mechanismus klikový, čtyřkloubový, kulisový, západkový a vačkový jsou nejčastějšími mechanismy ve strojích (kromě převodů). Mechanismy obsahují členy (kliky, ojnice, těhlice, křižáky a další).

Více

ÚŘ Č Ý Č Ú Ú ť Ů Ú Č Š Ý Ý Ř É Ť Č Č Ú Ú Ú é š ž Ú é Ť é Č Ú é Ů Ú é š Ú Ť Ť é Í š é š š Ť ť Í éí š Ú Ť Ú Ú Ů Ť é ť Ú ť Ú Š ť Č Ú é Ú é ž š é Ť Ú Ú ť é Ž é é Ť é Ť Ť Ú Ú é é Í é Í Ť Ú ť Í Í Ť é Ť Í Ú Ť

Více

1. a) Přirozená čísla

1. a) Přirozená čísla jednotky desítky stovky tisíce desetitisíce statisíce miliony 1. a) Přirozená čísla Přirozená čísla jsou nejčastějšími čísly, se kterými se setkáváme v běžném životě. Jejich pomocí zapisujeme počet věcí

Více

Á ú Ú ú Í Ů ť Í Ů Í Ú Ů Ě Č Ů Č Í Ů Ů Ě Ď Ú Ě ť Ě Ď Ě ť ť Ý Ý Ý ť ř ú Í Ů Ů Ů ť Ů Í ď Í ť ň Í ú ť Ů ť ú Í Í Ď ť Š Ů ň Ý ň Ů Ů Ů ť ť ť Ů Ď Ů Ů Ů Ů ň Ů Ď Ů ř ř ř ň ú Í Ů Ů Í Ů ř Ů Í Ý ď Ů Ů Ů ď ř Ů Ů Ů ň

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

ý Á Á Á Š É Ř č ř ý é ě ř ř é Ú ý é ď ě é ř č ě ž ř ěř ý ý č č š ř ě ř é žš ž é ž ř ě ý ě č ý ě č é š ž ž é ř ůž č č ě ř ě ý ů ě ý ž é ý ž č ů ě ř ž č ů ř š ž š ů ěř ý ů é ň Ž ž č ů ř é ůž ě č ý č č é

Více

Ú č á í í í ý á ý á ý ň í á é ě á ý á č ř í á í č á á á ř ý ř ý á ř ř ě é ý ů ě ř ý í ž á í é ý ř ž é á á Š í í ž é Ž ě í í ářů ý í ý á č ý í á á é í ý á é ě é í í í ěá č ú ý čá í é á ž é é ě é á í ž ú

Více

ť ý ř í ú í í í í í í é ó ř ří ů ť ď ý ř í ř í š ě í éž í Ž Í í ěř í ří ěř ý ří í í ř í ř í í í ř í ř í í úř š í ú í ž ř í í í í ř í ř í í í ú ř í í í é ř í í í ň ú í ř í ř í é Č ř í ř í ú í ý ů ý Ů Í

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

Í č Í Á ř Š í ý ý ů ý ý ů é ý ý ý ů ý ř Ž č í é ú í í é č í š í í čí č í čí ý í ý čí ý é é ó ř é é é í í ý ý ý ů ý é ý í í í í í é í í í í é Í í č í í í ů é í é ď í ř ř ý í í ý ý ů ř ř ř Í é ť í ří ý č

Více

ť Á Í í í ó č ř ý ó ó é ě í ó í ří í ří í ý í ť ř ó čí ř é í é ó ř é í ěť é ří ě ř ř ř é ó ř ó é č íú ř é č ř í ří ř ě ň ó Ť Ť Ť ř ě ó ř ě ř é í í ů í í ý é í é ý řů ě í ž í č í í ý čó í í í ó í ň í í

Více

ŘÍ Ň ÍÍ Č Á Ů Ř Ň Š Š Á Á č Č úř Ť ň ř ý č č é č ě ůé č š ě é úč ř ý čů ž ě ý ř é é č ř š ý ř ě é š š č š č š é é š ž ů Í š č č é č ř ř ř ů ř ř ů ř ž é ž č š č č ř š č č é ý Ž é úř ě ř ň č č š é š č ý

Více

Měření základních vlastností OZ

Měření základních vlastností OZ Měření základních vlastností OZ. Zadání: A. Na operačním zesilovači typu MAA 74 a MAC 55 změřte: a) Vstupní zbytkové napětí U D0 b) Amplitudovou frekvenční charakteristiku napěťového přenosu OZ v invertujícím

Více

á Ď ž é á ž á ň á á Ť á Ť é é á é ň á é á Ť é ň á á ň é á ň á Ť é á á ž á á Ť é á ň é áť á ň á ž áň Ť Í Ť Ť é Ť ž ňá é ž á é ň é ň ť á á á á é é ť Š á é ž é ň Ž é Í ž é á ň ž á á ň é á ž á á Í ž á é ž

Více

Ě Ý úř Ý ÚŘ ř ů ž ř á á ř ů ř á á ě Š Ř Á Á Í ě ý ť ř ř ť ž ř á ť ř ě ě ř ý á č á ě ě ě á ů á ě ě ř ť á á á á úř á č ú á á řá á é ě ř ů ě ř ý á á á č á řá ě ě ŠÍ ř Ů č ý ě Č á é á á á á Š ř ů á č á Š ř

Více

ž Á Ř ž Á ř ž é ř ů Ú ř ý ý Č šť ř é Č šť ř Ú ř ý ř ř š š ý ž Ů é ž ý ř ý ř é ž ž ž ý ý ž é Ž ž šť ý ž é š š ý ř é ú ý é ú ů ů ř ž ž é ž Ú é ř ý ý ř ž é ř é ž ý š ř ň é ř ř ř ú ř ř ž é é ň š ž ň é é ř

Více

í ň é í í í úř ň í č ů č í é č í ř é í Í í ř í í č é í ů é ř ů é ř í ť í ů í ří ř í é č í íť é ú ý ř ř č ů ň ýé í í č í ř č č é č í č š ř í ř í č ř Ť ří č ý č ří č č č é ř í ří é č ř í č ří ýší č ť č í

Více

Á ů š ČÁ Ú Í Í Í Ú š š ť ď ů š š Č š ČÁ Á Č š š Ě Ž ť ť š Í š Í Ú Ú Í Ú Ú Ú š Í Ú Ú ť Í ť š š ť š š Ú Í Í Ě É ň š š ť Ž š š Ú ť Í š š Í š Í Ú ť š Í ť š Í ť Ú Í Ý Í Ž Ú ť ť ť Í š ť š ř Ú Í É Í Ú ť š Ě š

Více

Příklad 1.3: Mocnina matice

Příklad 1.3: Mocnina matice Řešení stavových modelů, módy, stabilita. Toto cvičení bude věnováno hledání analytického řešení lineárního stavového modelu. V matematickém jazyce je takový model ničím jiným, než sadou lineárních diferenciálních

Více

ž Ú é ř č ý Ů ú č ů ř ř é ě é ř ř é ř ř š é ý ů š é é ú ý š ě é š ž š ž é š ýč ž ý ý ř ý ú ž ú é š šř Ů ň ý ř ř č é ř ě ě š é ě š é éť ě š é č ř úř ů ú ů č ý ý Ú é Ú ěř ř Ú č ř ů ú ý úř Ú é ě ý úř ě é

Více

í é ě ů ří é ů í ř Ťí ď í ú í í í ří ř ů í é ěř ů í ěř ěř ý í ů ů í í ý í ů í í ř í í ú ěř ů í í í í Ú Ú ý ú ů é í ý ý é í ě í ě é ř ě ě í ý é í ě Žď ř ý ň í ů Č ň ý ý úř ř é í í í Ž ě ú í ů é ý í ů í

Více

č č é č ě é á ý ě ýš á é é č š Ž é š é Í č ě ě ě á é ý ě á é ě á ě ý ě ý č ůž á á ě á č ě ý ě é čá é ý á č ó č á š á á Ž é č á Č Ž á č ě ě ý á č Í č é š á č á č ě á ě é č ě ě áč á é ú ý áů ě ý č č ů é

Více

Ý č Č Ú Ř Ž Ž ž č š Í Í š č Ž ů ě ů č Ž ů ě ť š ň ě Č ú č Í Í č Ž ě š č Ž č č ě š ě Ž ěž ě š Ó č ě ě ě ě Í ů ě š ěš ú Ť š č Ž ú ů ě ě ě ž ň Í ě Ž ě ů ů š Ž ú úč ů Ž š š č Ž ů ž ě š ú ě ňů ž č ě ě š č ž

Více

ů ý é ď ž é ý Ž é é ř ř ž é ř ý Í ý ý ř ý š ý š š ň é Ý ň é ý Ž ř ř Ž é é ř ú é ú ý ýš é ř ú é ú ý ýš é é Ž ř Ž ý ů ý ř ý ů ý ř ů ýš ů ř ý ř š ř é ž ý é é ř ýš ý ů ž ž é ů ý Ž ý ř ů ú ž ý é é ř ýš ý ů

Více

ř š ě é ě Í ě ř é ř ý Ť é ě ýš ř ý ř ý ě Í š ě š é ř š é ú é é š ě Š ě ě ý Ř Ý š Ž ý ý Ť š ů ř žě ý Á É é ž ý ě ý ý é ě ě ř ž ě ů ě ř ř é ž ú ž ě ř é é ě ě é ě ž é ž é ě é ú ž ó É Ž ý ů ě ž ú ž ýš ě é

Více

Č í í ýúř í á íá ě ý á č ířá í é ž í š č á ě ť í é ž ř é ří Č í ť ž í Š č í á ž í ří ý č íří í é ě č á á É Ž Ý Ě Í ť č í á í ší ž ý ě í ý ě á ř í Ť é é Ž Ý ť řá Ý á í ř é áž ž ž éč á í č í é ž ří ž š á

Více

á í ť Ť Ú ř í ý á úř ó í č ú ý ó ří Č č ří ň Úé ý úř ů č Ýé ť á óíř í Í ě ě á ý úť í ě ří š ý Á Íí Íú á ě í é ří Áí í á č ř í á ě í íí á ří Íí éá ě á í řá ě í ě š ř ů ó í ě é č Ž É ě ě Ž ě č ú Ž Ý Ř ě

Více

é ú š ř ý Č šť ř é ř ž Č ý ť ž ý š š Č š Č Ě Í ú ý Š ž š éř ř š éř Č šť éř š éř ž š éř é ž Č Ř Ý š Ě Í Ž Í Š Ě Í ú ž š Í ř š Í ž žý š ř Í ž ř š Í ú š Í ý é ř ř š š é é ú ž š ř š š ř ř š Í ž ú š š ř ď ú

Více

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce

Žáci mají k dispozici pracovní list. Formou kolektivní diskuze a výkladu si osvojí grafickou minimalizaci zápisu logické funkce Číslo projektu Číslo materiálu Název školy Autor Název Téma hodiny Předmět Ročník /y/ CZ.1.07/1.5.00/34.0394 VY_32_INOVACE_9_ČT_1.09_ grafická minimalizace Střední odborná škola a Střední odborné učiliště,

Více

Základní škola, Staré Město, okr. Uherské Hradiště, příspěvková organizace. Komenské 1720, Staré Město, www.zsstmesto.cz. Metodika

Základní škola, Staré Město, okr. Uherské Hradiště, příspěvková organizace. Komenské 1720, Staré Město, www.zsstmesto.cz. Metodika Základní škola, Staré Město, okr. Uherské Hradiště, příspěvková organizace Komenské 1720, Staré Město, www.zsstmesto.cz Metodika k použití počítačové prezentace A Z kvíz Mgr. Martin MOTYČKA 2013 1 Metodika

Více

Ó Ě É Á Á Á Ě É É Ř Á Ú Í ř Ě Ž ř ž Ž ý Ž ř ň é ý ý Č é é ň ú ý ý Ž ř š é ř š é ý Ú é ů ý ú ý ý ý é ý ý ý ý é é š ř ů ř ů é é Ž ú ř ý ů Č é Ž ý é ý é é ý é šť Ž é š é Ž ý ý ř ů ž Š ý ý é ř ý ý ů Š ž é

Více

ž úř ř ě ř ý ž ř ř ě ř ň ř ý Č ř ý ž ěř ý ř ž ň ý ě ň ř ř ž ř ř ě ú ž ž ě ě š ř ů ý ě ě ž ž ě ě š ř ů ž ž ž ó ž Ž É Á ŘÍ ž ř ě ž ž ž ů ě ž É Á Ž ž ž ř š ě ř Ě Á ň ň ň ň Ý ř ě ř Ě ů ě ý ě ú Ň Ů Č Ž ůž ůž

Více

Ě ŠŤ Í Á Ě šť É é ěú š Ů š é ě š Š š Š é ě Ů ú é š ě ě ě ý Ů Ů é Ů é Š ě ě ě ě ě Šť š ě šť ě š ěú ě é ě é ý Ů ě š é ě Žý Ů š ě é ě ě š ů ý Ů é é é ě ě ěň ě é ě ě šť Č é šť ň š ě é ý é é šť ě ŠÍ Č ě é ě

Více

ž ě í č í ě š í é í ů š č í Í ž í áš í ů ě í í á ížá í á Í ížá Í Ž í á í á á Í ů í í ě Á É Ř Í Ů á É ě á ň ž íž í Í í é ž é ě é ž í í é ň ě č é ťí í ě ž ě é é ž í í á é é ď Ť ě š í Ý íž é ě é í ú ž ď é

Více

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI

PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI PŘÍKLAD NA VÁŽENÝ ARITMETICKÝ PRŮMĚR Z INTERVALOVÉHO ROZDĚLENÍ ČETNOSTI Přílad 0.6 Pracoví, terý spravuje podovou databáz, eportoval do tabulového procesoru všechy pracovíy podu Alfa Blatá s ěterým sledovaým

Více

á á ř ř Č ř áč ť á ř č á á á á á ý á á ř é ř č ý Š č á žá ý ů Č á ř á ů é ř ž č ě ř é ř á á é ř ř ú á ř é Ž ý ý á á ž á ř ě Č Ů á á ř ý ý é áš á ěř é á Ž áš é á ěř á áš á ř ž á á é ř á ě ě á č é á Š ě

Více

Š Ě š ě ř ý Ř š ě é Ú ř é ě é š ě š ě ř ř ž ř š ě é ř ě š š é ů ě ý ř ěř ěř ů ž ěř é ě š š ř ý ů ž ěř é é ž ř ě é úř š ě š ě ž ř ř ě ý ř úř š ě Í ě é ř ž é š ě ě ů é ě ě ř Ž ř ř ů é ě é ž ř ř š ň š ě ý

Více

Kótování na strojnických výkresech 1.část

Kótování na strojnických výkresech 1.část Kótování na strojnických výkresech 1.část Pro čtení výkresů, tj. určení rozměrů nebo polohy předmětu, jsou rozhodující kóty. Z tohoto důvodu je kótování jedna z nejzodpovědnějších prací na technických

Více

Í Í É ř ě á é ď á á Č ě č úč ř ě é á ď Š Č Č Í ú ó É ť ě úě ě ý ř é ý á é ě é ó Žá óň Í á č ě ýá é ě á ě ý ď ú é š ě ý ý ů č é č á ě á ě é é č á é é ř š ž Ž Ž é á ě á ě ň é á č á ě é ý ů šť ř ň á š ě ý

Více

ě ý úř úř á š Ť Ú á Á Í Í Ú Í Í ŘÍ Í Á Í É Ř Á Ř ú ú š úě Ú ě á á á á ě ý ř á ě á ý á ú ř ě ý Úř úř úř ř š ý á Ú á á řá á ě ě š ř ů á á ú ř á á řá ě ě š ř ů á řá ú á á ú ě ř á žá ř é ú á é á ě ú ý ů ý

Více

Ú á á ě ý Ú š ě ř ý ě é ř á á š ě á é á ú ý Úř á á ě ý á Úř ž á Č é á á ě ě š ř ů á ř š ř ž ý á áš ř ž á á á ě ě š ř ů ě š á ý š ě ý ě é ř á éž Ř á é é ě é á á á ě ů ž áž ě ú ý é á úř ý á š ě ě é é ř ř

Více

Í Ž š ř š š ř é é Ž ř ů ů ů ž Ů é š é ř é Ž Š š é Š ůž Ž š Ž ů é ř Í é é ž ž š Í ú ů é š é ř š é Š é ř é ř é é ř ř é ř é Ž ť Í ř ž Í Ó Í Š ř é ř šř Í ť ť Íť Í š š ú ř š š š Ž é ů ř é ň ň Ž Í Ž Á Š ř Š

Více

é ů ó á ří č Č é ů ó č á ěř Č í Á Ě í í í Ú í ý í í ř Š ř á á ý í ě Á Á Í Í Á Ř É Á ó á č í é Ů č Č á ř é á í í ř é á ří í í ě ů í ý í á ř á á č ž ěž Í Á Ě Á Í í ú í č ý í í ř Š á ěž ř ě č ž š ř í á í

Více

ů ý é é ř ý ů ř Š Š é ď š Í ú é úš ú ý ý ř ř éš ů ý ř ř ý ř š ů ý ř ř Í ř ů š ů ý ř é ý ř ť ý ý ů ý š ý ý é ř ť ý Í Í Č ýš ř é ř ý ť ý ď Í ř ý ý é ř ů ů ý ť ř ř ý ů ý Č ýš ř ý ý ý é ř ú ů ý ř ř ý ů ý Č

Více