1.6. Integrace goniometrických funkcí

Rozměr: px
Začít zobrazení ze stránky:

Download "1.6. Integrace goniometrických funkcí"

Transkript

1 Maemaika II.6. Inegrace goniomerických funkcí.6. Inegrace goniomerických funkcí Průvodce sudiem V éo kapiole se budeme podrobněji zabýva inegrací funkcí, keré jsou složené z goniomerických funkcí. Takové inegrály se časo vyskyují v prakických aplikacích. Budeme se s nimi sekáva hlavně při výpoču vícenásobných inegrálů v Maemaice III. Při výpoču inegrálů ohoo ypu je obvykle používána subsiuční meoda. Někeré inegrály se aké dají vypočía meodou per pares. Vhodnou subsiucí lze dané inegrály časo převés na inegrály z racionálních funkcí, keré jsme se naučili inegrova v předcházející kapiole. Pro jednolivé ypy inegrálů přehledně uvedeme vhodnou meodu výpoču. Cíle Seznámíe se s posupy, keré jsou vhodné při inegraci funkcí složených z goniomerických funkcí. Uvedeme základní ypy ěcho inegrálů a nejvhodnější meody inegrace ěcho funkcí. Předpokládané znalosi Předpokládáme, že znáe základní inegrály uvedené v abulce.. a umíe vypočía inegrály subsiuční meodou, meodou per pares a umíe inegrova racionální funkce. Předpokládáme, že znáe základní vlasnosi goniomerických funkcí a důležié vzahy, keré pro ně plaí. m Inegrály ypu Výklad n d Nejprve se budeme zabýva inegrály ypu m n d, kde m, n jsou celá čísla. Jeden akový inegrál jsme již počíali, viz příklad... Inegrály ohoo ypu budeme velmi časo dosáva při výpoču dvojných a rojných inegrálů v předměu Maemaika III. Posup výpoču závisí na om, zda jsou čísla m, n sudá nebo lichá. Nejprve uvedeme přehledně posup pro jednolivé možnosi a pak pro každou možnos vypočíáme příklad, na kerém posup objasníme

2 Maemaika II.6. Inegrace goniomerických funkcí Výpoče inegrálů ypu d, kde m, n Z : m a) m je liché subsiuce =, b) n je liché subsiuce =, m i n sudé, alespoň jedno záporné subsiuce g =, n d) m i n sudé nezáporné použijeme vzorce pro dvojnásobný úhel =, + =. Řešené úlohy Příklad.5.. Vypočěe inegrál 5 d. Řešení: V omo případě je m = 5, n =, akže budeme voli subsiuci =. Pro diferenciál dosáváme d = d. Z inegrované funkce si edy vypůjčíme jeden us pro diferenciál a zbývající y snadno převedeme na funkci kous pomocí známého vzahu + =. Dosaneme: ( ) 5 = = = d d d subsiuce: = d = = = d ( ) ( ) = d = d ( ) d C C. = + = + + = Poznámky. Jsou-li lichá m i n, můžeme si vybra, jakou subsiuci použijeme, zda a) nebo b). Takovou úlohu jsme již řešili v příkladu.... Obecně si sačí pamaova, že v případě liché mocniny použijeme jednu funkci us (resp. kous) pro diferenciál a zbývající mocninu (bude sudá) převedeme na druhou funkci (kous, resp. us) a u aké položíme rovnu nové proměnné

3 Maemaika II.6. Inegrace goniomerických funkcí Příklad.5.. Vypočěe inegrál 8. d Řešení: V omo případě je m =, n = 8. Jelikož je n<0, budeme voli subsiuci g = pro ( π, π ). Pro hodnoy z uvedeného inervalu je = arcg, a edy diferenciál d d =. Pro výpoče inegrálu ješě pořebujeme vyjádři funkce a + pomocí funkce g. Pořebné vzahy snadno odvodíme z pravoúhlého rojúhelníka, jehož jeden úhel má velikos. Jesliže přilehlou odvěsnu zvolíme rovnu, bude mí proilehlá odvěsna velikos g =. Z Pyhagorovy věy + g = vypočeme velikos přepony +. Z definic funkcí us a kous (poměr velikosí proilehlé, resp. přilehlé odvěsny ku přeponě) dosaneme: = + a =. + subsiuce + d ( d + ) d = g = = = + = d = 8 8 d + + ( + ) d = + ( + + ) ( ) ( ) ( ) = + d = + + d = + + d = C = = g + g + g +C. 5 7 Příklad.5.. Vypočěe inegrál d. Řešení: Máme m = a n = 0. Jelikož je m>0 a je sudé, snížíme mocninu použiím vzorce pro poloviční úhel

4 Maemaika II ( ).6. Inegrace goniomerických funkcí d = d = d = ( + ) d = + ( ) = + d = C = = C Poznámka Inegrál z funkcí a jsme vypočeli podle vzorce [6] z abulky... Prakicky používáme subsiuci Inegrály ypu R(, ) d Výklad =, resp. =. V další čási se budeme zabýva inegrály racionálních funkcí, keré dosaneme z funkcí, a reálných čísel pomocí konečného poču arimeických operací (sčíání, odčíání, násobení a dělení). Časo jsou yo inegrály značeny jako inegrály ypu R(, ) d, kde R( uv, ) předsavuje racionální funkci dvou proměnných v=. Jedná se například o inegrály funkcí: R(, ) =, R(, ) =, + + R(, ) =. u = a Poznámka Pokud bychom mezi výchozí funkce přidali ješě funkce g a cog, nedosaneme nic nového, neboť g = a vyvořenou ze ů a koů. cog =. Po úpravě dosaneme opě racionální funkci - 7 -

5 Maemaika II.6. Inegrace goniomerických funkcí Univerzální subsiuce Ukážeme, že inegrál ypu R(, ) d můžeme subsiucí g =, ( π, π ) převés na inegrál racionální lomené funkce. K omu musíme nejprve funkce a vyjádři pomocí g. Analogicky jako v příkladu.5.. snadno odvodíme pořebné vzahy pro poloviční úhel z pravoúhlého rojúhelníka. Jesliže přilehlou odvěsnu zvolíme rovnu, bude mí proilehlá odvěsna velikos g =. + g = Z Pyhagorovy věy vypočeme velikos přepony +. Z definic funkcí us a kous (poměr velikosí proilehlé resp. přilehlé odvěsny ku přeponě) dosaneme: = + a =. + S použiím vzorců pro dvojnásobný úhel ( α = αα, = α α ) získáme α = = = + + +, = = = Podsané je, že po subsiuci dosáváme míso funkcí us a kous racionální funkce. Ze vzahu g = pro ( π, π ) dosáváme = arcg, = arcg, a edy d = d. Po dosazení dosáváme inegrál racionální funkce

6 Maemaika II.6. Inegrace goniomerických funkcí R(, ) d= R, d Shrnuí: Inegrály ypu R(, ) d můžeme řeši subsiucí g =, ( π, π ). Pak vyjádříme =, + =, + d = d. + Řešené úlohy Příklad.5.. Vypočěe inegrál d, (0, π ). Řešení: Uvedený inegrál jsme již jednou řešili subsiucí (příklad..6). Z výše odvozených vzahů snadno dosaneme: d = d = d = ln + C = ln g C Příklad.5.5. Vypočěe inegrál Řešení: Použijeme subsiuci g + d. =. Z výše odvozených vzahů snadno dosaneme: d d d = = = = d = d = d = d = ( ) = arcg( ) + C = arcg(g ) +C

7 Maemaika II Příklad.5.6. Vypočěe inegrál + + d..6. Inegrace goniomerických funkcí Řešení: Použijeme subsiuci g =. Z výše odvozených vzahů dosaneme: d = + + d = d = ( + ) ( + ) = d = d ( )( + ) ( )( + ) Dosali jsme inegrál z racionální funkce ryze lomené. Pro rozklad racionální funkce na parciální zlomky použijeme posup uvedený v kapiole.5. Polynom ve jmenovaeli má reálné kořeny = 0, = a kompleně sdružené kořeny, = ± i. Rozklad na souče parciálních zlomků bude mí var: ( + ) A B C D = ( )( + ) + + Nalezneme neznámé koeficieny A, B, C, D rozkladu z rovnice ( + ) = A( )( + ) + B( + ) + C ( ) + D( ). Dosaneme: A=, B=, C = 0, D=. Inegrujeme parciální zlomky: ( + ) d = ( + + ) d = ln + ln arcg + C ( )( + ) + = g = ln g + ln g arcg g + C = ln +C. g Poznámka Subsiucí g = pro ( π, π ) můžeme řeši každý inegrál ypu R(, ) d. Vzniklé racionální funkce však mohou bý komplikované a inegrace pracná. V někerých speciálních případech může k cíli rychleji vés subsiuce g =. =, =, případně

8 Maemaika II.6. Inegrace goniomerických funkcí Konrolní oázky. Jakou subsiuci zvolíe při výpoču inegrálu ypu d, mn, Z, je-li m liché?. Jakou subsiuci zvolíe při výpoču inegrálu ypu d, mn, Z, je-li n liché?. Jakou subsiuci zvolíe při výpoču inegrálu ypu d, mn, Z, jsou-li m i n sudé?. Jakou subsiuci zvolíe při výpoču inegrálu 5. Jakou subsiuci zvolíe při výpoču inegrálu m m m d?? d 6. Jakou subsiuci zvolíe při výpoču inegrálu d? 7. Jaký posup zvolíe při výpoču inegrálu 8. Jakou subsiuci zvolíe při výpoču inegrálu 9. Jakou funkci předsavuje zápis R(, )? 0. Kdy je vhodná univerzální subsiuce g d? =?? d. Je vhodná univerzální subsiuce při výpoču inegrálu d?. Při výpoču inegrálu d je vhodnější jiná než univerzální subsiuce. Jaká? n n n Úlohy k samosanému řešení. a) d) g) j) d b) d e) h) d k) d 5 d d f) 5 i) d d l) d d d d

9 Maemaika II.6. Inegrace goniomerických funkcí. a) d) d + b) d + e) d + d f) d + 5 d. a) d) b) d e) d d f) d d g g d g +. a) d) d b) d e) 7 7 d d f) d d + Výsledky úloh k samosanému řešení. a) + C ; b) C; C; 5 6 d) + C ; e) + + C; f) C; g) + + C ; h) + + C ; i) ln + + C ; + j) + ln + C ; k) + ln + C ; l) + +C. 8. a) ln + + C ; b) + ln + + C ; arcg + C ; d) arcg + C ; e) 5 + C; f) + + C.. a) g + C; b) g + C ; 5 6 ln g + C ; d) arcg g + C 5 5 ; e) g + C ; f) ln g + + C. g. a) + g ln g + C ; b) ln g + C ; C + ; d) ln g 7 +C ; g

10 Maemaika II.6. Inegrace goniomerických funkcí e) ln g + g + C ; f) arcg g + C. Konrolní es. Jakou subsiuci zvolíe při výpoču inegrálu a) =, b) =, univerzální, d) g =. d?. Jakou subsiuci zvolíe při výpoču inegrálu a) =, b) =, univerzální, d) g =.. Jakou subsiuci zvolíe při výpoču inegrálu a) univerzální, b) =, g =, d) =.. Vypočěe neurčiý inegrál 5 d. 7 d? d a) + +C, b) + + C, C, d) + + C Vypočěe neurčiý inegrál a) C, + + b) C, + + d) 6. Vypočěe neurčiý inegrál d d. a) ( + ) +C, b) ( + ) + C, ( + ) + C, d) ( ) C, C.?

11 Maemaika II.6. Inegrace goniomerických funkcí 7. Vypočěe neurčiý inegrál d (lze i bez subsiuce). a) cog + g + g +C, b) cog g C, g cog + g + C, d) 8. Vypočěe neurčiý inegrál d. g + cog + g + C. a) ln, + C b) ln, + + C ln, + +C d) d 9. Vypočěe neurčiý inegrál ln + C. a) ln+ g, b) ln + g + C, ln + g + C, d) ln+ g + C. 0. Bez použií univerzální subsiuce vypočěe neurčiý inegrál a) g + C, b) g + C, d. cog C, + d) g + + C. Výsledky esu. b);. a);. ;. b); 5. b); 6. ; 7. a); 8. d); 9. ; 0. d). Průvodce sudiem Pokud jse správně odpověděli nejméně v 8 případech, pokračuje další kapiolou. V opačném případě je řeba prosudova kapiolu.6 znovu a propočía další úlohy k samosanému řešení. Shrnuí lekce V prakických aplikacích se velmi časo vyskyují inegrály, keré obsahují goniomerické funkce. Při výpoču inegrálů ohoo ypu je obvykle užívána subsiuční meoda. V éo kapiole jsou přehledně uvedeny subsiuce používané pro základní ypy inegrálů, se kerými

12 Maemaika II.6. Inegrace goniomerických funkcí se časo sekáváme. Časo se vyskyují inegrály, keré je možno řeši několika způsoby. Je dobré zvoli akovou meodu, kerá povede nejrychleji k cíli. Obvykle posupujeme ako: - Nejprve uvažíme, zda nelze použí subsiuci = nebo =, - pak zkoušíme, zda není vhodná subsiuce g =, - nakonec se pokusíme problém vyřeši univerzální subsiucí g =

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

8. Lineární rovnice s parametrem

8. Lineární rovnice s parametrem @08 8. Lineární rovnice s aramerem Příklad: Řeše lineární rovnice v R. a) + = 5 b) + = 5 c) + = 5 d) + 4 = 5 e) + 5 = 5 f) + 6 = 5 g) + 7 = 5 h) + 8 = 5 i) + 9 = 5 Řešení: Všechny rovnice se řeší sejně.

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... sladíme 8 bodů; průměr 4,65; řešilo 23 sudenů Změře závislos eploy uhnuí vodného rozoku sacharózy na koncenraci za amosférického laku. Pikoš v zimě sladil chodník. eorie Pro vyjádření koncenrace

Více

Kapitola 7: Integrál. 1/14

Kapitola 7: Integrál. 1/14 Kapitola 7: Integrál. 1/14 Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní funkcí k

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení 1 Lineární rovnice prvního řádu 1. Najděe řešení Cauchyovy úlohy x + x g = cos, keré vyhovuje podmínce x(π) =. Máme nehomogenní lineární diferenciální ( rovnici prvního řádu. Funkce h() = g a q()

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

10. Polynomy a racionálně lomenné funkce

10. Polynomy a racionálně lomenné funkce 10 Polynomy a racionálně lomenné funkce A Polynomy Definice 101 Reálný polynom stupně n (neboli mnohočlen) je funkce tvaru p(x) = a n x n + a n 1 x n 1 + + a 0, kde a 1,, a n R, a n 0, která každému komplexnímu

Více

Vzorce na integrování. 1. x s dx = xs+1. dx = ln x +C 3. e x dx = e x +C. 4. a x dx = ax. 14. sinhxdx = coshx+c. 15. coshxdx = sinhx+c.

Vzorce na integrování. 1. x s dx = xs+1. dx = ln x +C 3. e x dx = e x +C. 4. a x dx = ax. 14. sinhxdx = coshx+c. 15. coshxdx = sinhx+c. Vzorce na inegrování. s d s+ s+. d ln. e d e. a d a lna, s 5. sind cos 6. cosd sin 7. cos d g 8. d cog sin 9. d arcsin arccos+k 0. + d arcg arccog+k. a + d a arcg a. + d ln(+ +. d ln +. sinhd cosh 5. coshd

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Lokální a globální extrémy funkcí jedné reálné proměnné

Lokální a globální extrémy funkcí jedné reálné proměnné Lokální etrémy Globální etrémy Použití Lokální a globální etrémy funkcí jedné reálné proměnné Nezbytnou teorii naleznete Breviáři vyšší matematiky (odstavec 1.). Postup při hledání lokálních etrémů: Lokální

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

Základní škola Ústí nad Labem, Rabasova 3282/3, příspěvková organizace, 400 11 Ústí nad Labem. Příloha č.1. K SMĚRNICI č. 1/2015 - ŠKOLNÍ ŘÁD

Základní škola Ústí nad Labem, Rabasova 3282/3, příspěvková organizace, 400 11 Ústí nad Labem. Příloha č.1. K SMĚRNICI č. 1/2015 - ŠKOLNÍ ŘÁD Základní škola Úsí nad Labem, Rabasova 3282/3, příspěvková organizace, 400 11 Úsí nad Labem GSM úsředna: +420 725 596 898, mob.: +420 739 454 971, hp://www.zsrabasova.cz IČ 44553145, BANKOVNÍ SPOJENÍ -

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Diferenciální rovnice 1. řádu

Diferenciální rovnice 1. řádu Kapiola Diferenciální rovnice. řádu. Lineární diferenciální rovnice. řádu Klíčová slova: Obyčejná lineární diferenciální rovnice prvního řádu, pravá srana rovnice, homogenní rovnice, rovnice s nulovou

Více

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce

f ( x) = ψϕ ( ( x )). Podle vět o derivaci složené funkce Funkce daná paramerick polárně a implicině 4 Funkce daná paramerick polárně a implicině Výklad Definice 4 Nechť jsou dán funkce ϕ() ψ () definované na M R a nechť ϕ () je prosá na M Složená funkce ψϕ definovaná

Více

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1.

ax + b = 0, kde a, b R, přímky y = ax + b s osou x (jeden, nekonečně mnoho, žádný viz obr. 1.1 a, b, c). Obr. 1.1 a Obr. 1.1 b Obr. 1. 1 Rovnice, nerovnice a soustavy 11 Lineární rovnice Rovnice f(x) = g(x) o jedné neznámé x R, kde f, g jsou reálné funkce, se nazývá lineární rovnice, jestliže ekvivalentními úpravami dostaneme tvar ax

Více

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY

INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

Funkce. Liché a sudé funkce, periodické funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, 2012-14. Gymnázium Uherské Hradiště

Funkce. Liché a sudé funkce, periodické funkce. Mgr. Tomáš Pavlica, Ph.D. Digitální učební materiály, 2012-14. Gymnázium Uherské Hradiště Funkce Liché a, periodické funkce Mgr. Tomáš Pavlica, Ph.D. Gymnázium Uherské Hradiště Digitální učební materiály, 01-14 Obsah Sudé a 1 Sudé a 3 Sudé a Sudá funkce f má vzhledem k ose o y symetrický definiční

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V RNĚ RNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE PRUŽNÉ SPOJKY NA PRINCIPU TEKUTIN FLEXILE COUPLINGS

Více

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1

Návod k obsluze. Vnitřní jednotka pro systém tepelných čerpadel vzduch-voda s příslušenstvím EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 Vniřní jednoka pro sysém epelných čerpadel vzduch-voda EKHBRD011ABV1 EKHBRD014ABV1 EKHBRD016ABV1 EKHBRD011ABY1 EKHBRD014ABY1 EKHBRD016ABY1 EKHBRD011ACV1 EKHBRD014ACV1 EKHBRD016ACV1 EKHBRD011ACY1 EKHBRD014ACY1

Více

2.7.1 Mocninné funkce s přirozeným mocnitelem

2.7.1 Mocninné funkce s přirozeným mocnitelem .7. Mocninné funkce s přirozeným mocnitelem Předpoklad: 0 Pedagogická poznámka: K následujícím třem hodinám je možné přistoupit dvěma způsob. Já osobně doporučuji postupovat podle učebnice. V takovém případě

Více

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle

LS Příklad 1.1 (Vrh tělesem svisle dolů). Těleso o hmotnosti m vrhneme svisle Obyčejné diferenciální rovnice Jiří Fišer LS 2014 1 Úvodní moivační příklad Po prosudování éo kapioly zjisíe, k čemu mohou bý diferenciální rovnice užiečné. Jak se pomocí nich dá modelova prakický problém,

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA DOKTORSKÁ DISERTAČNÍ PRÁCE VYTVÁŘENÍ TRŽNÍ ROVNOVÁHY VYBRANÝCH ZEMĚDĚLSKO-POTRAVINÁŘSKÝCH PRODUKTŮ Ing. Michal Malý Školiel: Prof. Ing. Jiří

Více

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen)

= musíme dát pozor na: jmenovatel 2a, zda je a = 0 výraz pod odmocninou, zda je > 0, < 0, = 0 (pak je jediný kořen) .8.7 Kvadratické rovnice s parametrem Předpoklady: 507, 803 Pedagogická poznámka: Na první pohled asi každého zarazí, že takřka celá hodina je psána jako příklady a studenti by ji měli vypracovat samostatně.

Více

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2 Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly.

listopadu 2016., t < 0., t 0, 1 2 ), t 1 2,1) 1, 1 t. Pro X, U a V najděte kvantilové funkce, střední hodnoty a rozptyly. 6. cvičení z PSI 7. -. lisopadu 6 6. kvanil, sřední hodnoa, rozpyl - pokračování příkladu z minula) Náhodná veličina X má disribuční funkci e, < F X ),, ) + 3,,), a je směsí diskréní náhodné veličiny U

Více

Studie proveditelnosti (Osnova)

Studie proveditelnosti (Osnova) Sudie provedielnosi (Osnova) 1 Idenifikační údaje žadaele o podporu 1.1 Obchodní jméno Sídlo IČ/DIČ 1.2 Konakní osoba 1.3 Definice a popis projeku (max. 100 slov) 1.4 Sručná charakerisika předkladaele

Více

POKUSY S OPERAČNÍMI ZESILOVAČI Studijní text pro řešitele FO Přemysl Šedivý, gymnázium J. K. Tyla, Hradec Králové. Úvod

POKUSY S OPERAČNÍMI ZESILOVAČI Studijní text pro řešitele FO Přemysl Šedivý, gymnázium J. K. Tyla, Hradec Králové. Úvod POKUSY S OPEAČNÍMI ZESILOVAČI Sdijní ex pro řešiele FO Přemysl Šedivý, gymnázim J K Tyla, Hradec Králové Úvod Operační zesilovače (OZ) původně vznikly jako složié elekronické obvody pro náročné požií při

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83 Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI

10a. Měření rozptylového magnetického pole transformátoru s toroidním jádrem a jádrem EI 0. Měření rozpylového magneického pole ransformáoru, měření ampliudové permeabiliy A3B38SME Úkol měření 0a. Měření rozpylového magneického pole ransformáoru s oroidním jádrem a jádrem EI. Změře indukci

Více

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů

Klasifikace, identifikace a statistická analýza nestacionárních náhodných procesů Proceedings of Inernaional Scienific Conference of FME Session 4: Auomaion Conrol and Applied Informaics Paper 26 Klasifikace, idenifikace a saisická analýza nesacionárních náhodných procesů MORÁVKA, Jan

Více

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy

Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy - Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě

Více

Důkazové metody. Teoretická informatika Tomáš Foltýnek

Důkazové metody. Teoretická informatika Tomáš Foltýnek Důkazové metody Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Matematický důkaz Jsou dány axiomy a věta (tvrzení, teorém), o níž chceme ukázat, zda platí. Matematický důkaz je nezpochybnitelné

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149

Obsah. x y = 1 + x 2... 3 y = 3x + 1... 49. y = 2(x2 x + 1) (x 1) 2 101. x 3. y = x2 + 1 x 2 1... 191. y =... 149 Průběh funkce Robert Mařík 26. září 28 Obsah y = 1 2............................. y = 1............................. 49 y = 2(2 1).......................... ( 1) 2 11 y =............................. 149

Více

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY

10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY - 54-10. ANALOGOVĚ ČÍSLICOVÉ PŘEVODNÍKY (V.LYSENKO) Základní princip analogově - číslicového převodu Analogové (spojié) y se v nich ransformují (převádí) do číslicové formy. Vsupní spojiý (analogový) doby

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Rozklad na parciální zlomky

Rozklad na parciální zlomky Rozklad na parciální zlomky Lenka Přibylová 23. června 2009 Obsah + 3 2.... 3 + 2 2 + 4 2.... 13 + 2 + 1 ( 1)( 2.... 24 + 2) + 3 2 + 2 + 3 2 + 2 = + 3 ( 1)( + 2) = A 1 + B + 2 + 3 = A( + 2) + B( 1) = 1

Více

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT Návrh číslicově řízeného reguláoru osvělení s ranzisorem IGB Michal Brejcha ČESKÉ VYSOKÉ ČENÍ ECHNICKÉ V PRAZE Faula eleroechnicá Kaedra eleroechnologie OBSAH: 0. Úvod... 3. Analýza... 4.. Rozbor sávajícího

Více

INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování

INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování INTEGRÁLNÍ POČET Primiivní unkce. Neurčiý inegrál Deinice. Jesliže pro unkce F einovné n oevřeném inervlu J plí F pro kžé J, říkáme, že F je primiivní unkcí k unkci n J. Vě. Je-li spojiá n J, pk k ní eisuje

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

000 Základní aplikace (I/O funkce)

000 Základní aplikace (I/O funkce) 000 Základní aplikace (I/O funkce) Obsah 000 Základní aplikace (I/O funkce)...1 1 Přehled...2 1.1 Základní aplikace...2 1.2 Použií reguláorů DESIO RX jako vsupních a výsupních modulů...2 1.3 Přehled aplikací...3

Více

Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever

Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever Základní škola Kaznějov, příspěvková organizace, okres Plzeň-sever DIGITÁLNÍ UČEBNÍ MATERIÁL Název projektu Registrační číslo projektu UČENÍ JE SKRYTÉ BOHATSTVÍ INOVACE VÝUKY ZŠ KAZNĚJOV CZ.1.07/1.1.12/02.0029

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně

Více

Oceňování finančních investic

Oceňování finančních investic Oceňování finančních invesic A. Dluhopisy (bondy, obligace). Klasifikace obligací a) podle kupónu - konvenční obligace (sraigh, plain vanilla, bulle bond) vyplácí pravidelný (roční, pololení) kupón po

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

Numerická integrace. b a. sin 100 t dt

Numerická integrace. b a. sin 100 t dt Numerická inegrace Mirko Navara Cenrum srojového vnímání kaedra kyberneiky FEL ČVUT Karlovo náměsí, budova G, mísnos 14a hp://cmpfelkcvucz/~navara/nm 1 lisopadu 18 Úloha: Odhadnou b a f() d na základě

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNCKÁ UNVERZTA V LBERC Fakula mecharoniky, informaiky a mezioborových sudií Cvičení č3 k ředměu ELMO Přírava ke cvičení ng Jiří Primas, ng Michal Malík Liberec Maeriál vznikl v rámci rojeku ESF (CZ7//747)

Více

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 03 Operace v množině, vlastnosti binárních operací O čem budeme hovořit: zavedení pojmu operace binární, unární a další operace

Více

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace.

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace. Předpokládané znalosti ze středoškolské matematiky 1. Matematická logika Výroky, složené výroky: konjunkce (, a zároveň ), disjukce (, nebo), negace výroků ( před nebo čárka nad označením výroku), implikace

Více

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

Výroba a užití elektrické energie

Výroba a užití elektrické energie Výroba a užií elekrické energie Tepelné elekrárny Příklad 1 Vypočíeje epelnou bilanci a dílčí účinnosi epelné elekrárny s kondenzační urbínou dle schémau naznačeného na obr. 1. Sesave Sankeyův diagram

Více

Identifikátor materiálu: VY_32_INOVACE_353

Identifikátor materiálu: VY_32_INOVACE_353 dentifikátor materiálu: VY_32_NOVACE_353 Anotace Autor Jazyk Očekávaný výstup Výuková prezentace.na jednotlivých snímcích jsou postupně odkrývány informace, které žák zapisuje či zakresluje do sešitu.

Více

IMPULSNÍ TECHNIKA II.

IMPULSNÍ TECHNIKA II. IMPULSNÍ TECHNIKA II. OBSAH II. DÍLU Předmluva 3 7 Generáory piloviých průběhů 4 7. Paramery lineárně se měnícího napěí 4 7.2 Funkční princip generáorů piloviého napěí 5 7.3 Generáor s nabíjením kondenzáoru

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

Inovace a zkvalitnění výuky prostřednictvím ICT Převody a mechanizmy. Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ 15 03 Anotace:

Inovace a zkvalitnění výuky prostřednictvím ICT Převody a mechanizmy. Ing. Magdalena Svobodová Číslo: VY_32_INOVACE_ 15 03 Anotace: Sřední průmyslová škola a Vyšší odborná škola echnická Brno, Sokolská 1 Šablona: Název: Téma: Auor: Inovace a zkvalinění výuky prosřednicvím ICT Převody a mechanizmy Čelní soukolí se šikmými zuby Ing.

Více

=, kde P(x) a Q(x) jsou polynomy. Rozklad na parciální zlomky Parciální zlomky jsou speciální racionální lomené funkce. Rozlišujeme 2 typy:

=, kde P(x) a Q(x) jsou polynomy. Rozklad na parciální zlomky Parciální zlomky jsou speciální racionální lomené funkce. Rozlišujeme 2 typy: 3 předáš INTEGRAE RAIONÁLNÍ LOMENÉ FUNKE Důležiou supiu fucí, eré můžeme (spoň eoreicy) iegrov v možiě elemeárích fucí, voří rcioálí lomeé fuce Kždou rcioálí lomeou fuci vru P( ) f ( ) =, de P() Q() jsou

Více

Sbírka B - Př. 1.1.5.3

Sbírka B - Př. 1.1.5.3 ..5 Ronoměrný pohyb Příklady sřední obížnosi Sbírka B - Př...5. Křižoakou projel rakor rychlosí 3 km/h. Za dese minu po něm projela ouo křižoakou sejným směrem moorka rychlosí 54 km/h. Za jak dlouho a

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

3. Základní dynamické systémy 3.1. Základní spojité dynamické systémy. Čas ke studiu: 12 až 18 hodin. Cíl Po prostudování tohoto odstavce budete umět

3. Základní dynamické systémy 3.1. Základní spojité dynamické systémy. Čas ke studiu: 12 až 18 hodin. Cíl Po prostudování tohoto odstavce budete umět 3. Základní dynamické sysémy 3.. Základní spojié dynamické sysémy Čas ke sudiu: až 8 hodin Cíl Po prosudování ohoo odsavce budee umě Popsa proporcionální spojiý sysém a jeho realizaci Popsa inegrační spojiý

Více

Maturitní okruhy z matematiky školní rok 2007/2008

Maturitní okruhy z matematiky školní rok 2007/2008 Maturitní okruhy z matematiky školní rok 2007/2008 1. ALGEBRAICKÉ VÝRAZY 2 2 2 3 3 3 a ± b ; a b ; a ± b ; a ± b 1.1. rozklad výrazů na součin: vytýkání, užití vzorců: ( ) ( ) 1.2. určování definičního

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet

1 Průběh funkce. Pomůcka pro cvičení: 1. semestr Bc studia Průběh funkce - ruční výpočet Pomůcka pro cvičení:. semestr Bc studia Průběh funkce - ruční výpočet Průběh funkce balíček: plots Při vyšetřování průběhu funkce využijte dosavadních příkazů z Maple, které znáte. Nové příkazy budou postupně

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1

( ) Základní transformace časových řad. C t. C t t = Μ. Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Makroekonomická analýza Popisná analýza ekonomických časových řad (ii) 1 Základní ransformace časových řad Veškeré násroje základní korelační analýzy, kam paří i lineární regresní (ekonomerické) modely

Více

4. Gomory-Hu Trees. r(x, z) min(r(x, y), r(y, z)). Důkaz: Buď W minimální xz-řez.

4. Gomory-Hu Trees. r(x, z) min(r(x, y), r(y, z)). Důkaz: Buď W minimální xz-řez. 4. Gomory-Hu Tree Cílem éo kapioly je popa daovou rukuru, kerá velice kompakně popiuje minimální -řezy pro všechny dvojice vrcholů, v daném neorienovaném grafu. Tuo rukuru poprvé popali Gomory a Hu v článku[1].

Více

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.

Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč. Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

M - Příprava na 2. zápočtový test pro třídu 2D

M - Příprava na 2. zápočtový test pro třídu 2D M - Příprava na 2. zápočtový test pro třídu 2D Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více