Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá

Rozměr: px
Začít zobrazení ze stránky:

Download "Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá"

Transkript

1 Trojúhelník Trojúhelník - AB určují tři body A, B,, které neleží na jedné přímce. Trojúhelník je rovněž možno považovat za průnik tří polorovin nebo tří konvexních úhlů. γ, γ, γ Body A, B,, se nazývají vrcholy trojúhelníku Úsečky AB, B, A, jsou strany trojúhelníku b a Konvexní úhly BA, AB, BA jsou vnitřní úhly trojúhelníku, vedlejší úhly k těmto úhlům jsou vnější úhly α, α β β, A α, β, B Rozdělení trojúhelníků podle stran: Různostranné obecné Rovnoramenné Rovnostranné žádné dvě strany nejsou shodné dvě strany, ramena, jsou shodná všechny strany jsou shodné třetí, základna, je různá Rozdělení trojúhelníků podle vnitřních úhlů: Ostroúhlé Pravoúhlé Tupoúhlé všechny vnitřní úhly ostré jeden vnitřní úhel pravý protější jeden vnitřní úhel je tupý strana přepona, ostatní odvěsny Další vztahy platné v trojúhelníku: Součet vnitřních úhlů trojúhelníku je úhel přímý (180 ) Velikost vnějšího úhlu trojúhelníku je rovna součtu velikostí vnitřních úhlů při ostatních vrcholech. Součet dvou stran je větší než strana třetí (trojúhelníková nerovnost) Proti větší straně leží větší vnitřní úhel a proti většímu vnitřnímu úhlu leží větší strana

2 Střední příčka Výška trojúhelníku B 1 A 1 V v c v a v b A 1 B A B Střední příčka je úsečka spojující středy dvou stran. Je rovnoběžná se třetí stranou a její délka je polovinou délky strany. Výška je úsečka spojující vrchol trojúhelníku s patou kolmice vedené z protilehlé strany. Výšky se protínají ve společném průsečíku V nazývaném ortocentrum. V ostroúhlém trojúhelníku leží uvnitř, v pravoúhlém splývá s vrcholem pravého úhlu a v tupoúhlém leží vně trojúhelníku. Těžnice trojúhelníku Úsečka, jejímiž krajními body jsou vrchol trojúhelníku a střed protější strany se nazývá t c těžnice. Těžnice (označujeme t a, t b, t c ) se B 1 T A 1 protínají ve společném bodě T nazývaném t a t b těžiště trojúhelníku. Vzdálenost těžnice od vrcholu je rovna třetinám A 1 B délky příslušné těžnice.

3 Kružnice opsaná trojúhelníku Kružnice, která prochází všemi vrcholy trojúhelníku se nazývá trojúhelníku opsaná. k Její poloměr označujeme r a její střed S o je S o průsečíkem os stran trojúhelníku. V ostroúhlém r trojúhelníku leží uvnitř, v pravoúhlém je středem přepony a v tupoúhlém leží vně trojúhelníku. A B Kružnice, která se dotýká všech tří stran trojúhelníku se nazývá trojúhelníku vepsaná. k Její poloměr označujeme r a její střed S v je S v průsečíkem os stran trojúhelníku. ρ A B V rovnostranném trojúhelníku splývá střed kružnice opsané se středem kružnice vepsané, ortocentrem a těžištěm S o = S V = V = T

4 PS Jsou dány tři různé body A, B,, které neleží na jedné přímce. Narýsujte trojúhelník AB. A B a) Symbolicky zapište AB jako průnik tří polorovin b) Označte α, β, γ vnitřní úhly trojúhelníku AB a α, β, γ jeho vnější úhly c) Dopočítejte velikosti vyznačených úhlů, je-li β = a γ = α = α = β = γ = d) V trojúhelníku AB označte strany a, b, c a uspořádejte jejich délky podle velikosti vzestupně. Symbolicky zapište:

5 2. V trojúhelníku KLM sestrojte těžiště T a ortocentrum V. Doplňte věty. K M L a) Ortocentrum každého ostroúhlého trojúhelníku leží uvnitř trojúhelníku. b) Ortocentrum každého tupoúhlého trojúhelníku leží trojúhelníku. c) Ortocentrum každého pravoúhlého trojúhelníku d) Těžiště trojúhelníku leží uvnitř tohoto trojúhelníku.

6 3. Sestrojte střed S kružnice vepsané a střed O kružnice opsané trojúhelníku GHI. V obrázku vyznačte poloměr ρ kružnice vepsané a poloměr r kružnice opsané. Kružnice narýsujte. Doplňte následující věty. I G H a) Střed kružnice opsané každému ostroúhlému leží tohoto b) Střed kružnice opsané každému tupoúhlému leží vně tohoto c) Střed kružnice opsané každému pravoúhlému d) Střed kružnice vepsané trojúhelníku leží uvnitř tohoto

7 4. Rozhodněte, zda jsou následující tvrzení pravdivá. a) Součet velikostí všech vnitřních úhlů v tupoúhlém trojúhelníku je větší než součet všech vnitřních úhlů v ostroúhlém trojúhelníku. b) V každém trojúhelníku pro výšku a těžnici vedenou z téhož vrcholu X platí: v x t x c) V každém rovnostranném trojúhelníku splývá těžiště, střed kružnice vepsané, střed kružnice opsané a ortocentrum d) V každém rovnoramenném trojúhelníku jsou úhly při základně shodné 5. Vypočítejte velikosti neznámých úhlů podle obrázku 39 δ 44 ε 116 γ σ ω α β

8 6. Ke každé dvojici délek úseček přiřaďte třetí délku tak, aby bylo možno sestrojit čtyři trojúhelníky zadané vzniklými délkami stran. Každou délku využijte právě jednou. A) 20, 25 1) 46 B) 12, 28 2) 42 ) 31, 18 3) 49 D) 28, 22 4) V trojúhelníku AB s délkami stran a = 294; b = 306,6; c = 480 byly určeny délky těžnic: t a = 375,0; t b = 367,2; t c = 180,0. B 1 A 1 T A 1 B a) Obvod A 1 je b) Obvod BB 1 1 je c) Obvod ABT je d) Obvod A 1 B 1 T je

9 8. Odchylka výšek, které jsou vedeny na ramena rovnoramenného trojúhelníku AB, je 38. Vypočítejte velikosti vnitřních úhlů trojúhelníku AB. v c v a 38 A B α = β = γ = 9. Vyberte správnou odpověď. D δ E A B Pokud AB = B = E, je velikost úhlu δ vyznačeného na obrázku: a) 120 b) 112,5 c) 135 d) 150 e) nelze určit

10 10. Vyberte správnou odpověď: ε D A B E Body D, A, B, E leží na přímce. Pokud AB = B = A = BE = AD, je velikost úhlu ε vyznačeného na obrázku: a) 120 b) 112,5 c) 135 d) 150 e) nelze určit 11. Je dán AB. Vypočítejte velikost úhlu ε, který svírá výška na stranu c a spojnice vrcholu se středem kružnice trojúhelníku vepsané. A B

11 12. Vypočítejte velikost vnitřních úhlů α, β, γ trojúhelníku a rozhodněte, zda je trojúhelník ostroúhlý, pravoúhlý nebo tupoúhlý. a) β = α + 25, γ = 45 b) α: β = 1: 2, β: γ = 1: 3 c) α + β = 135, β + γ = 135 d) α + β = 125, γ β = 45

12 Shodnost trojúhelníků Trojúhelník AB je shodný s trojúhelníkem A, B,, mají-li shodné všechny sobě odpovídající strany a úhly. Zapisujeme: AB A, B,, Věty o shodnosti trojúhelníků: Věta sss: Jestliže se dva trojúhelníky shodují ve všech třech stranách, jsou shodné. Věta sus: Jestliže se dva trojúhelníky shodují ve dvou stranách a úhlu jimi sevřeném, jsou shodné. Věta usu: Jestliže se dva trojúhelníky shodují v jedné straně a ve dvou úhlech k ní přilehlých, jsou shodné. Věta Ssu: Jestliže se dva trojúhelníky shodují ve dvou stranách a úhlu proti větší z nich, jsou shodné. Podobnost trojúhelníků Trojúhelník A, B,, je podobný trojúhelníku AB, existuje-li kladné reálné číslo k tak, že pro strany trojúhelníku platí: a, = k a, b, = k b, c, = k c Je-li k > 1 je podobnost zvětšením, je-li k < 1 je podobnost zmenšením. (k=1 je shodnost) Zapisujeme: AB ~ A, B,, Věty o shodnosti trojúhelníků: Věta sss: Jestliže se dva trojúhelníky shodují ve všech třech poměrech stran, jsou podobné. Věta uu: Jestliže se dva trojúhelníky shodují ve dvou úhlech, jsou podobné. Věta sus: Jestliže se dva trojúhelníky shodují v jednom úhlu a v poměru délek stran ležících na jeho ramenech, jsou podobné. Věta Ssu: Jestliže se dva trojúhelníky shodují v poměru délek dvou odpovídajících si stran a v úhlu proti větší z nich, jsou podobné.

13 PS Jsou dány trojúhelníky AB a KLM. Platí: AB LMK. Doplňte: a) AB = A = B = b) BA = AB = AB = 2. Rozhodněte, které trojúhelníky jsou shodné. Shodnost trojúhelníků zapište. Výsledky uspořádejte do tabulky. Z 20 Y M V 20 U A 20 B X N 26 O T H J L R E D I G K P 20 Q F shodnost trojúhelníků použitá věta o shodnosti

14 3. Jsou dány trojúhelníky AB a TUV. Platí: AB~ VTU. Doplňte: a) AB : VT = b) BA = AB = AB = 4. Rozhodněte, které trojúhelníky jsou podobné. Podobnost trojúhelníků zapište. Výsledky uspořádejte do tabulky. B 20 A I Z Y L X U J 21 K O G 36 H 28 R 105 F P M V 120 T Q N D E podobnost trojúhelníků použitá věta o podobnosti

15 5. Rozhodněte, zda jsou následující tvrzení pravdivá. a) Dva rovnostranné trojúhelníky jsou shodné, pokud se shodují v jedné straně. b) Dva rovnoramenné trojúhelníky jsou shodné, pokud se shodují v základně a úhlu proti základně. c) Dva pravoúhlé trojúhelníky jsou shodné, pokud se shodují v jednom ostrém úhlu a nejdelší straně. d) Každé dva rovnostranné trojúhelníky jsou podobné. e) Každý trojúhelník podobný rovnoramennému trojúhelníku je také rovnoramenný. f) Každé dva pravoúhlé trojúhelníky se stejnou délkou přepony jsou podobné.

16 6. V rovnoramenném trojúhelníku AB je S b střed strany A a S c střed stranyab. Kolmice na rameno A vedená S b protne přímku AB v bodě L, přímku B v bodě X. Kolmice na rameno AB vedená S c protne přímku A v bodě M, přímku B v boděy. Dokažte následující tvrzení. A S c S b L M X Y B a) AS c AS b B b) BS c BS b c) S b L = S c M d) S b Y = S c X

17 7. Dané úsečky rozdělte v daném poměru. a) AB v poměru 3:2 b) D v poměru 2:5 A B D 8. Dané úsečky zkraťte v daném poměru. a) EF v poměru 3:8 b) GH v poměru 5:7 E F G H 9. Dané úsečky zvětšete v daném poměru. a) IJ v poměru 6:5 b) KL v poměru 9:4 I J K L

18 10. Jsou dány úsečky o délkách a, b, c. Sestrojte úsečku délky d tak, aby platilo a:b = c:d a b c d 11. Platí : AB~ DEF. Vypočítejte délky zbývajících stran, je-li dáno: a) a = 14, c = 16, e = 27, f = 24 b) b = 84, c = 63, d = 10, e = 12

19 12. Vypočítejte výšku stromu, který vrhá stín dlouhý 7m. Víte, že stín svislé metrové tyče má ve stejném okamžiku délku 140 cm. 13. Strany trojúhelníku AB mají velikost 7 m, 9 m, 12 m. Vypočítejte velikosti stran trojúhelníku DEF, který je podobný trojúhelníku AB, jestliže obvod trojúhelníku DEF je: a) 70 m b) 14 m

20 17. Výška na základnu rovnoramenného trojúhelníku má velikost 12,5 cm, ramena mají délku 15 cm. Vypočítejte poloměr kružnice trojúhelníku opsané. 18. Mezi třemi sloupy, jejichž paty leží v jedné přímce, je nataženo lanko. Vypočítejte výšku x třetího sloupu. (rozměry jsou v cm) x

21 19. Ocelová nájezdová rampa pro vozíčkáře a kočárky je v určitém místě podepřena sloupkem, jehož výška h je 45% celkového výškového rozdílu v rampy. Určete vzdálenost paty sloupku od budovy, je-li počátek rampy 15 m od budovy. budova h v 15 m 20. V lichoběžníku PQRS se základnami PQ a RS platí: PRQ = PSR, PQ = 33 dm, RS = 15 dm. Vypočítejte délku úhlopříčky PR.

22 21. Vinohrad o 15 řádcích má tvar trojúhelníku R 1 VK 1. První řádek je totožný se stranou R 1 K 1 a má délku 120 m. Další řádky jsou s ním rovnoběžné, body R 2 až R 15 rozdělují vzdálenost R 1 V na 15 stejných dílů. Určete délku druhého, čtvrtého a desátého řádku. K 1 K 2 K 3 K 4 K 14 K 15 V R 1 R 2 R 3 R 4.. R 14 R 15

23 Příklady k domácí přípravě 1. Vypočítejte velikost vnitřních úhlů α, β, γ trojúhelníku a rozhodněte, zda je trojúhelník ostroúhlý, pravoúhlý nebo tupoúhlý. a) β = α + 32, γ = 64 b) α + β = 72, β = 2 α 2. V rovnostranném trojúhelníku AB se stranou a = 18cm má výška v = 15,6cm. Vypočtěte obvody trojúhelníků AS c a BT. S b T S a A S c B 3. Pro trojúhelníky platí: AB~ KLM. Vypočtěte zbývající strany trojúhelníků, pokud a = 4cm b = 6cm l = 90cm m = 120cm 4. Vypočtěte výšku stromu, který vrhá stín délky 21 m, víte-li, že ve stejném okamžiku 2m vysoký pilíř plotu vrhá stín dlouhý 3m.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu

Věty o pravoúhlém trojúhelníku. Vztahy pro výpočet obvodu a obsahu. Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu Věty o pravoúhlém trojúhelníku Eukleidova věta o výšce. Druhá mocnina výšky k přeponě je rovna součinu b v a obou úseků přepony: v 2 = c a c b c b c a Eukleidova věta o odvěsně A c B Druhá mocnina délky

Více

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

UNIVERZITA KARLOVA V PRAZE

UNIVERZITA KARLOVA V PRAZE UNIVERZITA KARLOVA V PRAZE Pedagogická fakulta Katedra matematiky a didaktiky matematiky Vztahy mezi prvky trojúhelníku Relations among elements of a triangle Autor: Lucie Machovcová Vedoucí práce: RNDr.

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.057 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: PFFNINW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

M - Matematika - třída 2ODK celý ročník

M - Matematika - třída 2ODK celý ročník M - Matematika - třída ODK celý ročník Obsahuje učivo celého školního roku 006/007. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

M - Příprava na 3. čtvrtletku třídy 1P, 1VK

M - Příprava na 3. čtvrtletku třídy 1P, 1VK M - Příprava na 3. čtvrtletku třídy P, VK Souhrnný studijní materiál určený k přípravě na 3. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE Tento dokument byl kompletně vytvořen, sestaven

Více

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice.

Kružnice. Kruh. Kruh K(S; r) je množina všech bodů roviny, které mají. od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. Kružnice Kružnice k(s; r) je množina všech bodů roviny, které mají d od zadaného bodu S, vzdálenost r. Bod S je střed, r je poloměr kružnice. S r Délka spojnice dvou bodů kružnice, která prochází středem

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový

Více

M - Příprava na 11. zápočtový test

M - Příprava na 11. zápočtový test M - Příprava na 11. zápočtový test Určeno pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51

Více

PLANIMETRIE, SHODNOST A PODOBNOST

PLANIMETRIE, SHODNOST A PODOBNOST PLANIMETRIE, SHODNOST A PODOBNOST Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

POVINNÝ DOMÁCÍ ÚKOL PLANIMETRIE

POVINNÝ DOMÁCÍ ÚKOL PLANIMETRIE POVINNÝ DOMÁCÍ ÚKOL PLANIMETRIE DATUM ODEVZDÁNÍ: 4. 1. 2016 DO 7:50 BOJANOVSKÝ (1) V obdélníku ABCD je vzdálenost jeho středu od přímky AB o 3 cm větší než od přímky BC. Obvod obdélníku je 5 cm. Určete

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru

STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI. STEREOMETRIE geometrie v prostoru Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ Mgr. Tomáš MAŇÁK 4. května 2014 Název zpracovaného celku: STEREOMETRIE ZÁKLADNÍ POJMY, METRICKÉ VLASTNOSTI, ODCHYLKY, VZDÁLENOSTI STEREOMETRIE geometrie

Více

PŘIJÍMACÍ ZKOUŠKY 2010 - I.termín

PŘIJÍMACÍ ZKOUŠKY 2010 - I.termín MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás na gymnáziu Omská a přejeme úspěšné vyřešení všech úloh. Úlohy můžete řešit v libovolném pořadí. V matematice pracujeme s čísly

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechny dvojice prvočísel p, q, pro které existuje přirozené číslo a takové, že pq p + q = a + 1 a + 1. 1. Nechť p a q jsou prvočísla. Zjistěte, jaký

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

M - Příprava na 1. čtvrtletní písemku

M - Příprava na 1. čtvrtletní písemku M - Příprava na 1. čtvrtletní písemku Určeno pro třídu 2ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete na www.dosli.cz.

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány:

1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány: Pokyny pro vypracování zápočtových prací (rysů): okraje (uvnitř rámečku) napište nadpis (Rotační válec), u dolního okraje akademický rok, rys č. 1, varianta n, jméno, příjmení a číslo studijní skupiny.

Více

Polibky kružnic: Intermezzo

Polibky kružnic: Intermezzo Polibky kružnic: Intermezzo PAVEL LEISCHNER Pedagogická fakulta JU, České Budějovice Věta 21 z Archimedovy Knihy o dotycích kruhů zmíněná v předchozím dílu seriálu byla inspirací k tomuto původně neplánovanému

Více

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

Přehled učiva matematiky 7. ročník ZŠ

Přehled učiva matematiky 7. ročník ZŠ Přehled učiva matematiky 7. ročník ZŠ I. ARITMETIKA 1. Zlomky a racionální čísla Jestliže rozdělíme něco (= celek) na několik stejných dílů, nazývá se každá část celku zlomkem. Zlomek tři čtvrtiny = tři

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA 9 M9PZD16C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový

Více

1. Rovnice a nerovnice s parametrem

1. Rovnice a nerovnice s parametrem SMA 4.ročník. (Ne)rovnice s parametrem Petr Harbich, rel. 006009 Řešte V R s neznámou x a parametrem a c R :. Rovnice a nerovnice s parametrem x+a. a = ax ; D : a = 0..ns; a =!..K = π; a! 0&a!!..K ={ a

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník V. kružnice vepsaná a opsaná. konstrukce kružnice vepsaní a opsané trojúhelníku

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník V. kružnice vepsaná a opsaná. konstrukce kružnice vepsaní a opsané trojúhelníku METODICKÝ LIST DA39 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník V. kružnice vepsaná a opsaná Astaloš Dušan Matematika šestý

Více

Mongeova projekce - řezy hranatých těles

Mongeova projekce - řezy hranatých těles Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

DOPLŇKOVÝ UČEBNÍ TEXT MATEMATIKA

DOPLŇKOVÝ UČEBNÍ TEXT MATEMATIKA DOPLŇKOVÝ UČEBNÍ TEXT MATEMATIKA 2. díl I. Rovnice a nerovnice II. Planimetrie Ondřej Kališ Rovnice a nerovnice I. Rovnice a nerovnice I.1. Lineární rovnice a nerovnice I.1.A. Lineární rovnice Rovnice

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Sestrojte trojúhelník ABC, jestliže znáte délku jeho dvou stran (a = 5cm, b = 7cm) a poloměr kružnice jemu opsané (r = 6cm).

Sestrojte trojúhelník ABC, jestliže znáte délku jeho dvou stran (a = 5cm, b = 7cm) a poloměr kružnice jemu opsané (r = 6cm). SÉRIE 1 Sestrojte trojúhelník ABC, jestliže znáte délku jeho dvou stran (a = 5cm, b = 7cm) a poloměr kružnice jemu opsané (r = 6cm). Mějme (uspořádanou) trojici čísel a, b, c. Po jednom kroku se trojice

Více

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek)

Mária Sadloňová. Fajn MATIKA. 150 řešených příkladů (vzorek) Mária adloňová Fajn MATIKA (nejen) na přijímačky 50 řešených příkladů (vorek) 0 Mgr. Mária adloňová FajnMATIKA (nejen) na přijímačky 50 řešených příkladů (reklamní vorek) Mgr. Mária adloňová, 0 Vydavatel

Více

Optika. VIII - Seminář

Optika. VIII - Seminář Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

5.2.3 Kolmost přímek a rovin I

5.2.3 Kolmost přímek a rovin I 5.2.3 Kolmost římek rovin I ředokldy: 5202 vě římky jsou k soě kolmé rávě tehdy, když jejich odchylk je 90. Nvzájem kolmé mohou ýt i mimoěžky. vě úsečky jsou kolmé, rávě když leží n kolmých římkách. íšeme:

Více

4.4.2 Kosinová věta. Předpoklady: 4401

4.4.2 Kosinová věta. Předpoklady: 4401 44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!

2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN! MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadncové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnc. 3.9 Volné

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

Geometrické vektory. Martina Šimůnková. Katedra aplikované matematiky. 9. března 2008

Geometrické vektory. Martina Šimůnková. Katedra aplikované matematiky. 9. března 2008 Geometrické vektory Martina Šimůnková Katedra aplikované matematiky 9. března 2008 Martina Šimůnková (KAP) Geometrické vektory 9. března 2008 1/ 27 Definice geometrického vektoru 1 Definice geometrického

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran

Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran 1. Kótování oblouků veškeré oblouky kružnic se kótují poloměrem a jedním z těchto rozměrů: - středovým úhlem - délkou tětivy - délkou

Více

8. Stereometrie 1 bod

8. Stereometrie 1 bod 8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme

Více

Jakub Juránek. 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí?

Jakub Juránek. 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí? Jakub Juránek UČO 393110 1.64 Určete počet kvádru, jejichž velikosti hran jsou přirozená čísla nejvýše rovná deseti. Kolik je v tomto počtu krychlí? Kvádr a b c, a, b, c {1, 2,..., 10} a b c = c a b -

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3476 Název materiálu: VY_42_INOVACE_181 Vzdělávací oblast: Matematika a její aplikace Vzdělávací

Více

Orientovaná úseka. Vektory. Souadnice vektor

Orientovaná úseka. Vektory. Souadnice vektor Vektory, operace s vektory Ž3 Orientovaná úseka Mjme dvojici bod A, B (na pímce, v rovin nebo prostoru), které spojíme a vznikne tak úseka. Pokud budeme rozlišovat, zda je spojíme od A k B nebo od B k

Více

Maturitní okruhy z matematiky školní rok 2007/2008

Maturitní okruhy z matematiky školní rok 2007/2008 Maturitní okruhy z matematiky školní rok 2007/2008 1. ALGEBRAICKÉ VÝRAZY 2 2 2 3 3 3 a ± b ; a b ; a ± b ; a ± b 1.1. rozklad výrazů na součin: vytýkání, užití vzorců: ( ) ( ) 1.2. určování definičního

Více

Důkazové metody. Teoretická informatika Tomáš Foltýnek

Důkazové metody. Teoretická informatika Tomáš Foltýnek Důkazové metody Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Matematický důkaz Jsou dány axiomy a věta (tvrzení, teorém), o níž chceme ukázat, zda platí. Matematický důkaz je nezpochybnitelné

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI Příklad 1: Domácí úkol DU01_p MAT 4AE, 4AC, 4AI Osm spolužáků (Adam, Bára, Cyril, Dan, Eva, Filip, Gábina a Hana) se má seřadit za sebou tak, aby Eva byly první a Dan předposlední. Příklad : V dodávce

Více

a : b : c = sin α : sin β : sin γ

a : b : c = sin α : sin β : sin γ 12 Řešení becnéh trjúhelníku, věta sinvá a ksinvá Sinvá věta - platí v becném trjúhelníku (nemusí být pravúhlý) a : b : c sin α : sin β : sin γ Pměr délek stran je rven pměru sinů prtilehlých vnitřních

Více

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.

Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha. 18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2003 2004 PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 003 004 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO M 0030 Vyjádřete jedním desetinným číslem (4 ½ 4 ¼ ) (4 ½ + 4 ¼ ) Správné řešení: 0,5 Zjednodušte výraz : ( 4)

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o.

Svobodná chebská škola, základní škola a gymnázium s.r.o. METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem. Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje

Více

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace.

Předpokládané znalosti ze středoškolské matematiky. Pokuste se rozhodnout o pravdivosti následujících výroků a formulujte jejich negace. Předpokládané znalosti ze středoškolské matematiky 1. Matematická logika Výroky, složené výroky: konjunkce (, a zároveň ), disjukce (, nebo), negace výroků ( před nebo čárka nad označením výroku), implikace

Více

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY

O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY O P A K O V Á N Í A P R O H L O U B E N Í U I V A O J E D N O D U C H Ý C H K O N S T R U K C Í C H 1,5 HODINY Díve, než spolen pikroíme k uivu o množinách bod, pokusíme se zopakovat nkteré jednoduché

Více

Úvod. Cílová skupina: 2 Planimetrie

Úvod. Cílová skupina: 2 Planimetrie PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matemati ky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 63. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Určete, jaké nejmenší hodnoty může nabýt výraz V = (a b) + (b c) + (c a), splňují-li reálná čísla a, b, c dvojici podmínek a +

Více

Řešení 3. série. typ čtverce o kolik se zvýší počet 1 x 1 2k + 1 2 x 2 2k 1 3 x 3 2k 3. . k x k 3 (k + 1) x (k + 1) 1

Řešení 3. série. typ čtverce o kolik se zvýší počet 1 x 1 2k + 1 2 x 2 2k 1 3 x 3 2k 3. . k x k 3 (k + 1) x (k + 1) 1 Řešení 3 série Řešení S-I-3-1 Než se pustíme o řešení úlohy s n x n čtvercovými poli, zkusme ohalit princip na šachovnici s konkrétním počtem polí Na šachovnici 1 x 1 je pouze 1 čtverec Na šachovnici 2

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006

MATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! Krok za krokem k nové maturitě Maturita nanečisto 2006 Krok za krokem k nové maturitě Maturita nanečisto 2006 MA1ACZMZ06DT MATEMATIKA 1 didaktický test Testový sešit obsahuje 18 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Opakování ZŠ - Matematika - část geometrie - konstrukce

Opakování ZŠ - Matematika - část geometrie - konstrukce Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny

Více

VARIANTA 1. 1. Vypočtěte souřadnice středu a poloměr kružnice, která je dána rovnicí. x 2 + y 2 6x+4y 12=0.

VARIANTA 1. 1. Vypočtěte souřadnice středu a poloměr kružnice, která je dána rovnicí. x 2 + y 2 6x+4y 12=0. VARIANTA 1 1 Vypočtěte souřadnice středu a poloměr kružnice, která je dána rovnicí x 2 + y 2 6x+4y 12=0 2Napišterovnicitečnyelipsydanérovnicí49x 2 +100y 2 294x+400y 4059=0vjejímbodě T[9;?] 3 Vyšetřete

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách. Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text

Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

3. Mocnina a odmocnina. Pythagorova věta

3. Mocnina a odmocnina. Pythagorova věta . Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více