Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP"

Transkript

1 Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP

2 Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva kodér dekodér Kódová slova zdrojová abeceda (abeceda zprávy) = {0, 1} kódová abeceda (abeceda kódových slov) = {0, 1} slovo nad danou abecedou 0, 1 (ve zdrojové) 000, 111 (v kódové); pozn. 001, 010, 011, 100, 101, 110 nejsou kódová slova kódovací předpis (např , v kódu ztrojení bitů)

3 O kódování Obecně je kódování předpis, který každému prvku konečné množiny A přiřazuje právě jedno slovo z konečné množiny B. Stručněji, kódování je zobrazení K: A B*. Pojem slova v množině B znamená konečnou (a neprázdnou posloupnost) prvků této množiny. Množinu všech kódových slov označujeme B*. Množina A se nazývá zdrojová abeceda a její prvky zdrojové znaky, množina B se nazývá kódová abeceda a její prvky kódové znaky. Nejdůležitější je případ binárního kódování, které má dva kódové znaky, B={0, 1}. Množinu všech kódových slov K(a) pro všechna a A nazýváme kód. Význam mají jen prostá kódování, tj. taková, kdy různým zdrojovým znakům odpovídají vždy různá kódová slova. Prefixem slova b 1 b 2 b k se rozumí každé ze slov b 1, b 1 b 2,, b 1 b 2 b k. Kódování se nazývá prefixové, jestliže je prosté a žádné kódové slovo není prefixem jiného kódového slova. Prefixové kódování je vždy jednoznačně dekódovatelné: pokud známe zprávu K*(a 1 a 2 a m ), potom v ní najdeme nejmenší počet znaků (zleva), které tvoří kódové slovo, a ty jsou kódem znaku a 1. Dekódované znaky umažeme a zase hledáme nejmenší počet znaků tvořících kódové slovo, to je kód znaku a 2, atd. Příklad: prefixový kód 01 neprefixový kód Nejkratším n-znakovým kódováním zdrojové abecedy a 1, a 2,, a r s pravděpodobnostmi výskytu p 1, p 2,, p r se rozumí prefixové kódování této abecedy pomocí n znaků, které má nejmenší možnou průměrnou délku slova. Nejkratší kód lze zkonstruovat pomocí Huffmanova algoritmu.

4 Typy kódů (podle účelu) Pro odstranění redundance Př. Huffmanovo kódování Př. aplikace: komprese obrazu (JPG=kosinová transformace + Huffmanovo kódování, ztrátová komprese; GIF LZW bezeztrátová komprese) Pro zabezpečení proti chybě parita, ztrojení bitu Hammingův kód cyklické kódy, CRC, a další Pro utajení - šifrování princip: zpráva xor klíč = zakódovaná zpráva DES (symetrické šifrování) RSA (asymetrické šifrování)

5 Huffmanovo kódování (pro odstranění redundance) Lze sestrojit nejkratší možný kód Potřebujeme znát četnosti výskytu jednotlivých kódovaných symbolů Uděláme statistickou analýzu, popř. odhadneme Huffmanův kód - prefixový V INP např. pro instrukce (krátké značky pro nejčastější instrukce, delší pro méně časté) Příklad: Pomocí Huffmanova kódování zakódujte znaky 0-9 vyskytující se s uvedenou četností: Znak: Četnost: Poznámka: bez použití Huffmanova kódování potřebujeme 4 bity na znak a to chceme vylepšit.

6 Algoritmus: (1) sestavíme ohodnocený strom Spojujeme uzly s nejnižším ohodnocením Každým spojením redukujeme počet uzlů o jeden Takto postupujeme až k jedinému uzlu s ohodnocením 1 znak četnost

7 Algoritmus: (2) uzly systematicky očíslujeme 0 k horním hranám, 1 ke spodním hranám Cestou od vrcholu ke znakům vytvoříme kód kód znak četnost Pokud je číslování systematické, je kód prefixový, tj začátek každé značky je unikátní.

8 Příklad: dekódujte posloupnosti kód znak četnost Dekódujte tuto posloupnost 20 bitů: Jedná se o 8 znaků. Při použití běžného kódování by bylo třeba 8x4=32bitů! (úspora) Posloupnost 9999 představuje v tomto Huffmanově kódu 4x5=20 jedniček (bitů). Při použití běžného kódování by bylo třeba jen 4x4=16 bitů. Výskyt této posloupnosti je však málo pravděpodobný.

9 Vlastnosti kódu kód znak L i f i průměrná délka značky: L p = ΣL i /n = 3.7 (i=0 9) střední dynamická délka značky: L stř = ΣL i *f i = 2* *0.04 = 3.04 teoretická optimální délka značky: L opt = -Σ f i * log 2 f i = 3.01 Redundance kódu: R = (L stř -L opt )/L stř = 0.98% Pozn.: log 2 x = log 10 x / log 10 2

10 Kódy pro zabezpečení a opravu Př. Na 8 bitech zprávy (256 inf. kombin.) nelze detekovat chybu. Pokud chceme umět zjišťovat chyby a opravovat je, musíme přidat nějakou redundanci!! Tj., k informačním bitům zprávy vhodně doplníme nějaké bity kontrolní. Separabilní kód - lze oddělit kontrolní a informační bity Na tomto cvičení: parita (redundance 1 bit, počet zabezpečených kombinací je 128, na 8 bitech), ztrojení bitu, Hammingův kód. Cyklické kódy a další - viz speciální kurz na FIT

11 Def: Hammingova vzdálenost d Nejmenší počet bitů, v nichž se dvojice kódových kombinací liší (počítáno přes všechny možné dvojice) kód d bez zabezpečení 1 SED 2 SEC 3 SEC - DED 4 DEC 5 S/D = simple/double E = error D/C = detection/correction

12 Příklad SED - sudá parita d=2 vzniká doplněním jednoho bitu ke značce tak, aby počet jedniček byl sudý odhalí chybu v jednom bitu, ale nedokáže určit její pozici (tj. opravit) Příklad: 8b informačních, 1b kontrolní (zabezpečovací) při chybě => lichý počet 1 => chyba při chybě => sudý počet 1 => hlásí, že je vše OK, nepozná chybu

13 Příklad SEC - ztrojení bitu d=3 vzniká ztrojením každého bitu: 0 000, při výskytu jedné chyby v trojici dokáže odvodit původní hodnotu z majority Kódové kombinace: 000, 111 Nekódové kombinace: 001, 010, 011, 100, 101, 110 Opravy: (001, 010, 100) 0, (011, 101, 110) 1 Příklad: Zpráva: Zakódováno: Při chybě: se správně opraví na Při chybě: se chybně opraví na , tj. nedokáže detekovat dvojchybu

14 Příklad SEC - Hammingův kód (HK) d = 3 kódové slovo obsahuje navíc kontrolní bity, jejichž umístění je dáno pozicí (indexem i) bitu ve slově pokud je i mocnina 2, je bit kontrolní (C) - jinak je to bit informační (I) kontrolní bity jsou tvořeny pomocí funkce XOR z informačních bitů minimální možná redundance pro SEC Hammingův kód je separovatelný

15 HK (n, k) n délka kódového slova (v bitech) k počet informačních bitů m počet kontrolních bitů n = 2 m 1 n = m + k HK(7, 4), HK(15, 11) apod. pro větší n je poměr k/n příznivější

16 HK(7,4) Jak určit informační a kontrolní bity? i binárně Generující matice I7 I6 I5 C4 I3 C2 C C4 C2 C1 i Pokud je i mocnina 2, je bit kontrolní (C) - jinak je to bit informační (I)

17 Hammingův kód (7,4) - kodér I(0) I(1) I(2) I(3) C(1) C(2) I(3) C(4) I(5) I(6) I(7) Generující rovnice (pro výpočet kontrolních bitů): C 1 = I 3 xor I 5 xor I 7 C 2 = I 3 xor I 6 xor I 7 C 4 = I 5 xor I 6 xor I I7 I6 I5 C4 I3 C2 C i C4 C2 C1

18 Příklad Zakódujte v HK(7,4): 1001 Kódové slovo: I 7 I 6 I 5 C 4 I 3 C 2 C 1 I 3 = 1, I 5 = 0, I 6 = 0, I 7 = 1 C 1 = I 3 xor I 5 xor I 7 = 1 xor 0 xor 1 = 0 C 2 = I 3 xor I 6 xor I 7 = 1 xor 0 xor 1 = 0 C 4 = I 5 xor I 6 xor I 7 = 0 xor 0 xor 1 =

19 Hammingův kód (7,4) kodér ve VHDL library IEEE; use IEEE.std_logic_1164.all; use IEEE.numeric_std.all; entity enchk4to7 is port ( input: in STD_LOGIC_VECTOR (3 downto 0); -- i7 i6 i5 i3 output: out STD_LOGIC_VECTOR (7 downto 1) -- i7 i6 i5 c4 i3 c2 c1 ); end enchk4to7; architecture enchk4to7 of enchk4to7 is begin output(1) <= input(0) xor input(1) xor input(3); -- c1 = i3 xor i5 xor i7 output(2) <= input(0) xor input(2) xor input(3); -- c2 = i3 xor i6 xor i7 output(3) <= input(0); -- i3 = i3 output(4) <= input(1) xor input(2) xor input(3); -- c4 = i5 xor i6 xor i7 output(5) <= input(1); -- i5 = i5 output(6) <= input(2); -- i6 = i6 output(7) <= input(3); -- i7 = i7 end enchk4to7;

20 HK (7,4) - dekodér a oprava chyby Možné poškození I 7 I 6 I 5 I 3 I 7 I 6 I 5 C 4 I 3 C 2 C 1 I 7 I 6 I 5 C 4 I 3 C 2 C 1 I 7 I 6 I 5 I 3 S je syndrom určující pozici chyby ve slově: I 7 I 6 I 5 C 4 I 3 C 2 C 1 C 1 xor C 1 = C 1 xor I 3 xor I 5 xor I 7 C 2 xor C 2 = C 2 xor I 3 xor I 6 xor I 7 C 4 xor C 4 = C 4 xor I 5 xor I 6 xor I 7 S 1 = C 1 xor I 3 xor I 5 xor I 7 S 2 = C 2 xor I 3 xor I 6 xor I 7 S 4 = C 4 xor I 5 xor I 6 xor I 7 S 1 0 S 2 1 S 4 2 DC Vše OK I3 xor I5 xor I6 xor I7 xor I3 I5 I6 I7

21 Příklad Bylo zakódováno: Dekódujte a opravte: (a) Přijaté slovo: S 1 = C 1 xor I 3 xor I 5 xor I 7 = 0 xor 1 xor 0 xor 1 = 0 S 2 = C 2 xor I 3 xor I 6 xor I 7 = 0 xor 1 xor 0 xor 1 = 0 S 4 = C 4 xor I 5 xor I 6 xor I 7 = 1 xor 0 xor 0 xor 1 = 0 S = 000 => nedošlo k chybě (b) Přijaté slovo: S 1 = C 1 xor I 3 xor I 5 xor I 7 = 0 xor 0 xor 0 xor 1 = 1 S 2 = C 2 xor I 3 xor I 6 xor I 7 = 0 xor 0 xor 0 xor 1 = 1 S 4 = C 4 xor I 5 xor I 6 xor I 7 = 1 xor 0 xor 0 xor 1 = 0 S = 011 = 3 > došlo k chybě na pozici 3, po opravě Co se stane při dvojchybě?

22 HK(7,4) dekodér ve VHDL entita DEC3TO8 library IEEE; use IEEE.std_logic_1164.all; entity dec3to8 is port ( addr: in STD_LOGIC_VECTOR (2 downto 0); err: out STD_LOGIC_VECTOR (7 downto 0) ); end dec3to8; architecture dec3to8 of dec3to8 is begin with addr select err <= " " when "111", " " when "110", " " when "101", " " when "100", " " when "011", " " when "010", " " when "001", " " when others; end dec3to8;

23 HK (7,4) dekodér - VHDL (1) library IEEE; use IEEE.std_logic_1164.all; entity dechk7to4 is port ( input: in STD_LOGIC_VECTOR (7 downto 1); -- vstupni data correct: out STD_LOGIC_VECTOR (3 downto 0) -- opraveny vystup ); end dechk7to4; architecture dechk7to4 of dechk7to4 is component dec3to8 port ( addr: in STD_LOGIC_VECTOR (2 downto 0); err: out STD_LOGIC_VECTOR (7 downto 0) ); end component; signal s : STD_LOGIC_VECTOR (2 downto 0); -- syndrom signal fromdc : STD_LOGIC_VECTOR (7 downto 0); -- vystup dekoderu

24 HK (7,4) dekodér -VHDL (2) begin -- s1 = c1 xor i3 xor i5 xor i7 s(0) <= input(1) xor input(3) xor input(5) xor input(7); -- s2 = c2 xor i3 xor i6 xor i7 s(1) <= input(2) xor input(3) xor input(6) xor input(7); -- s4 = c4 xor i5 xor i6 xor i7 s(2) <= input(4) xor input(5) xor input(6) xor input(7); DEC: dec3to8 port map ( addr => s, -- syndrom pripojime na adresove vstupy dekoderu err => fromdc -- vystup dekoderu ); correct(0) <= fromdc(3) xor input(3); -- oprav i3 correct(1) <= fromdc(5) xor input(5); -- oprav i5 correct(2) <= fromdc(6) xor input(6); -- oprav i6 correct(3) <= fromdc(7) xor input(7); -- oprav i7 end dechk7to4;

25 Rozšířený Hammingův kód (8,4) Stejný jako (7,4), ale je přidán jeden paritní bit pro všech 7 bitů. SEC DED lze detekovat dvojchyby d = 4

26 Rozšířený HK (8,4) - kodér I7 I6 I5 C4 I3 C2 C1 C C0 C4 C2 C1 Definujeme kontrolní bit: C 0 = C 1 xor C 2 xor I 3 xor C 4 xor I 5 xor I 6 xor I 7

27 Rozšířený HK (8,4) - dekodér Definujeme: S 0 = C 0 xor C 1 xor C 2 xor I 3 xor C 4 xor I 5 xor I 6 xor I 7 S 1 S 2 S 4 vypočteme stejně jako v HK(7,4) Definujeme syndrom chyby: S = S 1 or S or S 2 4 (detekce nenuloveho syndromu) S 1 = C 1 xor I 3 xor I 5 xor I 7 S 2 = C 2 xor I 3 xor I 6 xor I 7 S 4 = C 4 xor I 5 xor I 6 xor I 7 Chyby klasifikujeme podle tabulky: S S 0 Význam 0 0 Bez chyby 0 1 Neopravitelná chyba (porucha hlídače, vícenásobná chyba) 1 0 Neopravitelná 2-chyba, 4-chyba, atd. 1 1 Opravitelná 1-chyba

28 Kód zbytkových tříd (KZT) Převedeme binárníčísla do KZT a tam budeme provádět aritmetické operace. Proč? Protože tyto operace lze v KZT implementovat velmi jednoduše bez přenosů, tj. budou rychlejší než konvenční. Operace: sčítání, odčítání a násobení Nefunguje dělení (nejednoznačný výsledek), jednoduché porovnání Nepolyadická soustava: soustava modulů (prvočísel) c i = (a i op b i ) mod m i

29 m 1 m 2 m 3 No Opakuje se 30 = 2*3*5 Zakódování čísel a aritmetické operace (3) (4) bez přenosu! (6) (-5) (4) *1 2 0 (5) (15) /1 2 0 (5)??? c i = (a i + b i ) mod m i c i = (a i - b i ) mod m i c i = (a i * b i ) mod m i c i (a i / b i ) mod m i

30 m 1 m 2 m 3 No Opakuje se 30 = 2*3*5 Obvodová realizace: sčítačka Řád 2 Řád 3 Řád 5 Řád 2 Řád 3 Řád 5 A B + A 2 B 2 C =1 C Řád 2 Řád 3 Řád 5 Řád 2: XOR C 2 = A 2 XOR B 2

31 m 1 m 2 m 3 No Opakuje se 30 = 2*3*5 Obvodová realizace: sčítačka (2) A 3 B 3 C Řád 2 Řád 3 Řád 5 Řád 2 Řád 3 Řád 5 A 3 B 3 C 3 ab cd uv A B + C Řád 3: Řád 2 Řád 3 Řád 5 u = f1(a,b,c,d) v = f2(a,b,c,d) Řád 5: obdobně jako řád 3 -,* obdobně jako +

32 library IEEE; use IEEE.std_logic_1164.all; entity KZT is port ( -- rad 2 A1 : in std_logic; B1 : in std_logic; C1 : out std_logic; -- rad 3 A2 : in std_logic_vector(1 downto 0); B2 : in std_logic_vector(1 downto 0); C2 : out std_logic_vector(1 downto 0); -- rad 5 A3 : in std_logic_vector(2 downto 0); B3 : in std_logic_vector(2 downto 0); C3 : out std_logic_vector(2 downto 0)); end KZT; Sčítačka KZT(5,3,2) ve VHDL architecture A1 of KZT is begin C1 <= A1 xor B1; C2(0) <= (not A2(1) and not A2(0) and not B2(1) and B2(0)) or (not A2(1) and A2(0) and not B2(1) and not B2(0)) or (A2(1) and not A2(0) and B2(1) and not B2(0)); C2(1) <= (not A2(1) and not A2(0) and B2(1) and not B2(0)) or (not A2(1) and A2(0) and not B2(1) and B2(0)) or (A2(1) and not A2(0) and not B2(1) and not B2(0)); -- zde bude implementace radu 5 end A1;

33 ALU v kódu zbytkových tříd A bin2kzt B bin2kzt ALU KZT kzt2bin C Vyplatí se to? selektor funkce (+,-,*)

34 Literatura Drábek, V.: Výstavba počítačů, skriptum VUT v Brně, 1995.

Koncept pokročilého návrhu ve VHDL. INP - cvičení 2

Koncept pokročilého návrhu ve VHDL. INP - cvičení 2 Koncept pokročilého návrhu ve VHDL INP - cvičení 2 architecture behv of Cnt is process (CLK,RST,CE) variable value: std_logic_vector(3 downto 0 if (RST = '1') then value := (others => '0' elsif (CLK'event

Více

Úvod do jazyka VHDL. Jan Kořenek korenek@fit.vutbr.cz. Návrh číslicových systémů 2007-2008

Úvod do jazyka VHDL. Jan Kořenek korenek@fit.vutbr.cz. Návrh číslicových systémů 2007-2008 Úvod do jazyka VHDL Návrh číslicových systémů 2007-2008 Jan Kořenek korenek@fit.vutbr.cz Jak popsat číslicový obvod Slovně Navrhněte (číslicový) obvod, který spočte sumu všech členů dané posloupnosti slovní

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Číslicové obvody a jazyk VHDL

Číslicové obvody a jazyk VHDL Číslicové obvody a jazyk VHDL Návrh počítačových systémů 2007-2008 Jan Kořenek korenek@fit.vutbr.cz Proč HW realizace algoritmu Vyšší rychlost paralelní nebo zřetězené zpracování, přizpůsobení výpočetních

Více

Vzorový příklad. Postup v prostředí ISE. Zadání: x 1 x 0 y. Rovnicí y = x 1. x 0. Přiřazení signálů: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Vzorový příklad. Postup v prostředí ISE. Zadání: x 1 x 0 y. Rovnicí y = x 1. x 0. Přiřazení signálů: ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Vzorový příklad. Zadání: Na přípravku realizujte kombinační obvod představující funkci logického součinu dvou vstupů. Mající následující pravdivostní tabulku. x 1 x 0 y 0 0 0 0 1 0 1 0 0 1 1 1 Rovnicí

Více

Zpracování informací

Zpracování informací Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Cvičení č. 2 z předmětu Zpracování informací Ing. Radek Poliščuk, Ph.D. 1/9 Téma cvičení Cvičení 2 Přenos dat

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích

PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích PŘEDNÁŠKA PS 6 Přenos dat v počítačových sítích Část 2 Osnova Metody detekce chybovosti Pravděpodobnost chyby ve zprávě Parita Kontrolní blokový součet (pseudosoučet) Redundantní cyklické kódy Jiný způsob

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Zobrazení dat Cíl kapitoly:

Zobrazení dat Cíl kapitoly: Zobrazení dat Cíl kapitoly: Cílem této kapitoly je sezn{mit čten{ře se způsoby z{pisu dat (čísel, znaků, řetězců) v počítači. Proto jsou zde postupně vysvětleny číselné soustavy, způsoby kódov{ní české

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace Kapitola 8 Samoopravné kódy Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace šumu při přehrávání kompaktních

Více

KÓDOVÁNÍ A KOMPRESE DAT

KÓDOVÁNÍ A KOMPRESE DAT KÓDOVÁNÍ A KOMPRESE DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda 2.předn ednáška Telefonní kanál a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda Telekomunikační signály a kanály - Při přenosu všech druhů telekomunikačních signálů je nutné řešit vztah

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 34 Reprezentace dat

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže. kde p 1 < p 2 < < p r, q 1 < q 2 < < q s jsou prvočísla a

Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže. kde p 1 < p 2 < < p r, q 1 < q 2 < < q s jsou prvočísla a Přirozená čísla: 1, 2, 3,... = {1, 2, 3,... } Prvočísla: 2, 3, 5, 7, 11, 13,... Základní věta aritmetiky. Jestliže p α 1 1 pα 2 2 pα r r = q β 1 1 qβ 2 2 qβ s s, kde p 1 < p 2 < < p r, q 1 < q 2 < < q

Více

Asymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz

Asymetrická kryptografie a elektronický podpis. Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Asymetrická kryptografie a elektronický podpis Ing. Mgr. Martin Henzl Mgr. Radim Janča ijanca@fit.vutbr.cz Obsah cvičení Asymetrická, symetrická a hybridní kryptografie Matematické problémy, na kterých

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

CO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu

CO JE KRYPTOGRAFIE Šifrovací algoritmy Kódovací algoritmus Prolomení algoritmu KRYPTOGRAFIE CO JE KRYPTOGRAFIE Kryptografie je matematický vědní obor, který se zabývá šifrovacími a kódovacími algoritmy. Dělí se na dvě skupiny návrh kryptografických algoritmů a kryptoanalýzu, která

Více

BI-JPO (Jednotky počítače) Cvičení

BI-JPO (Jednotky počítače) Cvičení BI-JPO (Jednotky počítače) Cvičení Ing. Pavel Kubalík, Ph.D., 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází.

4. Co je to modulace, základní typy modulací, co je to vícestavová fázová modulace, použití. Znázorněte modulaci, která využívá 4 amplitud a 4 fází. Písemná práce z Úvodu do počítačových sítí 1. Je dán kanál bez šumu s šířkou pásma 10kHz. Pro přenos číslicového signálu lze použít 8 napěťových úrovní. a. Jaká je maximální baudová rychlost? b. Jaká je

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Vytvoření nového projektu ve vývojovém prostředí Quartus II Version 9.1 Servise Pack 2

Vytvoření nového projektu ve vývojovém prostředí Quartus II Version 9.1 Servise Pack 2 Vytvoření nového projektu ve vývojovém prostředí Quartus II Version 9.1 Servise Pack 2 Nový projekt vytvoříme volbou New Project Wizard: Introduction z menu File, po které se objeví úvodní okno (obr. 1).

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Vyčtení / zapsání hodnot z/do OMC8000 pomocí protokolu UDP

Vyčtení / zapsání hodnot z/do OMC8000 pomocí protokolu UDP Application Note #05/14: Vyčtení / zapsání hodnot z/do OMC8000 pomocí protokolu UDP Požadavky: OMC8000 má přiřazenu IP adresu (statickou, nebo pomocí DHCP), označme ji OMC8000_IP Na straně PC máte spuštěného

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Kódování cyklické kódy Coding cyclic code. Jakub Kettner

Kódování cyklické kódy Coding cyclic code. Jakub Kettner Kódování cyklické kódy Coding cyclic code Jakub Kettner Bakalářská práce 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované informatiky, 8 UTB ve Zlíně, Fakulta aplikované

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.

Asymetrické šifry. Pavla Henzlová 28.3.2011. FJFI ČVUT v Praze. Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3. Asymetrické šifry Pavla Henzlová FJFI ČVUT v Praze 28.3.2011 Pavla Henzlová (FJFI ČVUT v Praze) Asymetrické šifry 28.3.2011 1 / 16 Obsah 1 Asymetrická kryptografie 2 Diskrétní logaritmus 3 Baby step -

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Šifrování Kafková Petra Kryptografie Věda o tvorbě šifer (z řečtiny: kryptós = skrytý, gráphein = psát) Kryptoanalýza Věda o prolamování/luštění šifer Kryptologie Věda o šifrování obecné označení pro kryptografii

Více

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem

Úvod RSA Aplikace, související témata RSA. Ing. Štěpán Sem <stepan.sem@gmail.com> Festival Fantazie, 2013. Štěpán Sem Ing. Festival Fantazie, 2013 Osnova 1 Základní pojmy Obtížnost Kryptografie 2 Základní princip Matematické souvislosti Historie 3 Vymezení pojmů Základní pojmy Obtížnost Kryptografie

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

Mřížkové kódování. Ivan Pravda

Mřížkové kódování. Ivan Pravda Mřížkové kódování Ivan Pravda Autor: Ivan Pravda Název díla: Mřížkové kódování Zpracoval(a): České vysoké učení technické v Praze Fakulta elektrotechnická Kontaktní adresa: Technická 2, Praha 6 Inovace

Více

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA

Moderní technologie linek. Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Moderní technologie linek Zvyšování přenosové kapacity Zvyšování přenosové spolehlivosti xdsl Technologie TDMA Technologie FDMA Zvyšování přenosové kapacity Cílem je dosáhnout maximum fyzikálních možností

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky a mezioborových inženýrských studií Komprese měřených dat v 0.1 Liberec 2007 Viktor Bubla Obsah 1 Proč komprimace? 2 2 Filosofie základních komprimačních

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Informatika Ochrana dat

Informatika Ochrana dat Informatika Ochrana dat Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Kryptografické systémy s veřejným klíčem, výměna tajných klíčů veřejným kanálem, systémy s veřejným

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

v aritmetické jednotce počíta

v aritmetické jednotce počíta v aritmetické jednotce počíta tače (Opakování) Dvojková, osmičková a šestnáctková soustava () Osmičková nebo šestnáctková soustava se používá ke snadnému zápisu binárních čísel. 2 A 3 Doplněné nuly B Číslo

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

KOMPRESE DAT ARNOŠT VEČERKA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO

KOMPRESE DAT ARNOŠT VEČERKA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KOMPRESE DAT ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů

Více

4 Datové struktury. Datové struktury. Zobrazení dat v počítači

4 Datové struktury. Datové struktury. Zobrazení dat v počítači 4 Datové struktury Zobrazení dat v počítači Každá hodnota v paměti počítače je zakódovaná do posloupnosti bitů. Využívá se přitom dvojková (binární) soustava, která používá dva znaky, 1 (nebo I ) a 0,

Více

Seminář IVT. MS Excel, opakování funkcí

Seminář IVT. MS Excel, opakování funkcí Seminář IVT MS Excel, opakování funkcí Výuka Opakování z minulé hodiny. Založeno na výsledcích Vašich domácích úkolů, podrobné zopakování věcí, ve kterých děláte nejčastěji chyby. Nejčastější jsou následující

Více

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více