Booleova algebra. Logická proměnná. Booleova algebra

Rozměr: px
Začít zobrazení ze stránky:

Download "Booleova algebra. Logická proměnná. Booleova algebra"

Transkript

1 Booleov lger Cílem této kpitoly je seznámit se se zákldy Booleovy logické lgery, která je mtemtickou disciplínou tvoří teoretický prostředek pro návrh logických ovodů. Klíčové pojmy: Logická proměnná, logická funkce, logický člen, schemtická znčk, prvdivostní tulk, zákony Booleovy lgery, minterm, mxterm, ÚNDF, ÚNKF. Logická proměnná Logická proměnná se oznčuje písmenem- název logické proměnné. Logická proměnná nývá dvou možných hodnot: - Logická jedničk ( true T- prvd, v počítči je reprezentován hodnotou ) - Logická nul ( flse F neprvd, v počítči je reprezentován hodnotou 0) V počítči je logická hodnot zorzen v itu. Booleov lger Booleov lger se zývá vzthy mezi logickými proměnnými. Vzthy jsou vyjádřeny logickými funkcemi pomocí zákonů Booleovy lgery. Logické funkce jsou popsány logickým výrzem, názvem logického členu ( hrdl), který dnou logickou funkci relizuje, prvdivostní tulkou schemtickou znčkou. Zákldní logické funkce - Logický součet OR ( disjunkce) Y = A + B A B Y = = = 0 + = 2/2/202 Booleov lger

2 - Logický součin AND ( konjunkce) Y = A. B A B Y 0. 0 = = = = - Negce - NOT Y A A Y 0 = 0 = 0 0 Dlší logické funkce ( odvozené ze zákldních logických funkcí) - Negovný logický součet - NOR Y A B A B Y 0 0 = = = = 0 0 Y = - Negovný logický součin - NAND A B A B Y 0 0 = = 0 0 = 0 = Nonekvivlence ( exklusive-or) XOR Y = A B + A B = A B A B Y Pomocí XOR se relizuje poloviční sčítčk tj. sčítání v nejnižším itu. 2/2/202 Booleov lger 2 =

3 - Ekvivlence XNOR ( komprátor) Y = A B + A B = A B A B Y = Zákldní prvidl ( zákony) Booleovy lgery Zákony se uvádějí pro logický součet logický součin. Oě podoy jsou vzájemně duální tzn., že pokud vzájemně změníme operátory hodnoty 0, dostneme druhý tvr. Zákon Součet Součin Komuttivní A + B = B + A A. B = B. A Asocitivní A + (B + C) = (A + B) + C A. (B + C) = (A. B).C Distriutivní (A + B). (A + C) = A + (B. C) A. B + A. C = A. (B + C) Vyloučení třetího A + A = A. A = 0 Agresivnosti 0 A + = A. 0 = 0 Neutrálnosti 0 A + 0 = A A. = A Asorce A + A = A A. A = A A + A. B = A A. (A + B) = A Asorce negce A. ( A + B) = A. B A + A. B = A + B A. (A + B) = A. B Dvojité negce A = A A = A De Morgnovy z. A + A. B = A + B A B = A. B A B = A + B De Morgnovy zákony: Negci funkce získáme nhrzením kždé proměnné její negcí vzájemnou záměnou operátorů součtu součinu. Zákony Booleovy lgery využíváme pro úprvy logických ovodů. V prxi se logické ovody většinou relizují pomocí hrdel NOR NAND, proto musíme logické výrzy uprvit používá se zákon dvojité negce De Morgnovy zákony. Příkld: Logický ovod relizovný dvouvstupovým logickým členem OR relizujte pomocí dvouvstupových logických členů NAND. 2/2/202 Booleov lger 3

4 + = =. +. Příkld: Uprvte logický výrz A. B = A + B = A + B Příkld: Pomocí prvdivostní tulky dokžte, že pltí zákon soce negce A. ( A + B) = A. B A B A A + B A. ( A + B) A. B Pomocí prvdivostní tulky jsme dokázli, že dný zákon pltí. Způsoy popisu logických funkcí - Prvdivostní tulk Prvdivostní tulk je nejěžnějším způsoem popisu logické funkce. Popisuje chování logického ovodu. Oshuje výčet všech komincí vstupních proměnných jim odpovídjících výstupů. Máme-li n- vstupních proměnných /2, pk prvdivostní tulk ude mít 2 n - řádků/4 ( = počet komincí vstupních proměnných). 2/2/202 Booleov lger 4

5 Příkld: N c MIN MAX f f c.. c c.. c c.. c c.. c+ + 0 X c.. c c.. c c.. c X 7 c.. c + + f určitá funkce ( pro kždou kominci vstupních proměnných má definovánu určitou hodnotu 0 neo ) f2 neurčitá funkce ( oshuje neurčité hodnoty X pro dnou kominci vstupních proměnných může mít funkce hodnotu 0 neo ) Zákldní součinový člen (minterm) součin, který oshuje všechny vstupní proměnné pltí MINTERM =. Npř.:..c = tj. = 0, = 0, c = Zákldní součtový člen (mxterm) součet, který oshuje všechny vstupní proměnné pltí MAXTERM = 0. Npř.: + +c = 0 tj. =, =, c = 0 Pltí: Mxtermy jsou negcí mintermů. Npř. c.. = c++ Z prvdivostní tulky získáme logický výrz:. Úplná normální disjunktní form ( ÚNDF) je dán součtem všech zákldních součinových členů ( mintermů), ve kterých je hodnot logické funkce rovn. ÚNDF: f ( c,, ) = c.. + c.. + c.. + c.. Používá se čstěji. 2. Úplná normální konjunktní form ( ÚNKF) je dán součinem všech zákldních součtových členů ( mxtermů), ve kterých je hodnot logické funkce rovn 0. ÚNKF: f ( c,, ) = (c + +). (c + + ). ( c + +). ( c + +) 2/2/202 Booleov lger 5

6 - Seznm stvových indexů Zjednodušený zápis prvdivostní tulky. Stvový index (N) dekdická hodnot komince inárních vstupních proměnných. Logickou funkci zpisujeme jko seznm stvových indexů vstupních proměnných, pro něž logická funkce nývá hodnotu neo 0. Příkld: Použijeme zdání minulého příkldu. ÚNDF: f ( c,, ) = Σ (, 2, 5, 7) ÚNKF: f ( c,, ) = Π ( 0, 3, 4, 6) ÚNDF: f2 ( c,, ) = Σ ( 0,, 5, 7) + ΣX ( 3, 6) ÚNKF: f2 ( c,, ) = Π ( 2, 4). ΠX ( 3, 6) - Logický výrz Logický výrz je popis logické funkce pomocí logických proměnných ve formě nlytického zápisu. Z logického výrzu lze nvrhovt logický ovod. Příkld: f (,, c) =. c +.. c f c - Vénnův digrm Logické funkce znázorňujeme pomocí množin, počet množin je dán počtem vstupních proměnných. 2/2/202 Booleov lger 6

7 Příkld: Logický člen NOR NOR A B A B A =, B = A = 0, B = A = 0, B = 0 A =, B = - Zorzení pomocí mp Způso používný čsto ke grfickému zorzení logické funkce. Zorzení je přehlednější než Vénnův digrm využívá se při minimlizci logických funkcí (ude proráno v dlší kpitole). Máme-li n /2/ vstupních proměnných, potom mp ude oshovt 2 n /4/ políček. Mp je trnsformcí prvdivostní tulky. Kždému řádku tulky odpovídá jedno políčko v mpě. V kždém políčku je zpsán logická funkce pro dnou kominci vstupních proměnných. Pruhem je u kždé proměnné vyznčen její hodnot ( ). Mpy: - Svoodovy používjí se s výhodou pro 5 ž 6 vstupních proměnných - Krnughovy používjí se pro, 2, 3 4 vstupní proměnné. Dále se udeme zývt pouze těmito mpmi. Příkldy: n = f ( ) N f 0 0 X f 0 X stvové indexy vstupní proměnná ( = ) hodnot logické funkce 2/2/202 Booleov lger 7

8 n = 2 f (, ) N f X X 3 n = 3 f ( c,, ) N c f X X X X c 2/2/202 Booleov lger 8

9 n = 4 f ( d, c,, ) N d c f X X X X X 0 X c d 2/2/202 Booleov lger 9

10 - Zorzení n n-rozměrném tělese Používá se pro grfické zorzení. Logická funkce pro jednu vstupní proměnnou se zorzí n jednotkové úsečce, pro dvě proměnné n jednotkovém čtverci pro tři proměnné n jednotkové krychli. Bližší popis viz učenice []. Shrnutí: Booleov logická lger je mtemtickou disciplínou tvoří teoretický prostředek pro návrh logických ovodů. Použité zdroje informcí: [] ANTOŠOVÁ, M. - DAVÍDEK, V. Číslicová technik: učenice..vyd. České Budějovice, KOPP, s. ISBN [2] KESL,J. Elektronik III: číslicová technik..vyd. Prh, BEN, s. ISBN [3] BLATNÝ, J. kol. Číslicové počítče..vyd. Prh, SNTL, 980, 496s. [4] JANSEN, H. kol. Informční telekomunikční technik..vyd. Prh, Europ-Sootles cz.s.r.o, 2004, 400s. ISBN [5] HÄBERLE, G. kol. Elektrotechnické tulky pro školu i prxi..vyd. Prh, Europ-Sootles cz.s.r.o, 2006, 460s. ISBN /2/202 Booleov lger 0

Logické obvody. Logický obvod. Rozdělení logických obvodů - Kombinační logické obvody. - Sekvenční logické obvody

Logické obvody. Logický obvod. Rozdělení logických obvodů - Kombinační logické obvody. - Sekvenční logické obvody Logické ovody Cílem této kpitoly je sezn{mit se s logickými ovody, se z{kldním rozdělením logických ovodů, s jejich některými typy. Tké se nučíme nvrhovt logické ovody. Klíčové pojmy: Logický ovod,kominční

Více

Logické obvody - kombinační Booleova algebra, formy popisu Příklady návrhu

Logické obvody - kombinační Booleova algebra, formy popisu Příklady návrhu MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Logické ovody - kominční Booleov lger, ormy popisu Příkldy návrhu České vysoké učení technické Fkult elektrotechnická ABMIS Mikroprocesory

Více

íslicová technika Radek Maík Maík Radek 1

íslicová technika Radek Maík Maík Radek 1 íslicová technik Rdek Mík Mík Rdek 1 íselné soustvy ritmetické operce Mík Rdek 2 Pevody mezi soustvmi (z10) Výsledek dostneme vyíslením z-dickéhoz dickéhoísl ve tvru dy. (101,11) 2 = 1.2 2 + 0.2 1 + 1.2

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

Doc. Ing. Vlastimil Jáneš, CSc., K620

Doc. Ing. Vlastimil Jáneš, CSc., K620 Hrdwre počítčů Doc. Ing. Vlstimil Jáneš, CSc., K620 e-mil: jnes@fd.cvut.cz K508, 5. ptro, lbortoř, 2 2435 9555 Ing. Vít Fáber, K614 e-mil: fber@fd.cvut.cz K508, 5. ptro, lbortoř, 2 2435 9555 Informce mteriály

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

Technická kybernetika. Obsah

Technická kybernetika. Obsah 28.02.207 Akemiký rok 206/207 Připrvil: Rim Frn Tehniká kyernetik Logiké řízení 2 Osh Logiké řízení. Booleov lger. Zání logiké funke. Syntéz knonikého tvru kominční logiké funke. Sestvení logiké funke

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchitektur očítčů Logické ovody - kominční Booleov lger, ormy oisu Příkldy návrhu České vysoké učení technické Fkult elektrotechnická Ver.. J. Zděnek/M. Chomát Logický kominční ovod Logický kominční

Více

4.4.2 Kosinová věta. Předpoklady: 4401

4.4.2 Kosinová věta. Předpoklady: 4401 44 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

SWI120 ZS 2010/2011. hookey.com/digital/

SWI120 ZS 2010/2011.  hookey.com/digital/ Principy cpypočítačů počítačů a operačních systémů Číslicové systémy Literatura http://www.play hookey.com/digital/ Digitální počítač Dnes obvykle binární elektronický 2 úrovně napětí, 2 logické hodnoty

Více

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. 12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

M - Logaritmy a věty pro počítání s nimi

M - Logaritmy a věty pro počítání s nimi M - Logritmy věty pro počítání s nimi Určeno jko učení text pro studenty dálkového studi shrnující text pro studenty denního studi. VARIACE 1 Tento dokument yl kompletně vytvořen, sestven vytištěn v progrmu

Více

Základy číslicové techniky. 2 + 1 z, zk

Základy číslicové techniky. 2 + 1 z, zk Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,

Více

Sada 2 - MS Office, Excel

Sada 2 - MS Office, Excel S třední škol stvební Jihlv Sd 2 - MS Office, Excel 11. Excel 2007. Mtice, determinnty, soustvy lineárních rovnic Digitální učební mteriál projektu: SŠS Jihlv šblony registrční číslo projektu:cz.1.09/1.5.00/34.0284

Více

1 Logické řízení (prof. Ing. Jiří Tůma, CSc.)

1 Logické řízení (prof. Ing. Jiří Tůma, CSc.) Logiké řízení Logiké řízení (prof. Ing. Jiří Tům, CS.) Tento způso řízení je zložen n vou stveh ovláného prvku voustvové informi o řízené soustvě. Prktiké oznčení těhto stvů je násleujíí: zpnuto / vpnuto,

Více

VY_32_INOVACE_CTE-2.MA-15_Sčítačky (poloviční; úplná) Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_CTE-2.MA-15_Sčítačky (poloviční; úplná) Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu Číslo mteriálu Z..07/.5.00/34.058 VY_32_INOVAE_TE-2.MA5_čítčky (poloviční; úplná) Název školy Autor Temtická olst Ročník třední odorná škol třední odorné učiliště, Duno Ing. Miroslv Krýdl

Více

MATA Př 2. Složené výroky: Jsou dány výroky: a: Číslo 5 je prvočíslo. b: Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné.

MATA Př 2. Složené výroky: Jsou dány výroky: a: Číslo 5 je prvočíslo. b: Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné. MATA Př 2 Složené výroky: Jsou dány výroky: : Číslo 5 je prvočíslo. : Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné. Konjunkce disjunkce Konjunkce liovolných výroků, je výrok, který vznikne

Více

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA 1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA V této kpitole se ozvíte: co rozumíme lgebrickým výrzem; jk jsou efinovány zlomky jké záklní operce s nimi prováíme; jk je

Více

29.z-9.plo ZS 2015/2016

29.z-9.plo ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace Logické řízení 4 29.z-9.plo ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další hlavní téma předmětu se dotýká obsáhlé oblasti logického

Více

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod...

Prostorové nároky... 35. Zatížení... 37 Velikost zatížení... 37 Směr zatížení... 37. Nesouosost... 40. Přesnost... 40. Otáčky... 42. Tichý chod... Vol typu ložisk Prostorové nároky... 35 Ztížení... 37 Velikost ztížení... 37 Směr ztížení... 37 Nesouosost... 40 Přesnost... 40 Otáčky... 42 Tichý chod... 42 Tuhost... 42 Axiální posuvnost... 43 Montáž

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

2. LOGICKÉ OBVODY. Kombinační logické obvody

2. LOGICKÉ OBVODY. Kombinační logické obvody Hardware počítačů Doc.Ing. Vlastimil Jáneš, CSc, K620, FD ČVUT E-mail: janes@fd.cvut.cz Informace a materiály ke stažení na WWW: http://www.fd.cvut.cz/personal/janes/hwpocitacu/hw.html 2. LOGICKÉ OBVODY

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Teorie jazyků a automatů I

Teorie jazyků a automatů I Šárk Vvrečková Teorie jzyků utomtů I Sírk úloh pro cvičení Ústv informtiky Filozoficko-přírodovědecká fkult v Opvě Slezská univerzit v Opvě Opv, poslední ktulizce 5. květn 205 Anotce: Tto skript jsou určen

Více

P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody

P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody P4 LOGICKÉ OBVODY I. Kombinační Logické obvody I. a) Základy logiky Zákony Booleovy algebry 1. Komutativní zákon duální forma a + b = b + a a. b = b. a 2. Asociativní zákon (a + b) + c = a + (b + c) (a.

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

DUM 02 téma: Elementární prvky logiky výklad

DUM 02 téma: Elementární prvky logiky výklad DUM 02 téma: Elementární prvky logiky výklad ze sady: 01 Logické obvody ze šablony: 01 Automatizační technika I Určeno pro 3. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika

Více

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova

Více

NEKONEČNÉ GEOMETRICKÉ ŘADY

NEKONEČNÉ GEOMETRICKÉ ŘADY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrční číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol NEKONEČNÉ GEOMETRICKÉ

Více

Sada 2 Matematika. 19. Logaritmy

Sada 2 Matematika. 19. Logaritmy S třední škol stvení Jihlv Sd 2 Mtemtik 9. Logritm Digitální učení mteriál projektu: SŠS Jihlv šlon registrční číslo projektu:cz..9/.5./34.284 Šlon: III/2 - inovce zkvlitnění výuk prostřednictvím IC Mgr.

Více

Úvod do Teoretické Informatiky (456-511 UTI)

Úvod do Teoretické Informatiky (456-511 UTI) Úvod do Teoretické Informtiky (456-511 UTI) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vs.cz 25. ledn 2006 Verze 1.02. Copyright c 2004 2006 Petr Hliněný. (S využitím části mteriálů c Petr Jnčr.) Osh

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35 Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Technická kybernetika. Obsah. Realizace kombinačních logických obvodů.

Technická kybernetika. Obsah. Realizace kombinačních logických obvodů. 08.03.207 Akemiký rok 206/207 řiprvil: Rim Frn Tehniká kernetik Relize kominčníh logikýh ovoů 2 Osh Relize kominčníh logikýh ovoů. Kontktní shémt. Bloková shémt. rogrmovtelné logiké utomt. říkl sntéz kominčního

Více

DUM 10 téma: Stavová tabulka výklad

DUM 10 téma: Stavová tabulka výklad DUM 10 téma: Stavová tabulka výklad ze sady: 01 Logické obvody ze šablony: 01 Automatizační technika I Určeno pro 3. ročník vzdělávací obor: 26-41-M/01 Elektrotechnika ŠVP automatizační technika Vzdělávací

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

a + 1 a = φ 1 + φ 2 ; a je konvenční zraková vzdálenost. Po dosazení zobrazovací rovnice bez brýlí do zobrazovací rovnice s brýlemi platí:

a + 1 a = φ 1 + φ 2 ; a je konvenční zraková vzdálenost. Po dosazení zobrazovací rovnice bez brýlí do zobrazovací rovnice s brýlemi platí: OKO ) Člověk vidí nejlépe, když předměty pozoruje ze vzdálenosti 2,5 cm. Jkého druhu je vd jeho ok jké čočky do brýlí mu doporučíte? Odpověď zdůvodněte výpočtem. = 2,5 cm = 0,25 m φ =? (D) Normální oko

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor

Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor Předmět Ústv Úloh č. 2 BDIO - Digitální obvody Ústv mikroelektroniky Návrh zákldních kombinčních obvodů: dekodér, enkodér, multiplexor, demultiplexor Student Cíle Porozumění logickým obvodům typu dekodér,

Více

Architektura počítačů Logické obvody

Architektura počítačů Logické obvody Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální

Více

Architektura počítačů Logické obvody

Architektura počítačů Logické obvody Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

DIGITÁLN LNÍ OBVODY A MIKROPROCESORY 1. ZÁKLADNÍ POJMY DIGITÁLNÍ TECHNIKY

DIGITÁLN LNÍ OBVODY A MIKROPROCESORY 1. ZÁKLADNÍ POJMY DIGITÁLNÍ TECHNIKY DIGITÁLN LNÍ OBVODY A MIKROPROCESORY BDOM Prof. Ing. Radimír Vrba, CSc. Doc. Ing. Pavel Legát, CSc. Ing. Radek Kuchta Ing. Břetislav Mikel Ústav mikroelektroniky FEKT VUT @feec.vutbr.cz

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název modulu: Zákldy mtemtiky Zkrtk: ZM Počet kreditů: Semestr: Z/L Mentor: Petr Dolnský Tutor: Petr Dolnský I OBSAH BALÍČKU STUDIJNÍCH OPOR: ) Skriptum:

Více

Binární logika Osnova kurzu

Binární logika Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111. Grmtiky. Vytvořte grmtiku generující množinu řetězů { n m } pro n, m N {} tková, že n m. Pomocí této grmtiky derivujte řetezy,. 2. Grmtik je dán prvidly S ɛ S A A S B B A B. Je regulární? Pokud ne, n regulární

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše. 1 Typografie Typografie je organizace písma v ploše. 1.1 Rozpal verzálek vzájemné vyrovnání mezer mezi písmeny tak, aby vzdálenosti mezi písmeny byly opticky stejné, aby bylo slovo, řádek a celý text opticky

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

Sekvenční obvody. S R Q(t+1) 0 0? 0 1 0 1 0 1 1 1 Q(t)

Sekvenční obvody. S R Q(t+1) 0 0? 0 1 0 1 0 1 1 1 Q(t) Sekvenční obvody Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční. Sekvenční obvody mění svůj vnitřní

Více

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO

STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO STRUKTURA POČÍTAČŮ JIŘÍ HRONEK, JIŘÍ MAZURA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY KOMBINAČNÍ LOGICKÉ OBVODY Použité zdroje: http://cs.wikipedia.org/wiki/logická_funkce http://www.ibiblio.org http://martin.feld.cvut.cz/~kuenzel/x13ups/log.jpg http://www.mikroelektro.utb.cz http://www.elearn.vsb.cz/archivcd/fs/zaut/skripta_text.pdf

Více

Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto:

Karnaughovy mapy. Pravdivostní tabulka pro tři vstupní proměnné by mohla vypadat například takto: Karnaughovy mapy Metoda je použitelná již pro dvě vstupní proměnné, své opodstatnění ale nachází až s větším počtem vstupů, kdy návrh takového výrazu přestává být triviální. Prvním krokem k sestavení logického

Více

Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky.

Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky. Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky

Více

Logické řízení. Náplň výuky

Logické řízení. Náplň výuky Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika

Více

JAZYK C PRO MIKROKONTROLÉRY

JAZYK C PRO MIKROKONTROLÉRY JAZYK C PRO MIKROKONTROLÉRY Jazyk C pro mikrokontroléry Číslo DUM v digitálním archivu školy VY_32_INOVACE_10_03_01 Vytvořeno 07/2013 Materiál vysvětluje základní princip programování mikrokontrolérů v

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

AUTORKA Barbora Sýkorová

AUTORKA Barbora Sýkorová ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Sekvenční logické obvody

Sekvenční logické obvody Sekvenční logické obvody 7.přednáška Sekvenční obvod Pokud hodnoty výstupů logického obvodu závisí nejen na okamžitých hodnotách vstupů, ale i na vnitřním stavu obvodu, logický obvod se nazývá sekvenční.

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

DUM 16 téma: Dávkové soubory

DUM 16 téma: Dávkové soubory DUM 16 téma: Dávkové soubory ze sady: 03 tematický okruh sady: Tvorba skript a maker ze šablony: 10Algoritmizace a programování určeno pro: 2-3.ročník vzdělávací obor: vzdělávací oblast: číslo projektu:

Více

MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ

MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Projekt: MODERNIZCE VÝUK PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Úloha: Měření kombinačních logických funkcí kombinační logický obvod XOR neboli EXLUSIV OR Obor: Elektrikář slaboproud Ročník: 3. Zpracoval: Ing. Jiří

Více

AUTOMATY VE VYHLEDÁVÁNI cvičeni

AUTOMATY VE VYHLEDÁVÁNI cvičeni Czech Technicl University in Prgue Fculty of Informtion Technology Deprtment of Theoreticl Computer Science AUTOMATY VE VYHLEDÁVÁNI cvičeni Bořivoj Melichr Evropský sociální fond. Prh & EU: Investujeme

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

Reprezentovatelnost částek ve dvoumincových systémech

Reprezentovatelnost částek ve dvoumincových systémech Reprezentovtelnost částek ve dvoumincových systémech Jn Hmáček, Prh Astrkt Máme-li neomezené množství mincí o předepsných hodnotách, může se stát, že pomocí nich nelze složit některé částky Pro jednoduchost

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno

Více

1 z 8 27.4.2009 13:04 Test: "TVY_04_SLO_v3" Otázka č. 1 Vstup? obvodu je Odpověď A: hodinový vstup Odpověď B: set Odpověď C: reset Odpověď D: datový vstup Otázka č. 2 Jakou frekvenci naměříme na výstupu

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

PRAVIDELNÉ MNOHOSTĚNY

PRAVIDELNÉ MNOHOSTĚNY PRVIDELNÉ MNOHOĚNY Vlst Chmelíková, Luboš Morvec MFF UK 007 1 Úvod ento text byl vytvořen s cílem inspirovt učitele středních škol k zčlenění témtu prvidelné mnohostěny do hodin mtemtiky, neboť při výuce

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA

Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Tematická oblast ELEKTRONIKA Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_ENI_2.MA_17_Číslicový obvod Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická oblast

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ

3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ 3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ Realizace kombinační logické funkce = sestavení zapojení obvodu, který ze vstupních proměnných vytvoří výstupní proměnné v souhlasu se zadanou logickou funkcí.

Více

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice.

Determinant. Definice determinantu. Permutace. Permutace, vlastnosti. Definice: Necht A = (a i,j ) R n,n je čtvercová matice. [] Definice determinantu BI-LIN, determinant, 9, P Olšák [2] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A 0 pro singulární matici, det A 0 pro regulární matici používá

Více

7.5.8 Středová rovnice elipsy

7.5.8 Středová rovnice elipsy 758 Středová rovnice elips Předpokld: 750, 7507 Př : Vrchol elips leží v odech A[ ;], B [ 3;], [ ;5], [ ; 3] elips souřdnice jejích ohnisek Urči prmetr Zdné souřdnice už n první pohled vpdjí podezřele,

Více

Obsah DÍL 1. Předmluva 11

Obsah DÍL 1. Předmluva 11 DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26

Více

4. Elektronické logické členy. Elektronické obvody pro logické členy

4. Elektronické logické členy. Elektronické obvody pro logické členy 4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:

Více

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu Číslo materiálu Náev škol Autor Tematická oblast Ročník CZ..7/.5./34.58 VY_32_INOVACE_CTE_2.MA_4_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště,

Více

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1. Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán

Více

pro n jk p irozen slo n 1, kde k d formule i (i f1 ::: ng) je bu rovn formuli T,tj. tutologii, nebo je nps n ve tvru l1 _ :::_ l ki pro n jk p irozen

pro n jk p irozen slo n 1, kde k d formule i (i f1 ::: ng) je bu rovn formuli T,tj. tutologii, nebo je nps n ve tvru l1 _ :::_ l ki pro n jk p irozen Krnughovy mpy Dopln k k p edm tu Mtemtick logik Ji Velebil ktedr mtemtiky FEL VUT, Prh velebil@mth.feld.cvut.cz 14. nor 000 Smyslem t to pozn mky je pouze podt dopln k ke skriptu doc. Mrie Demlov prof.

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

Seznámíte se s další aplikací určitého integrálu výpočtem délky křivky.

Seznámíte se s další aplikací určitého integrálu výpočtem délky křivky. .. Délk olouku křivky.. Délk olouku křivky Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem délky křivky. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál

Více

Logické proměnné a logické funkce

Logické proměnné a logické funkce Booleova algebra Logické proměnné a logické funkce Logická proměnná je veličina, která může nabývat pouze dvou hodnot, označených 0 a I (tedy dvojková proměnná) a nemůže se spojitě měnit Logická funkce

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Sada 2 - MS Office, Excel

Sada 2 - MS Office, Excel S třední škola stavební Jihlava Sada 2 - MS Office, Excel 20. Excel 2007. Kontingenční tabulka Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284

Více

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace LOGICKÉ OBVODY 2 kombinační obvody, minimalizace logické obvody kombinační logické funkce a jejich reprezentace formy popisu tabulka, n-rozměrné krychle algebraický zápis mapy 9..28 Logické obvody - 2

Více

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208

( ) 2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I. Předpoklady: 2401, 2208 .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více