11. Mechanika tekutin

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "11. Mechanika tekutin"

Transkript

1 . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický tlak v hloubce h pod povrchem kapaliny o hustotě p = hg. Archimedův zákon Těleso ponořené do kapaliny je nadlehčováno silou F vz směřující svisle vzhůru. Velikost této síly je rovna velikosti tíhy kapaliny o stejném objemu V, jakou má ponořená část tělesa, tj. F vz = V k g, kde k je hustota kapaliny. Tlaková síla r r F = p ds, ( S ) kde S r d je vektor elementu plochy kolmý na plochu o velikosti ds v místě, kde je tlak p. Barometrický tlak p ve výšce h 0g h p0 p p0 e =, kde p 0 je tlak při hladině moře, tj. ve výšce h = 0 a 0 je hustota vzduchu pro h = 0. Rovnice kontinuity Sv = konst., případně S v = S v, kde S je průřez trubice, je hustota kapaliny a v je rychlost jejího proudění. Při ustáleném proudění ideální kapaliny projde každým průřezem trubice za jednotku času stejné množství kapaliny. Objemový tok Q = S v, kde v je rychlost proudění kapaliny v trubici s průřezem S. Výtoková rychlost v kapaliny otvorem v nádobě ( p ) p v =, kde p je tlak uvnitř kapaliny v místě otvoru, p tlak vně nádoby a hustota kapaliny. 8

2 Bernoulliho rovnice (viz obr. 48) p + h g + v = konst., příp. pro = konst. p + h g + v = p + h g + v. obr. 48 Objemová hustota energie proudící ideální kapaliny je stálá a ve všech bodech trubice stejná. Síla, kterou působí kapalina na stěnu trubice při změně rychlosti z v r na v r (věta o zachování hybnosti) r r r F = Qm ( v v ), m kde Q m = je tzv. hmotnostní tok. t Viskozita kapaliny η ν =, kde ν je součinitel kinematické viskozity, η je dynamická viskozita a hustota kapaliny. Reynoldsovo číslo vd R =, ν kde v je rychlost kapaliny, d průměr trubice a ν součinitel kinematické viskozity. Hagenův Poisseuillův vztah Q V 4 = πr Δp. 8 η Δl Objemový tok Q V viskózní tekutiny při laminárním proudění trubicí kruhového průřezu je Δp přímo úměrný tlakovému spádu a čtvrté mocnině poloměru trubice r a nepřímo úměrný Δl dynamické viskozitě η. 9

3 Odpor prostředí Stokesův vztah r r F = 6πηrv, kde F r je síla odporu, který klade prostředí s dynamickou viskozitou η kulovitému tělesu o poloměru r pohybujícímu se rychlostí v r. Obecně r r F = kηlv, kde k je konstanta závislá na tvaru tělesa a l je tzv. charakteristický rozměr tělesa. Newtonův vztah F = C Sv, kde C je tvarový součinitel odporu, S příčný průřez tělesa, je hustota prostředí a v je rychlost pohybu tělesa. Obecně síla odporu prostředí F = Av + Bv, kde A, B jsou pro dané těleso a tekutinu konstanty... Otázky a problémové úlohy... Charakterizujte skupenství pevné, kapalné a plynné z hlediska jejich struktury a vlastností.... Vysvětlete a rozlište pojmy tekutina, kapalina, plyn, ideální kapalina, ideální plyn, skutečná kapalina, skutečný plyn...3. Formulujte Pascalův zákon. Jak lze dokázat, že tlak tekutiny je vždy kolmý na stěnu nádoby?..4. Co je hydrostatické paradoxon? Vysvětlete fyzikálně...5. Odvoďte platnost Pascalova zákona ze zákona zachování energie...6. Proč je povrch klidné kapaliny vodorovný? Jaký tvar má povrch kapaliny, která rotuje spolu s válcovou nádobou?..7. Co je hydrostatický tlak vznikající účinkem tíhy?..8. Na čem závisí velikost tlakové síly na dno nádoby způsobené hydrostatickým tlakem?..9. Nádoba mající tvar kvádru je naplněna kapalinou až po okraj. Jak vypočítáme velikost tlakové síly na svislou stěnu nádoby?..0. Na čem závisí velikost vztlakové síly? Vyslovte zákon o vztlakové síle. 0

4 ... Jaká podmínka musí být splněna, aby těleso plovalo na hladině kapaliny?... Proveďte rozbor stability plovoucích těles...3. Popište Torricelliho pokus. Co dokazuje tento pokus?..4. Vysvětlete funkci a princip následujících přístrojů a zařízení barometr, otevřený manometr, uzavřený manometr, hustilka, kompresor, vývěva...5. Objasněte fyzikálně princip spojených nádob a uveďte, jak jich lze užít k měření hustoty...6. Vysvětlete fyzikální podstatu hydraulického lisu...7. Vysvětlete pojmy stacionární proudění, proudnice, proudová trubice, proudové vlákno, objemový průtok, hmotnostní průtok...8. Jakými grafickými prostředky mapujeme rychlostní pole proudící tekutiny?..9. Co je rovnice kontinuity toku? Platí pouze pro ideální kapalinu nebo i pro kapalinu skutečnou?..0. Ukažte, že tlak v kapalině lze pokládat za energii objemové jednotky kapaliny. Odvoďte vztah pro rychlost vytékání kapaliny otvorem ve stěně nádoby. Jaký tvar má tento vztah, vytéká-li kapalina jen účinkem vlastní tíhy?... Vyslovte Bernoulliho rovnici, formulujte ji matematicky, proveďte její rozbor.... Vysvětlete pojmy rychlostní výška, tlaková výška, tlakový spád...3. Vysvětlete fyzikální podstatu tzv. hydrodynamického paradoxu. Kde je tento jev využíván v praxi?..4. Co je hydrodynamický tlak? Může tento tlak být záporný?..5. Jak lze změřit dynamický a jak statický tlak proudící kapaliny?..6. Vysvětlete fyzikální funkci Mariottovy láhve (obr. 49), z níž vytéká voda stálou rychlostí...7. Jak vysvětlíme skutečnost, že foukáme-li mezi dvě aerodynamicky prohnuté pohlednice (obr. 50), přitahují se pohlednice k sobě, místo aby se odpuzovaly? obr. 49 obr. 50

5 ..8. Co je Prandtlova trubice a k čemu se používá?..9. Vysvětlete funkci Venturiho trubice Míček stolního tenisu vložíme do proudícího vzduchu. Vysvětlete chování míčku v situacích, které jsou znázorněny na obr. 5. obr Co je proudění laminární a co turbulentní?..3. Co je dynamická a co kinematická viskozita?..33. Na čem závisí velikost tečného napětí při proudění skutečné kapaliny Platí při proudění skutečné kapaliny věta o zachování mechanické energie?..35. Kterými metodami lze měřit viskozitu? Jak závisí viskozita kapalin na teplotě?..36. Na čem závisí odporová síla prostředí?..37. Co vyjadřuje Stokesův zákon?..38. Odvoďte Newtonův vzorec pro odpor prostředí Vysvětlete podstatu vzniku dynamického vztlaku na nosnou plochu letadla Jak vypočteme rychlost, kterou na povrch Země dopadne kapka vody, padá-li z velké výšky?..4. Na kterém zákonu jsou založeny průtokové viskozimetry?.3. Řešené úlohy.3.. Na klidné vodní hladině plave míč, jehož vnitřní poloměr je r a tloušťka stěny je d. Hustota materiálu, z něhož je míč vyroben je m. Vložíme-li do míče těleso o hmotnosti m, bude se míč s tělesem v kapalině volně vznášet tak, že bude celý ponořený. Jaká je hmotnost m tělesa? Hmotnost vzduchu uvnitř míče zanedbejte, hustota vody je v. Řešení: Nejdříve určíme hmotnost m s celé soustavy míč + těleso. Platí 4 m s = m + m π m π ( r + d ) πr = m + ( 3r d + r d d )

6 Tedy na celou soustavu působí tíhová síla 3 ( 3r d + r d d ) 4 F G = mg + π m g Současně je celá soustava nadnášena hydrostatickou vztlakovou silou F vz, pro kterou platí podle Archimédova zákona 3 3 ( r + 3r d + r d d ) 4 F vz = V v g = π v g Při volném plování tělesa musejí být obě síly v rovnováze, tedy porovnáním pravých stran předchozích rovnic dostaneme po úpravě pro hledanou hmotnost m vztah 3 3 [( 3r d + r d + d ) ( ) r ] 4 m = π 3 v m + v Tenká homogenní tyčinka je jedním koncem připevněna ke stěně nádoby a druhým koncem je ponořena do kapaliny. Tyčinka se může volně otáčet kolem bodu připevnění na stěně umístěného nad volnou hladinou kapaliny. Určete hustotu materiálu tyčinky, je-li ve stavu rovnováhy pouze n tina tyčinky neponořena. Hustota kapaliny je k. Kapilární jevy a tření v bodě otáčení zanedbejte. Řešení: Na tyčinku působí v jejím těžišti tíhová síla F G a ve středu ponořené části hydrostatická vztlaková síla F vz daná Archimédovým zákonem. Obě tyto síly mají nenulový moment vzhledem k bodu upevnění tyčinky. Oba momenty musejí být v okamžiku rovnováhy stejně velké a opačně orientované. Pro síly platí n F G = S l g, Fvz = S l k g, n kde S je průřez tyčinky a l je její délka. Označme α úhel, který svírá tyčinka s boční stěnou nádoby. Pro ramena obou předchozích sil tak platí r = l sinα n l n + G, r vz = l l sinα = sinα. n n Z rovnosti velikostí obou momentů sil F G r G = F vz r vz plyne pro hledanou hustotu = k. n.3.3. Vodorovně položená trubice malého průřezu a délky l je naplněná ideální kapalinou. Trubice rotuje s konstantní úhlovou rychlostí ω kolem svislé osy procházející jedním jejím koncem. Ve druhém konci je malý otvor, kterým může kapalina vytékat. 3

7 Určete závislost výtokové rychlosti v kapaliny na délce h kapalinového sloupce v trubici. Řešení: obr. 5 Zvolme si element hmotnosti dm kapaliny v trubici. Označme vzdálenosti l, h, x a dx tak, jak ukazuje obr. 5. Odstředivá síla působící na element hmotnosti dm vyvolá v kapalině tlak o velikosti ( x + l h) dm ω dp = = ω S ( x + l h) dx kde S je průřez trubice a je hustota kapaliny. Celkový tlak kapaliny vyvolaný odstředivou silou je h x p = dp = ω ( x + l h) dx = ω + lx hx = ω h ( l h). 0 Zanedbáme-li tlak vzduchu v okolí otvoru, plyne z Bernoulliho rovnice pro ideální kapalinu p = v. Porovnáním s předchozím vztahem dostaneme po úpravě hledanou rychlost v ( l h) v = ω h V boční stěně nádoby se nachází malý otvor, jehož hrana je ve výšce h nad vodorovnou rovinou. Určete velikost vodorovného zrychlení a nádoby, se kterým by se musela pohybovat, aby z ní kapalina otvorem nevytékala. Výška sloupce kapaliny v nádobě je H a šířka přední stěny nádoby je l. Řešení: Pokud by se nádoba nepohybovala, vytékala by kapalina otvorem rychlostí ( H h) v = g., h 0 4

8 Ze zákona zachování hybnosti plyne, že při výtoku kapaliny o hmotnosti dm danou rychlostí v za dobu dt bude nádobě udělena hybnost dp = v dm = v Sv dt = S g (H h) dt, kde S je plocha otvoru. Na kapalinu o objemu V = Sl, která je ve výšce otvoru uvnitř nádoby, působí síla dp F = = gs dt ( H h). Při pohybu nádoby působí na stejný objem kapaliny setrvačná síla F s, která má opačný směr, než je směr zrychlení a, a která musí mít i opačný směr než síla F a musí být minimálně stejně velká, aby kapalina otvorem nevytékala. Z toho plyne, že nádoba musí mít zrychlení na tu stranu, na kterou míří otvor ve stěně nádoby. Navíc musí platit F s = ma = Sla F. Odsud pro hledanou velikost zrychlení a platí ( H h) g a. l.3.5. Určete konečnou rychlost v pádu dešťové kapky ve tvaru kuličky o poloměru r ve vzduchu, je-li dynamická viskozita vzduchu η a hustota vody. Hustotu vzduchu vzhledem k hustotě vody zanedbejte. Řešení: Při volném pádu je těleso urychlováno směrem k zemi tíhovou sílou F G, pro kterou platí F G 4 3 = mg = vvg = πr v g, 3 kde v je hustota dešťové vody. Při pohybu v odporovém prostředí působí na těleso také odporová síla F o, která je pro tělesa kulovitého tvaru pohybující se rychlostí v dána Stokesovým zákonem, tedy F o = 6π r η v. Obě síly mají navzájem opačný směr a tedy při vyrovnání jejich velikostí bude výsledná síla působící na kapku nulová a podle Newtonova zákona setrvačnosti se bude dále kapka pohybovat rovnoměrně přímočaře rychlostí v. Porovnáním vztahů pro obě síly dostaneme po úpravě r g v =. 9 η 5

9 .4. Úlohy.4.. Průřez vodorovné trubice, kterou proudí voda, se zužuje z hodnoty S = 0 cm na S = 0 cm. Manometrické trubice umístěné v místech obou průřezů, ukazují rozdíl hladin Δh = 0 cm. Určete, jaký objem Q vody proteče trubicí za t = s. Δhg Q = SS =,9 0-3 m 3 s - S S.4.. Určete, do jaké hloubky h l se ponoří plný homogenní kužel výšky h, hustoty, plovoucí na kapalině hustoty a) vrcholem dolů, b) vrcholem nahoru. a) = 3 h h, b) h = h Skleněný válec výšky h = 0 cm a průřezu S = 30 cm naplníme vodou, přikryjeme listem papíru a obrátíme. Jak velkou silou F je papír přitlačován k válci, je-li barometrický tlak p 0 = 9,8 0 4 Pa? F = S (p 0 h v g) = 88 N.4.4. Do nádoby přitéká voda rovnoměrně tak, že za t = s přiteče množství Q V = 50 cm 3 s -. Ve dnu nádoby je otvor o průřezu S = 0,5 cm. V jaké výšce h se ustálí hladina vody v nádobě? Zúžení vodního paprsku vytékajícího otvorem zanedbejte. V Q h = = 45,9 cm gs.4.5. Jak velkou tlakovou silou F působí voda na svislou obdélníkovou stěnu nádoby, je-li výška vody v nádobě h = 40 cm a šířka stěny a = 30 cm? F = ah v g = 35,44 N.4.6. Ve dvouramenné spojené nádobě je nalita rtuť. Do jednoho ramene přilijeme kapalinu o neznámé hustotě. Sloupec této kapaliny má výšku h = 4 cm, rtuť ve druhém rameni (měřeno od společného rozhraní) má výšku h = cm. Určete hustotu kapaliny, je-li hustota rtuti = 3,6 0 3 kg m -3. h = = 33 kg m -3 h 6

10 .4.7. Trubici zahnutou do pravého úhlu vložíme do proudící kapaliny. Do jaké výšky h vystoupí kapalina v této trubici, jestliže ve stejné trubici, která není zahnutá, vystoupí kapalina do výšky h? Rychlost proudění kapaliny v daném místě je v. h = h + v g.4.8. Jaká je plocha S nejmenší ledové kry, která právě unese těleso o hmotnosti m = 96 kg? Tloušťka kry je d = 0,3 m, hustota ledu L = 90 kg m -3. m S = = 4 m d ( ) v L.4.9. Jak velkou silou F zvedneme ve vodě kámen, jehož hustota je K = 500 kg m -3 a hmotnost m = 00 kg? F = mg K K v = 588,6 N.4.0. Ledovec hustoty = 90 kg m -3 plave na mořské hladině. Hustota mořské vody je = 030 kg m -3. Jaká část V celkového objemu V ledovce je nad hladinou? V = V = 0, V, tedy %.4.. Mosazné těleso bylo vyváženo na vzduchu závažím o hmotnosti m = 0,6 kg, ve vodě závažím o hmotnosti m = 0,4 kg. Určete hustotu M mosazi. m M = v = 8000 kg m -3 m m.4.. Do válce Segnerova kola byly nality V = l vody, takže výška vodního sloupce byla h = 60 cm. Určete potenciální energii E p, kterou tato voda v přístroji představuje. E p = vvgh = 5,89 J.4.3. Uzavřená nádoba zčásti naplněná vodou má výtokový otvor v hloubce h = 3 m pod hladinou. Jaká je počáteční výtoková rychlost v vody, má-li vzduch nad hladinou tlak p =,7 0 5 Pa, vzduch vně nádoby tlak p = 0 5 Pa? ( p p ) v = + hg = 9,97 m s - v 7

11 .4.4. Do nádoby přitéká voda rovnoměrným proudem tak, že za t = min přiteče objem V = 30 l. Ve dnu nádoby je otvor o průřezu S = cm. V jaké výšce h se ustálí voda v nádobě? V h = gt S = 3,8 cm.4.5. Ohnutá trubice byla vložena do proudící vody (obr. 53). Rychlost proudu vzhledem k trubici je v =,5 m s -. V uzavřeném horním konci trubice je malý otvor, nacházející se ve výšce h 0 = cm nad hladinou proudící vody. Do jaké výšky h bude stříkat voda z tohoto malého otvoru? v h = h = 9,9 cm g 0 obr Přístroj umožňující vytékání kapaliny z nádoby s konstantní rychlostí je zobrazen na obr. 54 (tzv. Mariottova láhev). Určete rychlost v proudění kapaliny v tomto případě, jestliže známe vzdálenost h. v = gh obr. 54 8

12 .4.7. Ve svislé válcové nádobě je nalita voda do výšky h = 80 cm. Ve stěně nádoby jsou dva otvory nad sebou a proudy vody, které z nich tryskají, dopadají na totéž místo vodorovné roviny, na níž stojí nádoba. V jaké výšce h je druhý otvor, je-li první ve výšce h = 0 cm? h = h h l = 60 cm.4.8. Krychle o hraně a je naplněna až po okraj vodou. V jejím dně je otvor o průřezu S. Za jakou dobu t vyteče voda z krychle? a t = S ga Na vozíku stojí válcová nádoba naplněná vodou do výšky h = m. V nádobě jsou proti sobě vyvrtány dva stejné otvory o průřezu S = 0 cm, jeden ve výšce h = 5 cm a druhý ve výšce h = 50 cm nad dnem nádoby. Jak velikou silou F a ve kterém směru musíme působit na vozík, aby se nepohyboval, vytéká-li volně oběma otvory voda. F = v Sg (h h l ) = 4,9 N směrem od otvoru ve větší výšce k otvoru v menší výšce.4.0. Určete rychlost stacionárního proudění malým otvorem pro ideální kapalinu nacházející se pod tlakem p plynu v uzavřené nádobě (obr. 55), je-li v okolí nádoby barometrický tlak p 0. Otvor se nachází ve hloubce h pod hladinou kapaliny a hustota kapaliny je. ( p p ) 0 v = + hg obr. 55 9

13 .4.. Průřez vodorovného potrubí se zužuje z S = 40 cm na S = 6 cm. Rychlost vody v širší části je v = m s -, přičemž manometr v této části ukazuje přetlak p = 7500 Pa. Jaký je přetlak p v zúžené části potrubí? p S S = p + vv = 4875 Pa S.4.. Při měření viskozity vody bylo zjištěno, že kapilárou o délce l = 0 cm a vnitřním průměru d = mm protekl za dobu t = 3 min objem V = 0 cm 3 vody, přičemž tlakový rozdíl na koncích kapiláry byl dán vodním sloupcem o výšce h = 50 cm. Určete dynamickou viskozitu η vody. 4 πd h v gt η = = 9, kg m - s - 8 Vl.4.3. Určete konečnou rychlost pádu dešťové kapky, je-li její poloměr r = 0,5 mm a dynamická viskozita vzduchu η =,8 0-5 kg m - s -. Vztlak vzduchu zanedbejte. v gr v = = 30,3 m s - 9η.4.4. Korková kulička o poloměru r = mm a hustotě K = 300 kg.m -3 je upevněna na dně nádrže s vodou. Jakou mezní rychlostí v bude kulička vystupovat, jestliže ji uvolníme? Dynamická viskozita vody je η =, 0-3 kg m - s -. r g v v K = 5,55 m s - 9η = ( ).4.5. Jak velký objem V glycerínu proteče za dobu t = 0 min trubicí o poloměru r = mm a délky l = 0 cm při přetlaku na koncích trubice p = Pa? Dynamická viskozita glycerínu je η =, kg m - s -. 4 πr pt V = = 0,785 l 8ηl 30

1 Vlastnosti kapalin a plynů

1 Vlastnosti kapalin a plynů 1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání

Více

8. Mechanika kapalin a plynů

8. Mechanika kapalin a plynů 8. Mechanika kapalin a plynů 8. Vlastnosti kapalin a plynů Základní vlastností je tekutost. Tekutost je, když částečky se po sobě velmi snadno a velmi dobře pohybují (platí to pro tekutiny i plyny). Díky

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Katedra fyziky ZÁKLADY FYZIKY I Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2004 5. M E C H A N I K A T E K U T I N

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT 23-41-M/01 Strojírenství

Střední průmyslová škola, Hronov, Hostovského 910, 549 31 Hronov. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT 23-41-M/01 Strojírenství Protokol SADA DUM Číslo sady DUM: Název sady DUM: Název a adresa školy: Registrační číslo projektu: Číslo a název šablony: Obor vzdělávání: Tematická oblast ŠVP: Předmět a ročník Autor: Použitá literatura:

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

1. Molekulová stavba kapalin

1. Molekulová stavba kapalin 1 Molekulová stavba kapalin 11 Vznik kapaliny kondenzací Plyn Vyjdeme z plynu Plyn je soustava molekul pohybujících se neuspořádaně všemi směry Pohybová energie molekul převládá nad energii polohovou Každá

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia Plán volitelného předmětu Fyzika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět fyzika, který je realizován prostřednictvím

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru:

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: KATEGORIE D Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: Jméno a příjmení: Kategorie: D Třída: Školní rok: Škola: I. kolo: Vyučující fyziky: Posudek: Okres: Posuzovali: Úloha

Více

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek

Fyzika 6. ročník. Poznámky. Stavba látek Vlastnosti látek Částicová stavba látek Fyzika 6. ročník Očekávaný výstup Školní výstup Učivo Mezipředmětové vztahy, průřezová témata Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí.

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5.

A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. A:Měření tlaku v závislosti na nadmořské výšce B:Cejchování deformačního manometru závažovou pumpou C:Diferenciální manometry KET/MNV (5. cvičení) Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P A:Měření

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Mechanika tekutin GYMNÁZIUM F. X. ŠALDY. Poznámky & ilustrace k výuce v 1. ročníku / kvintě. Gymnázium F. X. Šaldy Honsoft 2004 Verze 2.

Mechanika tekutin GYMNÁZIUM F. X. ŠALDY. Poznámky & ilustrace k výuce v 1. ročníku / kvintě. Gymnázium F. X. Šaldy Honsoft 2004 Verze 2. GYMNÁZIUM F. X. ŠALDY PŘEDMĚTOVÁ KOMISE FYSIKY Mechanika tekutin Poznámky & ilustrace k výuce v 1. ročníku / kvintě Gymnázium F. X. Šaldy Honsoft 2004 Verze 2.0 PŘEDZNAMENÁNÍ Tento text slouží jako pomocný,

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

X-kříž. Návod k instalaci a použití

X-kříž. Návod k instalaci a použití X-kříž Návod k instalaci a použití 1 Obsah Název kapitoly strana 1. Měřicí princip X-kříže 2 2. Konstrukce 2 3. Využití 2 4. Umístění 3 5. Provedení 3 6. Instalace 4 7. Kompletace systému 7 8. Převod výstupu

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

A. Obsahové, časové a organizační vymezení vyučovacího předmětu

A. Obsahové, časové a organizační vymezení vyučovacího předmětu 5.6.1 Fyzika (F) 5.6.1.1 Charakteristika vyučovacího předmětu Fyzika A. Obsahové, časové a organizační vymezení vyučovacího předmětu Vyučovací předmět Fyzika vede žáky k hledání a poznávání fyzikálních

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/1.79 Název DUM: Hydrostatický tlak

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

5.6 ČLOVĚK A PŘÍRODA. 5.6.1. Fyzika

5.6 ČLOVĚK A PŘÍRODA. 5.6.1. Fyzika 5.6 ČLOVĚK A PŘÍRODA Vzdělávací oblast Člověk a příroda zahrnuje okruh problémů spojených se zkoumáním přírody. Poskytuje žákům prostředky a metody pro hlubší porozumění přírodním faktům a jejich zákonitostem.

Více

Jana Trojková ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

Jana Trojková ESF ROVNÉ PŘÍLEŽITOSTI PRO VŠECHNY VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA ZÁKLADY FYZIKY Modul Mechanika tekutin a termika Jana Trojková Vytvořeno v rámci projektu Operačního programu Rozvoje lidsk ých zdrojů CZ.04..03/3..5./006

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

Fyzika a věda. Přednáška s názornými experimenty. Registrační číslo: CZ.1.07/2.3.00/45.0029

Fyzika a věda. Přednáška s názornými experimenty. Registrační číslo: CZ.1.07/2.3.00/45.0029 Fyzika a věda Přednáška s názornými experimenty Registrační číslo: CZ.1.07/2.3.00/45.0029 V Sokolově, 30. září 2014 PhDr. Jan Novotný, Ph.D. Obsah Mechanika Archimédés ze Syrakus- Archimédův zákon, Archimédův

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles 6.ročník Výstupy Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles určí, zda je daná látka plynná, kapalná či pevná, a popíše rozdíl ve vlastnostech správně používá pojem

Více

Matematicko-fyzikální model vozidla

Matematicko-fyzikální model vozidla 20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů

ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů ZÁKLADNÍ ŠKOLA KOLÍN II., KMOCHOVA 943 škola s rozšířenou výukou matematiky a přírodovědných předmětů Autor Mgr. Vladimír Hradecký Číslo materiálu 8_F_1_02 Datum vytvoření 2. 11. 2011 Druh učebního materiálu

Více

Charakteristika čerpání kapaliny.

Charakteristika čerpání kapaliny. Václav Slaný BS design Bystřice nad Pernštejnem Úvod Charakteristika čerpání kapaliny. Laboratorní zařízení průtoku kapalin, které provádí kalibraci průtokoměrů statickou metodou podle ČSN EN 24185 [4],

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Obr. 9.1: Elektrické pole ve vodiči je nulové

Obr. 9.1: Elektrické pole ve vodiči je nulové Stejnosměrný proud I Dosud jsme se při studiu elektrického pole zabývali elektrostatikou, která studuje elektrické náboje v klidu. V dalších kapitolách budeme studovat pohybující se náboje elektrický proud.

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

ŠVP podle RVP ZV Hravá škola č.j.: s 281 /2013 - Kře. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Vyučovací předmět: Fyzika

ŠVP podle RVP ZV Hravá škola č.j.: s 281 /2013 - Kře. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Vyučovací předmět: Fyzika Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Vyučovací předmět: Fyzika Charakteristika vyučovacího předmětu Fyzika Charakteristika vyučovacího předmětu Škola považuje předmět Fyzika za významný

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi

ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi ELEKTŘINA A MAGNETIZMUS kontrolní otázky a odpovědi Peter Dourmashkin MIT 006, překlad: Vladimír Scholtz (007) Obsah KONTOLNÍ OTÁZKY A ODPOVĚDI OTÁZKA 1: VEKTOOVÉ POLE OTÁZKA : OPAČNÉ NÁBOJE OTÁZKA 3:

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

Fyzikální korespondenční škola 2. dopis: experimentální úloha

Fyzikální korespondenční škola 2. dopis: experimentální úloha Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela

Více

Charakteristika vyučovacího předmětu Fyzika

Charakteristika vyučovacího předmětu Fyzika Charakteristika vyučovacího předmětu Fyzika Obsahové, časové a organizační vymezení vyučovacího předmětu Fyzika Obsahem předmětu Fyzika je oblast neživé přírody a současných technologií. Žák si osvojí

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD 19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky

Více

elektrický náboj elektrické pole

elektrický náboj elektrické pole elektrický náboj a elektrické pole Charles-Augustin de Coulomb elektrický náboj a jeho vlastnosti Elektrický náboj je fyzikální veličina, která vyjadřuje velikost schopnosti působit elektrickou silou.

Více

DYNAMIKA - Dobový a dráhový účinek

DYNAMIKA - Dobový a dráhový účinek Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 109 Tento projekt

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

FYZIKA (7. 9. ročník)

FYZIKA (7. 9. ročník) FYZIKA (7. 9. ročník) Charakteristika předmětu Předmět fyzika je zařazen do výuky na druhém stupni od sedmého do devátého ročníku. Vyučuje se v běžných učebnách s dostupnými pomůckami. Spolu s ostatními

Více