CHEMIE A TECHNOLOGIE VODY

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "CHEMIE A TECHNOLOGIE VODY"

Transkript

1 doc. Ing. Jitka Malá, Ph.D., prof. RNDr. Josef Malý, CSc. CHEMIE A TECHNOLOGIE VODY Laboratorní cvičení

2 Obsah ÚVOD ZÁKLADNÍ POJMY Koncentrace látek v roztocích Chemické rovnice Plyny SILNÉ KYSELINY A ZÁSADY - NEUTRALIZACE Hodnota ph silných kyselin a zásad Neutralizace silných kyselin silnými zásadami a silných hydroxidů silnými kyselinami SLABÉ KYSELINY A ZÁSADY - FORMY OXIDU UHLIČITÉHO - ODKYSELOVÁNÍ AERACÍ A ALKALIZACÍ ph slabých kyselin a zásad Neutralizační křivka kyseliny uhličité Odkyselování vody aerací Odkyselování vody chemickým způsobem (alkalizací) VÁPENATO-UHLIČITANOVÁ ROVNOVÁHA, ODKYSELOVÁNÍ VODY VÁPENCEM A DOLOMITEM Vápenato-uhličitanová rovnováha Stanovení agresivity vody Heyerovou zkouškou a z Langelierova indexu Odkyselení vody vápencem a dolomitem ODŽELEZOVÁNÍ VODY Železo ve vodách Odželezování vzdušněním Odželezování vody alkalizováním ODMANGANOVÁNÍ VODY Mangan ve vodách Odmanganování v koloně Odmanganování dávkou KMnO STANOVENÍ KONCENTRACE ORGANICKÝCH LÁTEK VE VODÁCH Teoretická spotřeba kyslíku Chemická spotřeba kyslíku CHSK Mn KOAGULACE ŽELEZITOU SOLÍ Koagulace železitými solemi - teorie a praxe Koagulační zkouška ZMĚKČOVÁNÍ VODY CHEMICKÝM ZPŮSOBEM

3 9.1. Tvrdost vody a její vyjadřování Princip chemického způsobu změkčování Srážení Ca 2+ a Mg 2+ alkalizováním roztoku a přídavkem Na 2 CO ZMĚKČOVÁNÍ VODY NA KATEXECH OXYGENACE VODY Přestup kyslíku do vody Oxygenační kapacita Stanovení oxygenační kapacity ANALYTICKÉ POSTUPY Titrační metody Stanovení KNK 4, Stanovení ZNK 8, Stanovení Ca a Mg ve vodách Stanovení CHSK Mn Elektrochemické metody Měření hodnoty ph Stanovení rozpuštěného kyslíku membránovou elektrodou Spektrofotometrické metody Stanovení železa ve vodách Stanovení koncentrace Mn ve vodách Měření zákalu

4 ÚVOD Předložené skriptum Chemie a technologie vody - laboratorní cvičení je souborem návodů do cvičení pro 3. ročník studia na oboru Vodní hospodářství a vodní stavby Stavební fakulty VUT Brno, navazující na přednášky předmětu stejného názvu. Při výběhu témat jsme vycházeli ze snahy seznámit posluchače především s podstatou základních technologických procesů úpravy vody. Cvičení jsou koncipována tak, aby postihla pokud možno co největší rozsah používaných technologií, aniž si ovšem mohou činit nárok na úplnost. Omezujícím faktorem byla zejména dostupnost zařízení a časový rozsah dvou výukových hodin, vymezený pro jedno cvičení. Technologické procesy čištění odpadních vod jsou zastoupeny nedokonale. Důvodem jsou jednak problémy se zajišťováním odpadní vody a čistírenských kalů, se zajištěním hygienických podmínek při práci s těmito odpady, hlavně však časová náročnost těchto procesů. Analytické postupy rozboru vod jsou pojednány jen v rozsahu potřebném k hodnocení technologických procesů. Cílem není vyškolit posluchače v provádění analýzy vody, nicméně i nezbytný rozsah prováděných rozborů jim poskytne, byť jen neucelený, obraz o práci v laboratoři pro analýzu vod a o některých analytických postupech. Autoři V Brně, r

5 1. ZÁKLADNÍ POJMY 1.1. Koncentrace látek v roztocích Obsah látek v roztocích vyjadřujeme buď hmotnostní, nebo látkovou koncentrací. Hmotnostní koncentrace je hmotové množství látky v 1 dm 3 (litru) roztoku. V chemii se obvykle objemy vyjadřují v litrech (l) nebo v mililitrech (ml), při čemž platí: 1 dm 3 = 1 1itr (l), 1 cm 3 = 1 ml. Hmotnostní jednotky se volí podle koncentrace, která je pak vyjádřena takto: g.l -1, mg.l -1, µg.l -1, ng.l -1. Zápis hmotnostní koncentrace látky A je následující c m (A) = a g.l -1. Jiným způsobem vyjádření hmotnostní koncentrace je obsah látky v hmotnostní jednotce, např. g.kg -1 nebo % (g/100 g). Takové vyjádření je obvyklé u látek tuhých, ale používá se i u koncentrovanějších roztoků. Pro přepočet jednoho vyjádření na druhé je třeba znát hustotu roztoku (ρ), definovanou poměrem hmotnosti (m) a objemové jednotky (V): m ρ = [1.1] V Obvyklým rozměrem hustoty roztoku je g.cm -3 = kg.dm -3. Hustota vody o teplotě 3,98 C je 1,00 kg.dm -3. Se změnou této teploty (růstem i poklesem) se hustota vody zmenšuje. Rozdíly hustoty vody o teplotě 3,98 C a o laboratorní teplotě 20 C nejsou velké, ve druhém případě je hustota 0,9985 g.cm -3. Proto při běžných výpočtech koncentrací není nutno s teplotní změnou hustoty počítat. Látková koncentrace se vyjadřuje v mol.l -1 nebo mmol.l -1 a zápis látkové koncentrace látky A je následující: c(a) = b mol.l -1. Mezi látkovou a hmotnostní koncentrací látky A o relativní molekulové hmotnosti M r ( A) je vztah: c m (A) = M r (A). c(a) [1.2] [g.l -1 ] [mol.l -1 ] [mg.l -1 ] [mmol.l -1 ] Definice molu: Množství částic (atomů, iontů, molekul) shodné s počtem atomů v 12 g isotopu uhlíku 12 C (6, číslo Avogadrovo). Relativní atomová (molekulová) hmotnost látky M r (A) je číslo bezrozměrné. Hmotnost 1 molu této látky A je M r (A) gramů. Proveďte přepočet koncentrací: 1. c(nacl) = 0,2 mol.l -1, M r (NaCl) = 58,44, c m (NaCl) =? (11,7 g.l -1 ) Příklady 2. c(kmno 4 ) 0,002 mol.l -1, M r = 158,03, c m (KMnO 4 ) =? (0,316 g.l -1 ) 3. c(hcl) = 1,5 mol.l -1, M r (HCl) = 36,46, c m (HCl) =? (54,69 g.l -1 ) 4. c m (NaOH) = 20 g.l -1, M r (NaOH) = 40,0, c(naoh) =? (0,5 mol.l -1 ) 5. c m (CO 2 ) = 36 mg.l -1, M r (CO 2 ) = 44,0, c(co 2 ) =? (0,818 mmol.l -1 ) 5

6 1.2. Chemické rovnice Průběh chemických reakcí vyjadřujeme chemickými rovnicemi. Pro ně platí, že počet atomů každého z prvků na obou stranách rovnice je shodný. Pokud jsou reagujícími látkami ionty, musí být také součet nábojů (kladné a záporné náboje se ruší) na obou stranách rovnice shodný. Vratné chemické reakce probíhají oběma směry. V uzavřeném systému se u nich tvoří rovnováha mezi reagujícími a produkovanými látkami dle Guldberg-Waageova zákona. Rovnováhu reakce: lze vyjádřit takto: a A + b B = d D + e E = Dd E e A a B b [1.3] kde A, B, C, D jsou látky vstupující do reakce, resp. reakcí produkované, a, b, d, e jsou čísla, vyjadřující počet reagujících částic. Rovnovážná konstanta K vyjadřuje rovnováhu látkových koncentrací reagujících a produkovaných látek. Výše uvedený zákon lze uplatnit i při vyjádření disociačních rovnovah. V řadě případů je posunuta rovnováha silně ve směru produkovaných látek. V tomto případě lze považovat průběh reakce za kvantitativní, stejně jako v případě, když jsou produkty reakce ze systému odstraňovány (těkáním, srážením). V těchto případech lze z množství jedné složky vypočítat množství dalších složek zúčastněných na reakci. Proveďte následující stechiometrické výpočty: 1. Železo se oxiduje chlorem podle rovnice: 2 Fe 2+ + Cl 2 = 2 Fe Cl - M r (Fe) = 55,85, M r (Cl) = 35,45 Kolik chloru bude třeba na oxidaci 1,5 g Fe 2+? (0,95 g) Příklady 2. Kolik kg NaOH je třeba k neutralizaci 50 litrů 6 % kyseliny chlorovodíkové? (3,38 kg NaOH) M r (HCl) = 36,46 M r (NaOH) = 40,0 ρ HCl (6 %) 1,0279 g.cm Kolik litrů 34 % HCl bude třeba k neutralizaci 200 m 3 suspenze s obsahem 2,5 kg Ca(OH) 2 v 1 m 3? (1237 litrů 34 % HCl) M r (HCl) = 36,46 M r (Ca(OH) 2 ) = 74,09 ρ Ca(OH)2 = 1,00 g.cm -3 ρ HCl = 1,17 g.cm Kolik kg NaOH bude třeba k neutralizaci 200 litrů 12% H 2 SO 4? (21,14 kg NaOH) M r (NaOH)= 40,0 M r (H 2 SO 4 )= 98,07 ρ H2SO4 = 1,08 g.cm Biologickou nitrifikaci lze popsat rovnicí: NH O 2 = H + + NO H 2 O M r (N) = 14,0, M r (O) = 16,0 Kolik kyslíku je třeba na oxidaci 1 g N-NH 3 a kolik molů H + touto reakcí vznikne? (4,57 g O 2, 0,0714 mol H + ) 6

7 6. Fosforečnany lze z vody odstranit srážením podle rovnice: Fe PO 4 = FePO 4 M r (FeCl 3.6 H 2 O) = 270,3, M r (P) = 30,97 Vypočtěte stechiometrickou dávku FeCl 3.6 H 2 O potřebnou na vysrážení fosforečnanů v 850 m 3 vody o koncentraci 4,5 mg.l -1 P-PO 4. (33,4 kg) 1.3. Plyny Jeden mol jakéhokoliv plynu (za podmínek vzdálených stavu zkapalnění) zaujímá za standardních podmínek, to je za teploty 0 C (T = 273,15 K) a tlaku 101,3 kpa objem 22,414 dm 3. Přepočet na odlišné tlakové a teplotní podmínky se provede podle stavové rovnice plynů: p.v = n.r.t [1.4] kde n je počet molů, R je plynová konstanta (= 8,314 J mol -1 K -1 ). Rozpustnost plynů ve vodě závisí na teplotě (s jejím zvyšováním se snižuje) a je přímo úměrná parciálnímu tlaku nad kapalinou. Vypočtěte požadované údaje o plynech za standardních podmínek: 1. Kolik g CO 2 je obsaženo v 1 m 3 vzduchu, jestliže jeho objemová koncentrace je 0,03 %? M r (CO 2 ) = 44,01 (0,589 g) Příklady 2. Vypočtěte hustotu H 2 S. M r (H 2 S) = 34,08 (ρ = 1,52 g.dm -3 ) 3. Rozpustnost kyslíku ve vodě, která je v kontaktu s čistým kyslíkem, je 43,7 mg.l -1. Parciální tlak kyslíku ve vzduchu je 21 kpa. Jaká bude rozpustnost kyslíku ve vodě, která je v kontaktu se vzduchem? (9,06 mg.l -1 ). 7

8 2. SILNÉ KYSELINY A ZÁSADY - NEUTRALIZACE 2.1. Hodnota ph silných kyselin a zásad Kyseliny jsou látky, které ve vodném roztoku uvolňují procesem zvaným disociace (rozpad molekul na kladně a záporně nabité částice) vodíkové ionty (H + ). Analogicky zásady jsou látky uvolňující disociací ionty hydroxidové (OH - ). Silné kyseliny a zásady se vyznačují úplnou disociací, což znamená, že prakticky veškeré molekuly kyseliny příp. zásady jsou disociovány (zejména ve zředěných roztocích), zatímco slabé kyseliny a zásady disociují jen částečně. Koncentrace vodíkových, příp. hydroxidových iontů je charakterizována hodnotou ph. Hodnota ph je definována jako záporný logaritmus koncentrace (přesněji aktivity) vodíkových iontů. Vztah mezi koncentrací (c) a aktivitou (a) látky je vyjádřen vztahem: a = c.γ, v němž γ je aktivitní koeficient, jehož hodnota může být v rozsahu 0 až 1,0. Pro zředěné roztoky γ 1,0, a proto můžeme ph vypočítat z koncentrace H + : ph = - log c(h + ) [2.1] U silných jednosytných kyselin je látková koncentrace kyseliny (mol.l -1 ) shodná s koncentrací vodíkových iontů. U vícesytných kyselin je nutno zvažovat i počet disociovaných iontů H +, tedy pro n- sytnou kyselinu platí n.c(kyseliny) = c(h + ). Podobně u silných jednosytných zásad je látková koncentrace zásady shodná s koncentrací OH - a pro m-sytné zásady platí c(oh - ) = m.c(zásady). Koncentrace OH - a H + jsou ve vzájemném vztahu, který vyplývá z disociace vody H 2 O = H + + OH -. Vyjádřením disociační rovnováhy při zahrnutí koncentrace nedisociovaných molekul H 2 O (disociace je nepatrná) do rovnovážné konstanty je výraz: neboli: c(h + ).c(oh - ) = K v = [2.2] ph = - log c(h + ) = 14 + log c(oh - ) [2.3] Naopak z hodnoty ph lze vypočítat koncentraci H + resp. OH - jiným vyjádřením rovnic [2.1] a [2.3]. c(h + ) = 10 -ph [2.4] c(oh - ) = /10 -ph [2.5] Proveďte následující výpočty: Příklady 1. Vodný roztok obsahuje 0,02 g.l -1 HCl. Jaké je ph roztoku? M r (HCl) = 35,5 (ph = 3,26). 2. Vodný roztok obsahuje 0,5 g.l -1 HNO 3. Jaké je ph roztoku? M r (HNO 3 ) = 63 (ph = 2,10). 3. Vodný roztok obsahuje 0,35 g.l -1 NaOH. Jaké je ph roztoku? M r (NaOH) = 40 (ph = 11,94). 8

9 4. Vodný roztok obsahuje 0,15 g.l -1 Ca(OH) 2. Jaké je ph roztoku? M r [Ca(OH) 2 ] = 74 (ph = 11,61) 5. Hodnota ph vodného roztoku HCl je 2,5. Jaká je hmotnostní koncentrace HCl? (115 mg.l -1 ) 6. Hodnota ph vodného roztoku NaOH je 13,2. Jaká je hmotnostní koncentrace NaOH? (6,32 g.l -1 ). Úkol 2.1. Sestrojte neutralizační křivku silné kyseliny a zásady. a) Vypočtěte ph pro koncentrace HCl a NaOH: 0,1 0,08 0,06 0,04 0,02 0,01 0,005 0,001 mol.l -1 b) Sestrojte neutralizační křivku, tedy závislost hodnot ph (osa y) na koncentraci kyseliny resp. hydroxidu (osa x). Dle výše uvedeného platí pro roztok kyseliny c(h + ) = c(hcl) a pro roztok hydroxidu c(oh - ) = c(naoh). ph c(h + ) c(oh - ) Obr. 2.1 Osní kříž pro sestrojení titrační křivky silné kyseliny a zásady 2.2. Neutralizace silných kyselin silnými zásadami a silných hydroxidů silnými kyselinami Smísením roztoku kyseliny a hydroxidu dochází k reakci H + iontů kyseliny s OH - ionty hydroxidu na nedisociované molekuly vody: H + + OH - = H 2 O. Tento děj se nazývá neutralizace. Jeho výsledkem je vedle tvorby nedisociovaných molekul H 2 O i sůl, která zůstává ve vodném roztoku disociována a teprve po odpaření vody krystalizuje jako tuhá látka. Např. neutralizační reakce mezi HCl a NaOH probíhá takto: HCl + NaOH = H 2 O + NaCl. [2.6] Při neutralizaci připadá na 1 mol H + 1 mol OH -. Pro úplnou neutralizaci kyseliny hydroxidem musíme přidat tolik molů OH -, kolik molů H + je obsaženo v roztoku kyseliny. Analogická podmínka platí pro neutralizaci hydroxidu kyselinou. Uvedenou bilanční rovnost lze vyjádřit vztahem: c(h + ).V kys =c(oh - ).V zás [2.7] 9

10 kde c(h + ) a c(oh - ) značí látkovou koncentraci příslušných iontů (u jednosytných silných kyselin a hydroxidů jejich látkovou koncentraci) a V kys, resp. V zás jsou objemy kyseliny resp. hydroxidu. Násobek objemu a koncentrace vyjadřuje bilanční množství (v tomto případě mol). Je zřejmé, že látkové koncentrace můžeme vyjadřovat v jednotkách mol.l -1 nebo mmol.l -1 a také rozměr objemu lze volit libovolně (ml, dm 3, m 3 ) avšak v dané rovnici shodně, tedy ve stejných jednotkách. Výše uvedených poznatků lze využít ke stanovení koncentrace kyseliny nebo zásady ve vodném roztoku. Při stanovení koncentrace hydroxidu přidáváme z byrety k jeho odměřenému objemovému množství (V zás ) odměrný roztok kyseliny chlorovodíkové (roztok o známé koncentraci c(hcl)) až dosáhneme ekvivalentního bodu, při němž je látkové množství přidaných H + shodné s látkovým množstvím OH - v analyzovaném roztoku. Stanovené objemové množství přidané kyseliny V kys použijeme k výpočtu neznámé koncentrace c(oh - ) z rovnice [2.7]. Ekvivalentní bod lze stanovit z inflexního bodu neutralizační křivky, ale mnohem jednodušeji použitím acidobazického indikátoru. Acidobazický indikátor je organická sloučenina, která při změně hodnoty ph roztoku mění svoje zbarvení. K acidobazickým indikátorům patří fenolftalein, který je při ph > 8,3 zbarven fialově, při ph pod 8,3 je bezbarvý. Jiným acidobazickým indikátorem je methyloranž, která mění svoje zbarvení při ph 4,5. Nad touto hodnotou je zbarvena žlutě, pod ní cibulově červeně. Při titraci silných kyseliny silnými zásadami a naopak lze vzhledem ke spádu neutralizační křivky (viz obr. 2.1) použít libovolný z výše uvedených indikátorů. Analogicky se postupuje při stanovení koncentrace neznámé kyseliny. K odměřenému množství této kyseliny (V kys ) se přidává odměrný roztok NaOH (o známé koncentraci c(naoh) = c(oh - )) až k ekvivalentnímu bodu, opět s použitím acidobazického indikátoru. Stanovené objemové množství přidaného hydroxidu V zás použijeme k výpočtu neznámé koncentrace c(h + ). Látkové množství HCl v mmol, přidané k 1 dm 3 vodného roztoku, potřebné k dosažení určitého ph se nazývá kyselinová neutralizační kapacita a označuje se KNK ph. Podobně látkové množství NaOH v mmol, přidané k 1 dm 3 vodného roztoku, potřebné k dosažení určitého ph se nazývá zásadová neutralizační kapacita a označuje se ZNK ph. Za index ph se píše hodnota ph, k níž je přídavek kyseliny resp. hydroxidu proveden. Obvykle to bývá hodnota 4,5 nebo 8,3 podle barevné změny indikátoru. Úkol 2.2. Proveďte neutralizaci modelové kyselé odpadní vody 1. Změřte ph a stanovte ZNK 8,3 kyselé vody (návod viz 12. kapitola). 2. Stanovte koncentraci roztoku NaOH Postup: Ke 2,0 ml roztoku NaOH se přidá cca 20 ml destilované vody, pár kapek roztoku fenolftaleinu a titruje se odměrným roztokem c(hcl) = 0,1 mol.l -1 do trvalého odbarvení roztoku. Spotřeba odběrného roztoku = b ml. Výpočet: c(naoh) = 500. b. c(hcl) (mmol.l -1 ) [2.8] 10

11 3. Proveďte neutralizaci kyselé vody roztokem NaOH Množství kyselé vody je 400 ml. Pracuje se s roztoky použitými výše, v nichž byla stanovena koncentrace c(h + ) a c(naoh). Proveďte výpočet potřebného objemového množství roztoku NaOH: NaOH = ZNK, NaOH (ml) [2.9] K odměřenému množství kyselé vody (400 ml) v kádince přidejte vypočtené množství roztoku NaOH. Roztoky promíchejte. 4. O dokonalosti provedené neutralizace se přesvědčte: a) Změřením hodnoty ph v neutralizovaném roztoku pomocí ph metru (viz 12. kapitola). b) Stanovením KNK 8,3 resp. ZNK 8,3 : Ke 100 ml neutralizovaného roztoku přidejte několik kapek fenolftaleinu. Je-li roztok fialový (ph > 8,3), titruje se odměrným roztokem c(hcl) = 0,1 mol.l -1 do odbarvení (tedy se stanoví KNK 8,3 ). Je-li roztok bezbarvý (ph < 8,3), titruje se odměrným roztokem c(naoh) = 0,1 mol.l -1 do trvalého fialového zbarvení (tedy se stanoví ZNK 8,3 ). Postupujte podle návodu ve 12. kapitole. 11

12 3. SLABÉ KYSELINY A ZÁSADY - FORMY OXIDU UHLIČITÉHO - ODKYSELOVÁNÍ AERACÍ A ALKALIZACÍ 3.1. ph slabých kyselin a zásad Slabé kyseliny a zásady disociují jen částečně. Kyselina obecného složení HA disociuje takto: HA = H + + A - [3.1] Mezi disociovanými a nedisociovanými molekulami kyseliny se utvoří rovnováha: a = H+ A - HA [3.2] kde K a je disociační konstanta, určující rovnovážný vztah mezi disociovanými a nedisociovanými molekulami kyseliny a koncentrací vodíkových iontů. Z rovnice [3.1] vyplývá: c(h + ) c(a - ). Koncentrace nedisociovaných molekul c(ha) je u slabých kyselin prakticky shodná s analytickou koncentrací kyseliny v roztoku c k, neboť podíl disociovaných molekul je velice nízký. Po dosazení do [3.2]: a logaritmováním: c(h + ) 2 = K a. c k neboli H = a k [3.3] ph = - log c(h + ) = - 1/2 log K a 1/2 log c k [3.4] ph = 1/2 pk a 1/2 log c k [3.5] kde pk a je záporný logaritmus konstanty K a. Analogicky se vypočítá ph slabé zásady obecného vzorce BOH, disociující na B + a OH -. Z rovnováhy disociovaných a nedisociovaných molekul hydroxidu, charakterizované disociační konstantou K b, vyplývá při analytické koncentraci hydroxidu c z vztah: OH! = b z [3.6] Hodnota ph zásady se potom vypočte podle rovnice [3.7]: ph = 14 ½ pk b + ½ log c z [3.7] Vypočtěte ph slabých kyselin a zásad: 1. Vypočtěte ph roztoku kyseliny octové o koncentraci: 0,001 0,01 0,1 mol.l -1. K a = 10-4,75 pk a = 4,75 (ph = 3,87 3,37 2,87) Příklady 12

13 2. Vypočtěte ph roztoku amoniaku o koncentraci: 0,001 0,01 0,1 mol.l -1. K b = 10-4,75 pk b = 4,75 (ph = 10,12 10,62 11,12) 3. Vypočtěte ph roztoku kyseliny uhličité o koncentraci: 0,001 0,01 0,1 mol.l -1. Počítejte jen s 1. disociačním stupněm. K a = 10-6,35 pk a = 6,35 (ph = 4,65 4,17 3,67) 3.2. Neutralizační křivka kyseliny uhličité Oxid uhličitý CO 2 je plyn obsažený v ovzduší, z něhož, a také jinými způsoby, se dostává do přírodních vod, ve kterých se rozpouští a reaguje za tvorby kyseliny uhličité: CO 2 + H 2 O = H 2 CO 3 [3.8] Mezi CO 2 a H 2 CO 3 se ustaví rovnováha. Při analýze vody se stanovuje suma obou těchto složek, neboť jejich analytické rozlišení je obtížné. Výsledek analýzy se vyjadřuje koncentrací jedné z uvedených složek, c(co 2 ) nebo c(h 2 CO 3 ), při čemž je třeba si uvědomit, že zahrnuje i složku druhou. Neutralizace kyseliny uhličité (roztok oxidu uhličitého ve vodě) silným hydroxidem, např. NaOH, probíhá ve dvou stupních dle rovnic: H 2 CO 3 + OH - = H 2 O + HCO 3 - [3.9] HCO OH - = H 2 O + CO 3 2- [3.10] V 1. stupni se tvoří hydrogenuhličitanové a ve 2. stupni uhličitanové ionty. Neutralizační křivka - závislost ph na přídavku hydroxidu - má tvar znázorněný na obr Roztok H 2 CO 3 má ph kolem 4,5. Přídavkem NaOH probíhá reakce dle rovnice [3.9], postupně ubývá koncentrace H 2 CO 3 a úměrně tomu roste koncentrace HCO 3 -. Hodnota ph se při tom zvyšuje a dosáhne-li hodnoty 8,3, je průběh reakce prakticky dokončen. V roztoku existuje z forem kyseliny uhličité téměř jen HCO 3 -. Dalším přídavkem NaOH reagují s ním ionty HCO 3 - dle rovnice [3.10], tyto ionty v roztoku mizí a úměrně tomu roste koncentrace CO 3 -. Závislost forem kyseliny uhličité na hodnotě ph vyplývá z obr ph přídavek c(oh - ) mol.l -1 Obr. 3.1 Titrační křivka kyseliny uhličité 13

14 podíl složky ph H2CO3 HCO3 - CO3 2- Obr. 3.2 Závislost obsahu forem H 2 CO 3 na ph V přírodních vodách i pitné vodě je acidobazická rovnováha určena převážně formami kyseliny uhličité. Ve vodě je zpravidla v rozsahu ph 4,5 až 8,3 určitá koncentrace H 2 CO 3 a HCO 3 -. Koncentraci H 2 CO 3 lze stanovit titrací roztokem NaOH k ph 8,3, při čemž probíhá reakce dle rovnice [3.9] a látkové množství přidaného NaOH odpovídá látkovému množství H 2 CO 3. Koncentraci HCO 3 - lze stanovit titrací roztokem HCl k ph 4,5, při čemž probíhá reakce: HCO H + = H 2 CO 3 [3.11] Látkové množství přidané HCl odpovídá látkovému množství HCO 3 -. K indikaci ph se používají acidobazické indikátory (fenolftalein a methyloranž). Nověji se k indikaci ph kolem 4,5 používá směsný indikátor (roztok methylčerveně a bromkresolové zeleně v etanolu). Z výše uvedeného vyplývá, že v přírodních a pitné vodě platí: dřívější název KNK 4,5 = c(hco 3 - ) (mmol.l -1 ) ZNK 8,3 = c(h 2 CO 3 ) (mmol.l -1 ) alkalita acidita Jsou-li v analyzované vodě přítomny i jiné látky ovlivňující ph, jako např. huminové kyseliny, Fe 2+, NH 4 + aj., je výsledek stanovení KNK 4,5 a ZNK 8,3 jimi ovlivněn v rozsahu, který je úměrný jejich koncentraci. V tom případě je i vyjádření koncentrace H 2 CO 3 a HCO 3 - těmito ukazateli zkresleno. V přítomnosti silnějších kyselin je ph vody menší než 4,5. V tomto případě se titrací odměrným roztokem NaOH k ph 4,5 stanoví koncentrace vodíkových iontů, úměrná těmto silnějším kyselinám. Hodnota ZNK 4,5 (v mmol.l -1 ) se dříve nazývala zjevná acidita na rozdíl od celkové acidity, kterou vyjadřuje hodnota ZNK 8,3. Koncentrace H 2 CO 3 je pak vyjádřena rozdílem ZNK 8,3 - ZNK 4,5. V přítomnosti silnějších zásad je ph vody větší než 8,3. V tomto případě se titrací odměrným roztokem HCl k ph 8,3 stanoví koncentrace hydroxidových iontů, úměrná těmto silnějším zásadám. 14

15 Hodnota KNK 8,3 (v mmol.l -1 ) se dříve nazývala zjevná alkalita na rozdíl od celkové alkality, kterou vyjadřuje hodnota KNK 4,5. Koncentrace HCO 3 - je pak vyjádřena rozdílem KNK 4,5 - KNK 8, Odkyselování vody aerací Kyselost přírodních vod způsobuje především kyselina uhličitá. Její odstranění lze dosáhnou aerací, přičemž dochází k postupnému vypuzování (stripování) plynného CO 2 z vody a rovnováha mezi CO 2 a H 2 CO 3 dle rovnice [3.8] se posunuje zprava doleva, až zůstane jen tzv. rovnovážné množství CO 2, úměrné koncentraci HCO 3 - ve vodě (viz další cvičení). Odkyselování vody je časovým dějem a jeho rychlost závisí vedle složení vody na intenzitě aerace. Úkol 3.1. Proveďte odstranění CO 2 z vody (odkyselení) aerací 1. Proveďte analýzu kyselé vody (pitná voda obohacená CO 2 ). Stanovte: ph, KNK 4,5 a ZNK 8,3 (postupujte podle návodu ve 12. kapitole). 2. Pitnou vodu obohacenou CO 2 (cca 1 litr) provzdušňujte pomocí akvarijního dmychadla a v časech t minut odebírejte vzorky k analýze. Ve vzorcích stanovte ZNK 8,3. Sestrojte závislost hodnot ZNK 8,3 (osa Y) na čase (osa X). t = minut 3. Po ukončení aerace stanovte ve vodě vedle ZNK 8,3 i ph a KNK 4,5. Výsledky zaznamenejte do tabulky a vyhodnoťte je s ohledem na interval ph pitné vody, povolený vyhláškou 83/2014 Sb. (6,5 až 9,5): doba aerace, min ZNK 8,3,mmol.l -1 ph KNK 4,5, mmol.l Odkyselování vody chemickým způsobem (alkalizací) Princip chemického způsobu odkyselení vody spočívá v neutralizaci kyseliny uhličité do 1. stupně podle rovnice [3.9]. K neutralizaci se používá NaOH nebo Ca(OH) 2. Z rovnice [3.9] vyplývá, že na pro odstranění 1 molu H 2 CO 3 jeho převedením na HCO 3 - je třeba 1 mol iontů OH -, neboli 1 mol NaOH nebo 1/2 molu Ca(OH) 2. Dávka hydroxidu se vypočte z bilanční rovnosti molů H 2 CO 3 a iontů OH -, tedy dle rovnice: V zá s. c(oh - ) = V kv. c(h 2 CO 3 ) [3.12] kde V zás resp. V kv je objem hydroxidu, resp. objem kyselé vody (ve stejných objemových jednotkách, např. ml), c(h 2 CO 3 ) je látková koncentrace kyseliny uhličité v kyselé vodě a c(oh - ) je látková koncentrace iontů OH - v hydroxidu (koncentrační údaje musí být vyjádřeny ve stejných jednotkách (např. v mmol.l -1 ). U jednosytných hydroxidů, např. hydroxidu sodného: c(oh - ) = c(naoh), u dvojsytných hydroxidů, např. hydroxidu vápenatého: c(oh - ) = 2.c(Ca(OH) 2 ). 15

16 Úkol 3.2. Odstraňte CO 2 kyselé vody chemickým způsobem (alkalizací) Zadání: odkyselení vody objemu 350 ml. 1. Použijte stejnou kyselou vody jako v úkolu 3.1., jejíž ph, KNK 4,5 a ZNK 8,3 jste již stanovili. 2. K alkalizaci použijte roztok NaOH o přibližné koncentraci c(naoh) = 0,5 mol.l -1. Stanovení přesné koncentrace roztoku NaOH: ke 2,0 ml roztoku NaOH se přidá cca 20 ml destilované vody, pár kapek roztoku fenolftaleinu a titruje se odměrným roztokem c(hcl) = 0,1 mmol.l -1 do trvalého odbarvení roztoku. Spotřeba odměrného roztoku = b ml. Výpočet : c(naoh) = 500. b. c(hcl) (mmol.l -1 ) [3.13] 3. Vypočtěte dávku roztoku NaOH V zás (ml) pro neutralizaci 350 ml kyselé vody podle rovnice [3.14]. zás = % kv ZNK 8,3 NaOH [3.14] 4. Do rovnice [3.14] dosaďte: V kv = 350 ml, c(h 2 CO 3 ) = ZNK 8,3 kyselé vody, c(oh - ) = c(naoh) (z rovnice [3.13]). Koncentrace jsou v mmol.l Proveďte odkyselení vody: k odměřenému množství 350 ml kyselé vody přidejte vypočtené množství roztoku NaOH. Roztoky dokonale promíchejte. Ve výsledném roztoku stanovte ph, KNK 4,5, ZNK 8,3. 6. Výsledky vyhodnoťte s ohledem na interval ph pitné vody, povolený vyhláškou 83/2014 Sb. (6,5 až 9,5). 16

17 4. VÁPENATO-UHLIČITANOVÁ ROVNOVÁHA, ODKYSELOVÁNÍ VODY VÁPENCEM A DOLOMITEM 4.1. Vápenato-uhličitanová rovnováha Uhličitan vápenatý CaCO 3, vyskytující se v přírodě ve formě vápence a přítomný v maltovinách a cementu, je sloučenina ve vodě málo rozpustná. Pro vodné roztoky platí vztah: c(ca 2+ ). c(co 3 2- ) = K s = 10-8,35 (pro 25 C) [4.1] V přítomnosti CO 2 se rozpustnost CaCO 3 podstatně zvyšuje, neboť probíhá reakce: H 2 CO 3 + CaCO 3 = Ca(HCO 3 ) 2 [4.2] Hydrogenuhličitan vápenatý je na rozdíl od uhličitanu ve vodě velmi dobře rozpustný. Kyselina uhličitá je ve vodném roztoku disociována do dvou stupňů: c(h + ). c(hco 3 - ) = K 1. c(h 2 CO 3 ) [4.3] c(h + ). c(co 3 2- ) = K 2. c(hco 3 - ) [4.4] Disociační konstanty mají pro 25 C hodnoty K 1 = 10-6,35, K 2 = 10-10,33. Při styku vody obsahující kyselinu uhličitou (příp. její formy v závislosti na hodnotě ph) s uhličitanem vápenatým (který je v přebytku) se vytvoří rovnováha ve smyslu rovnic [4.1] [4.3] a [4.4]. Vyloučením c(h + ) a c(co 3 2- ) se získá vztah: H 2 CO 3 = +, s -Ca 2+. HCO = 17 10!,,11 10!2,13 10!4,13 -Ca2+. HCO tedy: c(co 2 ) r = c(h 2 CO 3 ) r = 10 4,37. c(ca 2+ ). c(hco 3 - ) 2 [4.5] Látkové koncentrace jsou uvedeny v mol.l -1. Pro vyjádření koncentrací v mmol.l -1 platí: c(h 2 CO 3 ) r = 10 4, c(ca 2+ ). c(hco 3 - ) 2 = 10-1,63. c(ca 2+ ). c(hco 3 - ) 2 [4.6] Pro zjednodušující případ c(ca 2+ ) = 0,5. c(hco 3 - ) platí: c(co 2 ) r = c(h 2 CO 3 ) r = 10-1,931. c(hco 3 - ) 3 [4.7] Výše uvedený vztah mezi koncentrací H 2 CO 3 (označenou též jako volný CO 2 ) a koncentrací HCO 3 -, které jsou v rovnováze mezi sebou a také s CO 3 2- a Ca 2+, je znázorněn na obr Skutečnost, že se jedná o rovnovážnou koncentraci CO 2, se vyjadřuje označením (CO 2 ) r. Tato rovnováha znamená, že přidáním CaCO 3 do vodného roztoku, v němž je ustavena, nedochází v něm ke koncentrační změně žádné ze složek na rovnováze zúčastněných. Plocha nad křivkou vyjadřující vápenato-uhličitanovou rovnováhu zobrazuje stav, u něhož dochází při styku vody s CaCO 3 k rozpouštění uhličitanu dle rovnice [4.2]. Příkladem je stav znázorněný na obr. 4.1 bodem A. Koncentrace volného CO 2 klesá jeho reakcí s CaCO 3. Po dosažení rovnováhy je stav zobrazen bodem D na rovnovážné křivce. Oxid uhličitý, který takto reagoval, se nazývá agresivní CO 2

18 vůči betonu ( ). Oxid uhličitý, který je v rovnováze vyjádřené rovnicí [4.6], resp. [4.7] se nazývá rovnovážný a diference mezi celkovým volným CO 2 ( ) a rovnovážným CO 2 ( ) se nazývá oxid uhličitý agresivní vůči železu. Agresivitu CO 2 vůči betonu, který obsahuje CaCO 3, vyjadřuje rovnice [4.2], při čemž úbytek 1 mmol CO 2 odpovídá přírůstku 2 mmol HCO - 3. Plocha pod křivkou uhličitanové rovnováhy zobrazuje nerovnovážný stav, při němž dochází k vylučování CaCO 3 ve smyslu rovnice [4.2], avšak dějem, probíhajícím zprava doleva až je dosaženo stavu rovnováhy. Voda, která má tyto vlastnosti, se nazývá inkrustující. c(co 2 ) mmol.l A E D B 0 5 C 10 D1 15 c(hco 3- ) mmol.l -1 Obr. 4.1 Křivka vápenato-uhličitanové rovnováhy Úkol 4.1. Sestrojte křivku vápenato-uhličitanové rovnováhy Vypočtěte rovnovážnou koncentraci c(co 2 ) r pro c(hco 3 - ). Rozsah os X a Y zvolte s ohledem na úkol 4.3. K výpočtu použijte rovnici [4.7]. Sestrojte graficky tuto závislost (viz obr. 4.1) Stanovení agresivity vody Heyerovou zkouškou a z Langelierova indexu Heyerovou zkouškou se stanoví oxid uhličitý agresivní vůči betonu. Princip Heyerovy zkoušky spočívá v reakci H 2 CO 3 s CaCO 3 ve smyslu rovnice [4.2]. Z rovnice [4.2] vyplývá, že spotřebě 1 mmol H 2 CO 3 (resp.co 2 ) odpovídá přírůstek 2 mmol HCO 3 -. Provedení Heyerovy zkoušky Do láhve se zabroušenou zátkou, objemu cca 250 ml, se přidá 1 až 2 g mletého mramoru (CaCO 3 ). Pak se naplní zkoušenou vodou pomocí odběrného nástavce, umožňujícího naplnění bez ztráty CO 2. Láhev naplněná po okraj hrdla se uzavře zátkou tak, aby v ní nezůstaly vzduchové bubliny. Její obsah se důkladně promíchá obracením, což se občas opakuje. Po 5 dnech se suspenze zfiltruje a filtrát se analyzuje. 18

19 Výpočet oxidu uhličitého agresivního vůči betonu: Langelierův index c(co 2 ) agr = 0,5[(KNK 4,5 ) 2 - [(KNK 4,5 ) 1 ] (mmol.l -1 ) [4.8] Langelierův index I s je definován rozdílem ph vody a tak zvaným saturačním ph (označení ph s ) : I s = ph ph s [4.9] I s < 0 voda je agresivní I s > 0 voda je inkrustující - Hodnota ph odpovídající koncentraci H 2 CO 3, která je v rovnovážném stavu s koncentrací HCO 3 ve vodě (bod B na rovnovážné křivce) se nazývá saturační ph. Prakticky se ph s stanovuje při Heyerově zkoušce změřením ph po dosažení rovnováhy. Takto zjištěné ph s není sice přesně identické s ph s dle výše uvedené definice, neboť při rozpouštění CaCO 3 dle rovnice [4.2] se zvyšuje koncentrace HCO - 3 a dostáváme se do bodu D na rovnovážné křivce. V hodnotě ph je však tato diference zanedbatelná. Úkol 4.2. Stanovte agresivitu vody Heyerovou zkouškou a Langelierův index K provedení Heyerovy zkoušky použijte pitnou vodu obohacenou CO 2. KNK 4,5 stanovte ve zkoušené vodě (KNK 4,5 ) 1 a ve filtrátu po ukončení Heyerovy zkoušky (KNK 4,5 ) 2. Koncentrace agresívního CO 2 vypočtěte podle rovnice [4.8]. Z praktických důvodů proveďte filtraci a analýzu po 1 hodině, přičemž jsme si vědomi, že po této době nemusí být ještě požadované rovnováhy dosaženo. Stanovte ph v neupravené vodě a ve vodě po provedené Heyerově zkoušce. Vodu není nutné pro stanovení ph filtrovat. Langelierův index vypočtěte podle rovnice [4.9] Odkyselení vody vápencem a dolomitem Vápenec je uhličitan vápenatý CaCO 3, dolomit je uhličitan vápenato-hořečnatý CaCO 3.MgCO 3. Voda při odkyselování protéká kolonou naplněnou jedním z těchto materiálů. Přitom probíhá reakce dle rovnice [4.2]. U dolomitu reaguje MgCO 3 analogicky jako CaCO 3. Hydraulické zatížení kolony Při provozu kolon se počítá s jejich hydraulickým zatížením, u filtračních procesů nazývaných filtrační rychlostí. Hydraulické neboli plošné zatížení je definováno objemovým množstvím protékající vody (Q) na plochu průtočného profilu kolony (P) za časovou jednotku (t), což povídá průtočné rychlosti prázdné kolony. V technické praxi je jednotkou m3.m 2.h -1 neboli m.h -1. V laboratorním provedení se stanoví průtočné množství Q ml za určitou dobu t v minutách. Průtočná plocha P (cm 2 ) se stanoví z průměru kolony d (cm). P = π(d/2) 2. Průtočná rychlost se vypočte takto: v 1 = Q/P.t (cm 3.cm -2. min -1, resp. cm.min -1 ) [4.10] 19

20 Přepočet plošného zatížení na jednotky SI se provede takto: v = 0,6. v 1 (m.h -1 ) [4.11] Úkol 4.3. Proveďte odkyselení vody v koloně plněné vápencem nebo dolomitem 1. K odkyselení použijte pitnou vodu obohacenou CO 2. Ve vodě stanovte KNK 4,5, ZNK 8,3 a ph. 2. Vodu nechejte protékat kolonou plněnou vápencem nebo dolomitem tak, aby rychlost průtoku byla cca 1 až 2 kapky za sekundu. První podíl filtrátu vylijte. V protečené vodě stanovte opět KNK 4,5, ZNK 8,3 a ph. 3. Stanovte hydraulické zatížení kolony. Změřte průměr kolony (d cm), vypočtěte plochu P (cm 2 ) a při nastaveném průtoku změřte jeho rychlost stanovením protečeného objemu vody Q (ml) za čas t (min). K měření použijte odměrný válec. Výpočet proveďte podle rovnic [4.10] a [4.11]. 4. Výsledek úpravy vyhodnoťte s ohledem na interval ph pitné vody, povolený vyhláškou 83/2014 Sb. (6,5 až 9,5). Složení surové a upravené vody znázorněte v grafu vápenato-uhličitanové rovnováhy (úkol 4.1). Úkol 4.4. Stanovte agresivní, příp. inkrustující charakter vody z jejího rozboru Stanovte charakter modelové kyselé vody, se kterou jste pracovali. Počítejte se stanoveným KNK 4,5 a ZNK 8,3. Uvažujte c(ca) = 2,5 mmol.l -1. a) Vypočtěte c(co 2 ) r = c(h 2 CO 3 ) r dosazením c(ca) a c(hco 3 - ) = KNK 4,5 do rovnice [4.6]. b) Porovnejte vypočtenou c(co 2 ) r se skutečnou koncentrací CO 2 ve vodě a vyhodnoťte, zda je voda agresívní nebo korozívní. c) Vypočtěte koncentraci CO 2 agresivního vůči železu: c(co 2 ) agr = c(co 2 ) c(co 2 ) r [4.12] 20

Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera

Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera Úloha č. 9 Stanovení hydroxidu a uhličitanu vedle sebe dle Winklera Princip Jde o klasickou metodu kvantitativní chemické analýzy. Uhličitan vedle hydroxidu se stanoví ve dvou alikvotních podílech zásobního

Více

Střední průmyslová škola, Karviná. Protokol o zkoušce

Střední průmyslová škola, Karviná. Protokol o zkoušce č.1 Stanovení dusičnanů ve vodách fotometricky Předpokládaná koncentrace 5 20 mg/l navážka KNO 3 (g) Příprava kalibračního standardu Kalibrace slepý vzorek kalibrační roztok 1 kalibrační roztok 2 kalibrační

Více

CHEMIE. Pracovní list č. 7 - žákovská verze Téma: ph. Mgr. Lenka Horutová. Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.

CHEMIE. Pracovní list č. 7 - žákovská verze Téma: ph. Mgr. Lenka Horutová. Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03. www.projektsako.cz CHEMIE Pracovní list č. 7 - žákovská verze Téma: ph Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 Teorie: Pro snadnější výpočet

Více

IV. Chemické rovnice A. Výpočty z chemických rovnic 1

IV. Chemické rovnice A. Výpočty z chemických rovnic 1 A. Výpočty z chemických rovnic 1 4. CHEMICKÉ ROVNICE A. Výpočty z chemických rovnic a. Výpočty hmotností reaktantů a produktů b. Výpočty objemů reaktantů a produktů c. Reakce látek o různých koncentracích

Více

2. PROTOLYTICKÉ REAKCE

2. PROTOLYTICKÉ REAKCE 2. PROTOLYTICKÉ REAKCE Protolytické reakce představují všechny reakce spojené s výměnou protonů a jsou označovány jako reakce acidobazické. Teorie Arrheniova (1884): kyseliny disociují ve vodě na vodíkový

Více

ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD

ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD ODSTRAŇOVÁNÍ SÍRANŮ Z PRŮMYSLOVÝCH VOD STRNADOVÁ N., DOUBEK O. VŠCHT Praha RACLAVSKÝ J. Energie a.s., Kladno Úvod Koncentrace síranů v povrchových vodách, které se využívají krom jiného jako recipienty

Více

Pozn.: Pokud není řečeno jinak jsou pod pojmem procenta míněna vždy procenta hmotnostní.

Pozn.: Pokud není řečeno jinak jsou pod pojmem procenta míněna vždy procenta hmotnostní. Sebrané úlohy ze základních chemických výpočtů Tento soubor byl sestaven pro potřeby studentů prvního ročníku chemie a příbuzných předmětů a nebyl nikterak revidován. Prosím omluvte případné chyby, překlepy

Více

Stanovení kvality vody pomocí kompaktní laboratoře Aquamerck

Stanovení kvality vody pomocí kompaktní laboratoře Aquamerck NÁVOD K PROVEDENÍ PRAKTICKÉHO CVIČENÍ Stanovení základních parametrů ve vodách Stanovení kvality vody pomocí kompaktní laboratoře Aquamerck Princip Kompaktní laboratoř Aquamerck je vhodná zejména na rychlé

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

1. Chemický turnaj. kategorie mladší žáci 30.11. 2012. Zadání úloh

1. Chemický turnaj. kategorie mladší žáci 30.11. 2012. Zadání úloh 1. Chemický turnaj kategorie mladší žáci 30.11. 2012 Zadání úloh Vytvořeno v rámci projektu OPVK CZ.1.07/1.1.26/01.0034,,Zkvalitňování výuky chemie a biologie na GJO spolufinancovaného Evropským sociálním

Více

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ

SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ SBÍRKA ÚLOH CHEMICKÝCH VÝPOČTŮ ALEŠ KAJZAR BRNO 2015 Obsah 1 Hmotnostní zlomek 1 1.1 Řešené příklady......................... 1 1.2 Příklady k procvičení...................... 6 2 Objemový zlomek 8 2.1

Více

TEORETICKÁ ČÁST (70 BODŮ)

TEORETICKÁ ČÁST (70 BODŮ) TEORETICKÁ ČÁST (70 BODŮ) Úloha 1 Válka mezi živly 7 bodů 1. Doplňte text: Sloučeniny obsahující kation draslíku (draselný) zbarvují plamen fialově. Dusičnan tohoto kationtu má vzorec KNO 3 a chemický

Více

Acidobazické reakce. 1. Arrheniova teorie. 2. Neutralizace

Acidobazické reakce. 1. Arrheniova teorie. 2. Neutralizace Acidobazické reakce 1. Arrheniova teorie Kyseliny látky schopné ve vodných roztocích odštěpit H + např: HCl H + + Cl -, obecně HB H + + B - Zásady látky schopné ve vodných roztocích poskytovat OH - např.

Více

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku.

Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. Koncentrace roztoků Hmotnostní zlomek w Vyjadřuje poměr hmotnosti rozpuštěné látky k hmotnosti celého roztoku. w= m A m s m s...hmotnost celého roztoku, m A... hmotnost rozpuštěné látky Hmotnost roztoku

Více

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B)

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B) Hmotnostní jednotka: Atomová relativní hmotnost: Molekulová relativní hmotnost: Molární hmotnost: Hmotnost u = 1,66057.10-27 kg X) Ar(X) = m u Y) Mr(Y) = m u Mr(AB)= Ar(A)+Ar(B) m M(Y) = ; [g/mol] n M(Y)

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

Střední průmyslová škola Hranice - 1 - Protolytické reakce

Střední průmyslová škola Hranice - 1 - Protolytické reakce Střední průmyslová škola Hranice - 1 - Protolytické reakce Acidobazické (Acidum = kyselina, Baze = zásada) Jedná se o reakce kyselin a zásad. Při této reakci vždy kyselina zásadě předá proton H +. Obrázek

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

1.08 Tvrdost vody. Projekt Trojlístek

1.08 Tvrdost vody. Projekt Trojlístek 1. Chemie a společnost 1.08. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová skupina Metodika je určena pro žáky 2. stupně ZŠ

Více

Kappa - výpočty z chemie 12/10/12

Kappa - výpočty z chemie 12/10/12 Kappa - výpočty z chemie 12/10/12 Všechny příklady lze konzultovat. Ideální je na konzultaci pondělí, ale i další dny, pokud přinesete vlastní postupy a další (i jednodušší) příklady. HMOTNOSTNÍ VZTAHY

Více

Laboratorní cvičení z kinetiky chemických reakcí

Laboratorní cvičení z kinetiky chemických reakcí Laboratorní cvičení z kinetiky chemických reakcí LABORATORNÍ CVIČENÍ 1. Téma: Ovlivňování průběhu reakce změnou koncentrace látek. podmínek průběhu reakce. Jednou z nich je změna koncentrace výchozích

Více

Chemie lambda příklady na procvičování výpočtů z rovnic

Chemie lambda příklady na procvičování výpočtů z rovnic Chemie lambda příklady na procvičování výpočtů z rovnic Příklady počítejte podle postupu, který vám lépe vyhovuje (vždy je více cest k výsledku, přes poměry, přes výpočty hmotností apod. V učebnici v kapitole

Více

Obor Aplikovaná chemie ŠVP Aplikovaná chemie, životní prostředí, farmaceutické substance Maturitní témata Chemie

Obor Aplikovaná chemie ŠVP Aplikovaná chemie, životní prostředí, farmaceutické substance Maturitní témata Chemie STŘEDNÍ ŠKOLA INFORMATIKY A SLUŽEB ELIŠKY KRÁSNOHORSKÉ 2069 DVŮR KRÁLOVÉ N. L. Obor Aplikovaná chemie ŠVP Aplikovaná chemie, životní prostředí, farmaceutické substance Maturitní témata Chemie Školní rok:

Více

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY MOLÁRNÍ HMOTNOST LÁTKOVÉ MNOŽSTVÍ PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST AMEDEO AVOGADRO AVOGADROVA KONSTANTA 2 N 2 MOLY ATOMŮ DUSÍKU 2 ATOMY DUSÍKU

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICKÉ REAKCE

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í CHEMICKÉ REAKCE Chemické reakce = proces, během kterého se výchozí sloučeniny mění na nové, reaktanty se přeměňují na... Vazby reaktantů...a nové vazby... Klasifikace reakcí: 1. Podle reakčního tepla endotermické teplo

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Roztoky výpočty koncentrací autor: MVDr. Alexandra Gajová vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

Název: Titrace Savo. Autor: RNDr. Markéta Bludská. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy

Název: Titrace Savo. Autor: RNDr. Markéta Bludská. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Název: Titrace Savo Autor: RNDr. Markéta Bludská Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: chemie a její aplikace, matematika Ročník: 3., ChS (1. ročník

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY Mezi nejrozšířenější práce s plyny v laboratoři patří příprava a důkazy oxidu uhličitého CO 2, kyslíku O 2, vodíku H 2, oxidu siřičitého SO 2 a amoniaku NH 3. Reakcí

Více

SADA VY_32_INOVACE_CH2

SADA VY_32_INOVACE_CH2 SADA VY_32_INOVACE_CH2 Přehled anotačních tabulek k dvaceti výukovým materiálům vytvořených Ing. Zbyňkem Pyšem. Kontakt na tvůrce těchto DUM: pys@szesro.cz Výpočet empirického vzorce Název vzdělávacího

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo šablony: 31 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Anotace: CZ.1.07/1.5.00/3.0

Více

REAKCE V ANORGANICKÉ CHEMII

REAKCE V ANORGANICKÉ CHEMII REAKCE V ANORGANICKÉ CHEMII PaedDr. Ivana Töpferová Střední průmyslová škola, Mladá Boleslav, Havlíčkova 456 CZ.1.07/1.5.00/34.0861 MODERNIZACE VÝUKY Anotace: laboratorní práce z anorganické chemie, realizace

Více

Měření ph nápojů a roztoků

Měření ph nápojů a roztoků Měření ph nápojů a roztoků vzorová úloha (ZŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Kyselý nebo zásaditý roztok? Proč je ocet považován za kyselý roztok? Ocet obsahuje nadbytek (oxoniových kationtů).

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část II. - 9. 3. 2013 Chemické rovnice Jak by bylo možné

Více

Anorganické sloučeniny opakování Smart Board

Anorganické sloučeniny opakování Smart Board Anorganické sloučeniny opakování Smart Board VY_52_INOVACE_210 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 8.,9. Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost

Více

CHSK. Pro hodnocení kvality vod obvykle postačí základní sumární ukazatele. Pro organické látky se jedná zejména o ukazatele:

CHSK. Pro hodnocení kvality vod obvykle postačí základní sumární ukazatele. Pro organické látky se jedná zejména o ukazatele: CHSK Ve vodách mohou být obsažené různé organické látky v širokém rozmezí koncentrací od stopových množství až po majoritní složky podle druhu vod. Vzhledem k této různorodosti se organické látky ve vodách

Více

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK

Učivo. ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické děje - chemická výroba VLASTNOSTI LÁTEK - zařadí chemii mezi přírodní vědy - uvede, čím se chemie zabývá - rozliší fyzikální tělesa a látky - uvede příklady chemického děje ÚVOD DO CHEMIE - vymezení předmětu chemie - látky a tělesa - chemické

Více

PRACOVNÍ LIST EVVO - VODA

PRACOVNÍ LIST EVVO - VODA Projekt Integrovaný vzdělávací systém města Jáchymov Mosty indikátor 06.43.19 PRACOVNÍ LIST EVVO - VODA Úkol: Fyzikální a chemická analýza vody Princip: Vlastním pozorováním získat poznatky o vlastnostech

Více

Chemické děje a rovnice procvičování Smart Board

Chemické děje a rovnice procvičování Smart Board Chemické děje a rovnice procvičování Smart Board VY_52_INOVACE_216 Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemie Ročník: 9. Projekt EU peníze školám Operačního programu Vzdělávání pro konkurenceschopnost

Více

Stanovení pufrační a neutralizační kapacity ve vodách, výluzích a suspenzích

Stanovení pufrační a neutralizační kapacity ve vodách, výluzích a suspenzích Ústav inženýrství ochrany životního prostředí, FT, UTB Zlín -1- Stanovení pufrační a neutralizační kapacity ve vodách, výluzích a suspenzích 1. Teoretická část Hodnota ph a oxidačně-redukčního potenciálu

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY

DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY DESINFEKCE A VYUŽITÍ CHLORDIOXIDU PŘI ÚPRAVĚ BAZÉNOVÉ VODY.1Úvod Autor: Ing. František Svoboda Csc. Zvážení rizik tvorby vedlejších produktů desinfekce (DBP) pro úpravu konkrétní vody je podmíněno návrhem

Více

Odkyselování stabilizace vody

Odkyselování stabilizace vody Odkyselování stabilizace vody 1 stabilizace vody = úprava do vápenatouhličitanové rovnováhy odkyselování = odstraňování agresivního oxidu uhličitého důvod = korozivní účinky CO 2 na kovové a betonové konstrukce

Více

Vliv znečisťujících látek ve vodě na účinnost praní

Vliv znečisťujících látek ve vodě na účinnost praní Leonardo da Vinci Project Udržitelný rozvoj v průmyslových prádelnách Modul 6 Energie v prádelnách Kapitola 1 Vliv znečisťujících látek ve vodě na účinnost praní Modul 6 Speciální aspekty Kapitola 1 Vliv

Více

KONCENTRACE KYSLÍKU VE VODĚ

KONCENTRACE KYSLÍKU VE VODĚ KONCENTRACE KYSLÍKU VE VODĚ Eva Hojerová, PřF JU v Českých Budějovicích Stanovení koncentrace rozpuštěného O 2 ve vodě Koncentrace O 2 ve vodě je významným parametrem běžně zjišťovaným při výzkumu vlastností

Více

Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. KRAJSKÉ KOLO kategorie D

Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády. 46. ročník 2009/2010. KRAJSKÉ KOLO kategorie D Ministerstvo školství, mládeže a tělovýchovy Ústřední komise Chemické olympiády 46. ročník 2009/2010 KRAJSKÉ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH TEORETICKÁ ČÁST (60 bodů) Úloha 1 Vlastnosti prvků 26

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Chelatometrie. Chromatografie. autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační

Více

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice

Ing. Jana Vápeníková: Látkové množství, chemické reakce, chemické rovnice Látkové množství Symbol: n veličina, která udává velikost chemické látky pomocí počtu základních elementárních částic, které látku tvoří (atomy, ionty, molekuly základní jednotkou: 1 mol 1 mol kterékoliv

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 21.03.2013 Číslo DUMu: VY_32_INOVACE_12_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 21.03.2013 Číslo DUMu: VY_32_INOVACE_12_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 21.03.2013 Číslo DUMu: VY_32_INOVACE_12_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

Problematika RAS v odpadních vodách z povrchových úprav

Problematika RAS v odpadních vodách z povrchových úprav Problematika RAS v odpadních vodách z povrchových úprav Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou Problematika RAS v odpadních vodách se v současné době stává noční můrou provozovatelů technologií

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

VI. Disociace a iontové rovnováhy

VI. Disociace a iontové rovnováhy VI. Disociace a iontové 1 VI. Disociace a iontové 6.1 Základní pojmy 6.2 Disociace 6.3 Elektrolyty 6.3.1 Iontová rovnováha elektrolytů 6.3.2 Roztoky ideální a reálné 6.4 Teorie kyselin a zásad 6.4.1 Arrhenius

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Název materiálu: Opakovací test

Více

2.12 Vyvíjení CO 2 bublinky kolem nás. Projekt Trojlístek

2.12 Vyvíjení CO 2 bublinky kolem nás. Projekt Trojlístek 2. Vlastnosti látek a chemické reakce 2.12 Vyvíjení CO 2 bublinky kolem nás. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová

Více

Chemie paliva a maziva cvičení, pracovní sešit, (II. část).

Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Chemie paliva a maziva cvičení, pracovní sešit, (II. část). Ing. Eliška Glovinová Ph.D. Tato publikace je spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Byla vydána

Více

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli 10.10.2008 3 Výpočtový seminář z Procesního inženýrství podzim 2008 Bilance Materiálové a látkové 10.10.2008 1 Tématické okruhy bilance - základní pojmy bilanční schéma způsoby vyjadřování koncentrací a přepočtové

Více

Vyjadřování výsledků chemického a fyzikálního rozboru vod.

Vyjadřování výsledků chemického a fyzikálního rozboru vod. Vyjadřování výsledků chemického a fyzikálního rozboru vod. Kvalitativní vyjádření výsledků rozboru vody chemickým vzorcem (např. KOH, Ca) značkou (např. Σc, Σ kationty ) zkratkou názvu stanovených látek

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav

Více

Rekonstrukce úpravny Nová Ves v Ostravě

Rekonstrukce úpravny Nová Ves v Ostravě Rekonstrukce úpravny Nová Ves v Ostravě Ing. Arnošt Vožeh Hydroprojekt CZ a.s., Táborská 31, 140 16 Praha 4 1. Úvod 2. Popis stávajícího stavu 3. Zdroj a kvalita surové vody 4. Návrh technologie úpravny

Více

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Fe 3+ Fe 3+ Fe 3+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ 2) Vyber správné o rtuti:

Více

Chemie 8.ročník. Rozpracované očekávané výstupy žáka Učivo Přesuny, OV a PT. Pozorování, pokus a bezpečnost práce předmět chemie,význam

Chemie 8.ročník. Rozpracované očekávané výstupy žáka Učivo Přesuny, OV a PT. Pozorování, pokus a bezpečnost práce předmět chemie,význam Chemie 8.ročník Zařadí chemii mezi přírodní vědy. Pozorování, pokus a bezpečnost práce předmět chemie,význam Popisuje vlastnosti látek na základě pozorování, měření a pokusů. těleso,látka (vlastnosti látek)

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

Sešit pro laboratorní práci z chemie

Sešit pro laboratorní práci z chemie Sešit pro laboratorní práci z chemie téma: Příprava oxidu měďnatého autor: ing. Alena Dvořáková vytvořeno při realizaci projektu: Inovace školního vzdělávacího programu biologie a chemie registrační číslo

Více

Technologický audit a návrh úprav technologické linky pro rekonstrukci ÚV Horka

Technologický audit a návrh úprav technologické linky pro rekonstrukci ÚV Horka Technologický audit a návrh úprav technologické linky pro rekonstrukci ÚV Horka doc. Ing. Petr Dolejš, CSc. 1,2), Ing. Klára Štrausová, Ph.D. 1), Ing. Pavel Dobiáš 1) 1) W&ET Team, Box 27, 370 11 České

Více

VIZP VODOHOSPODÁŘSKÉ INŽENÝRSTVÍ A ŽIVOTNÍ PROSTŘEDÍ Přednáška č. 6 - Zdroje vody, zásobování vodou a úprava vody pro účely zásobování, doprava vody

VIZP VODOHOSPODÁŘSKÉ INŽENÝRSTVÍ A ŽIVOTNÍ PROSTŘEDÍ Přednáška č. 6 - Zdroje vody, zásobování vodou a úprava vody pro účely zásobování, doprava vody Inovace předmětu Vodohospodářské inženýrství a životní prostředí v rámci projektu Inovace bakalářského programu Stavební inženýrství pro posílení profesního zaměření absolventů CZ.2.17/3.1.00/36033 financovaném

Více

Filtry. Pískové filtry

Filtry. Pískové filtry Filtry Pískové filtry Použití: Pískové filtry se používají v průmyslových a energetických provozech k filtraci chladící a technologické vody, k filtraci čiřené vody za sedimentací, ke koagulační filtraci

Více

Střední odborná škola a Střední odborné učiliště Cesta brigádníků 693, 278 01 Kralupy nad Vltavou Česká republika www.sosasoukralupy.

Střední odborná škola a Střední odborné učiliště Cesta brigádníků 693, 278 01 Kralupy nad Vltavou Česká republika www.sosasoukralupy. Laboratorní zpráva Název práce: Stanovení ibuprofenu Jednotky učení Dvojklikem na políčko označte LU Unit Title 1 Separation and Mixing Substances 2 Material Constants Determining Properties of Materials

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav

Více

Rekonstrukce úpraven vody Frýdlant a Bílý Potok, volba technologií pro rekonstrukci úpravny vody

Rekonstrukce úpraven vody Frýdlant a Bílý Potok, volba technologií pro rekonstrukci úpravny vody Rekonstrukce úpraven vody Frýdlant a Bílý Potok, volba technologií pro rekonstrukci úpravny vody Ing. MUDr. Jindřich Šesták 1), Ing. Petr Olyšar 2) 1) HYDROPROJEKT CZ a.s., 2) Frýdlantská vodárenská společnost,

Více

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2.

Autor: Tomáš Galbička www.nasprtej.cz Téma: Roztoky Ročník: 2. Roztoky směsi dvou a více látek jsou homogenní (= nepoznáte jednotlivé částečky roztoku - částice jsou menší než 10-9 m) nejčastěji se rozpouští pevná látka v kapalné látce jedna složka = rozpouštědlo

Více

Vitamin C důkaz, vlastnosti

Vitamin C důkaz, vlastnosti Předmět: Doporučený ročník: 4. - 5. ročník Zařazení do ŠVP: biochemie, přírodní látky, vitaminy Doba trvání pokusu: 45 minut Seznam pomůcek: zkumavky, kádinky, pipety (automatické), míchací tyčinky, odměrné

Více

Názvosloví anorganických sloučenin

Názvosloví anorganických sloučenin Chemické názvosloví Chemické prvky jsou látky složené z atomů o stejném protonovém čísle (počet protonů v jádře atomu. Každému prvku přísluší určitý mezinárodní název a od něho odvozený symbol (značka).

Více

Kyselost a zásaditost vodných roztoků

Kyselost a zásaditost vodných roztoků Kyselost a zásaditost vodných roztoků Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je. Mgr. Vlastimil Vaněk. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z

Více

Laboratoř CHVaK. č. 4127 posouzená u ASLAB dle ČSN EN ISO/IEC 17025:2005

Laboratoř CHVaK. č. 4127 posouzená u ASLAB dle ČSN EN ISO/IEC 17025:2005 Laboratoř CHVaK č. 4127 posouzená u ASLAB dle ČSN EN ISO/IEC 17025:2005 Odběry vzorků, rozbory pitných vod, povrchových vod, odpadních vod a kalů, odborné poradenství Laboratoř CHVaK Ing. Jaroslav Jiřinec

Více

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě

SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě SOUHRNNÝ PŘEHLED nově vytvořených / inovovaných materiálů v sadě Název projektu Zlepšení podmínek vzdělávání SZŠ Číslo projektu CZ.1.07/1.5.00/34.0358 Název školy Střední zdravotnická škola, Turnov, 28.

Více

CHEMICKÉ VÝPOČ TY S LOGIKOU II

CHEMICKÉ VÝPOČ TY S LOGIKOU II OSTRAVSKÁ UNIVERZITA [ TADY KLEPNĚ TE A NAPIŠTE NÁZEV FAKULTY] FAKULTA CHEMICKÉ VÝPOČ TY S LOGIKOU II TOMÁŠ HUDEC OSTRAVA 2003 Na této stránce mohou být základní tirážní údaje o publikaci. 1 OBSAH PŘ EDMĚ

Více

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST CHEMICKÉ VÝPOČTY HMOTNOST REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST VÝPOČET HMOTNOSTI REAKTANTŮ A PRODUKTŮ PŘI CHEMICKÉ REAKCI

Více

Výukový materiál zpracován v rámci projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_INOVACE_CHE_417 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Pracovní postupy k experimentům s využitím PC

Pracovní postupy k experimentům s využitím PC Inovace profesní přípravy budoucích učitelů chemie CZ..07/2.2.00/5.0324 Prof. PhDr. Martin Bílek, Ph.D. Pracovní postupy k experimentům s využitím PC (teplotní čidlo Vernier propojeno s PC) Stanovení tepelné

Více

Výpočty podle chemických rovnic

Výpočty podle chemických rovnic Výpočty podle cheických rovnic Cheické rovnice vyjadřují průběh reakce. Rovnice jednak udávají, z kterých prvků a sloučenin vznikly reakční produkty, jednak vyjadřují vztahy ezi nožstvíi jednotlivých reagujících

Více

CHEMIE výpočty. 5 z chemických ROVNIC. 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice

CHEMIE výpočty. 5 z chemických ROVNIC. 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice CHEMIE výpočty 5 z chemických ROVNIC 1 vyučovací hodina chemie 9. ročník Mgr. Renata Zemková ZŠ a MŠ L. Kuby 48, České Budějovice 1 definice pojmu a vysvětlení vzorové příklady test poznámky pro učitele

Více

DUM VY_52_INOVACE_12CH07

DUM VY_52_INOVACE_12CH07 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH07 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 8. a 9. vzdělávací oblast: vzdělávací obor:

Více

Tvrdost pitné vody. Potřebujete-li rychle zjistit, jak tvrdá voda je ve vaší obci, klikněte ZDE.

Tvrdost pitné vody. Potřebujete-li rychle zjistit, jak tvrdá voda je ve vaší obci, klikněte ZDE. Tvrdost pitné vody Potřebujete-li rychle zjistit, jak tvrdá voda je ve vaší obci, klikněte ZDE. Tvrdostí vody se rozumí suma koncentrace vápníku a hořčíku ve vodě. Pro hodnocení vody z technického hlediska

Více

Charakteristika vyučovacího předmětu Chemie

Charakteristika vyučovacího předmětu Chemie Charakteristika vyučovacího předmětu Chemie Obsahové, časové a organizační vymezení předmětu Chemie Obsah předmětu Chemie je zaměřen na praktické využití poznatků o chemických látkách, na znalost a dodržování

Více

Použití injektorů pro aeraci vody

Použití injektorů pro aeraci vody Dolejš P., Dobiáš P.: Použití injektorů pro aeraci vody, Zborník prednášok z XV. konferencie s medzinárodnou účasťou PITNÁ VODA, Trenčianské Teplice 8. - 10. října 2013, s. 97-102, VodaTím s.r.o, ISBN

Více

Zařazení do výuky Experiment je vhodné zařadit v rámci učiva chemie v 8. třídě (kyseliny, zásady, ph roztoků).

Zařazení do výuky Experiment je vhodné zařadit v rámci učiva chemie v 8. třídě (kyseliny, zásady, ph roztoků). Název: Dýchání do vody Úvod Někdy je celkem jednoduché si v chemické laboratoři nebo dokonce i doma připravit kyselinu. Pokud máte kádinku, popř. skleničku, a brčko, tak neváhejte a můžete to zkusit hned!

Více

2.09 Oxidačně-redukční vlastnosti glukózy. Projekt Trojlístek

2.09 Oxidačně-redukční vlastnosti glukózy. Projekt Trojlístek 2. Vlastnosti látek a chemické reakce 2.09 Oxidačně-redukční vlastnosti glukózy. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová

Více

Při průchodu proudu iontovými vodiči dochází k transportním, tedy nerovnovážným jevům. vodivost elektrolytů elektrolytický převod I I U

Při průchodu proudu iontovými vodiči dochází k transportním, tedy nerovnovážným jevům. vodivost elektrolytů elektrolytický převod I I U TNSPOTNÍ JEVY V OZTOCÍCH ELETOLYTŮ Při průchodu proudu iontovými vodiči dochází k transportním, tedy nerovnovážným jevům. vodivost elektrolytů elektrolytický převod Ohmův zákon: VODIVOST ELETOLYTŮ U I

Více

test zápočet průměr známka

test zápočet průměr známka Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte

Více

A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny. Čas potřebný k prostudování učiva kapitoly: 0,5 + 2 hodiny (teorie + řešení úloh)

A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny. Čas potřebný k prostudování učiva kapitoly: 0,5 + 2 hodiny (teorie + řešení úloh) III. Chemické vzorce 1 1.CHEMICKÉ VZORCE A. Výpočty z chemických vzorců B. Určení vzorce sloučeniny Klíčová slova této kapitoly: Chemický vzorec, hmotnostní zlomek w, hmotnostní procento p m, stechiometrické

Více

1.07 Přírodní indikátor ph. Projekt Trojlístek

1.07 Přírodní indikátor ph. Projekt Trojlístek 1. Chemie a společnost 1.07 Přírodní indikátor ph. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová skupina Metodika je určena

Více

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD.

KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení. Ing. Miroslav Richter, PhD. KTEV Fakulty životního prostředí UJEP v Ústí n.l. Průmyslové technologie 3 příklady pro cvičení Ing. Miroslav Richter, PhD., EUR ING 2014 Materiálové bilance 3.5.1 Do tkaninového filtru vstupuje 10000

Více

Relativní atomová hmotnost

Relativní atomová hmotnost Relativní atomová hmotnost 1. Jak se značí relativní atomová hmotnost? 2. Jaké jsou jednotky Ar? 3. Zpaměti urči a) Ar(N) b) Ar (C) 4. Bez kalkulačky urči, kolika atomy kyslíku bychom vyvážili jeden atom

Více

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření

Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Laboratoř Metalomiky a Nanotechnologií Praktický kurz Monitorování hladiny metalothioneinu po působení iontů těžkých kovů Vyhodnocení měření Vyučující: Ing. et Ing. David Hynek, Ph.D., Prof. Ing. René

Více

Trojské trumfy. pražským školám BARVY U ŽIVOČICHŮ A ROSTLIN. projekt CZ.2.17/3.1.00/32718 EVROPSKÝ SOCIÁLNÍ FOND

Trojské trumfy. pražským školám BARVY U ŽIVOČICHŮ A ROSTLIN. projekt CZ.2.17/3.1.00/32718 EVROPSKÝ SOCIÁLNÍ FOND EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Pracovní Didaktický list balíček č. 7 č. 9 Trojské trumfy pražským školám projekt CZ.2.17/3.1.00/32718 BARVY U ŽIVOČICHŮ A ROSTLIN A B?

Více