Hydrodynamická stabilita. atmosféry a nelineární. problémy geofyzikální. hydrodynamiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Hydrodynamická stabilita. atmosféry a nelineární. problémy geofyzikální. hydrodynamiky"

Transkript

1

2 Anotace Kniha e určena záemcům o mechaniku tekutin a nelineární dynamiku v geofyzikální hydrodynamice. Publikace e mimo iné zamýšlena ako pokročilý studiní text doplňuící studiní materiál k přednáškám Vybrané partie geofyzikální hydrodynamiky a Vlnové pohyby a energetika atmosféry konané na Matematicko-fyzikální fakultě Univerzity Karlovy v Praze. Některé partie monografie však istě nadou uplatnění i v kurzu Dynamické meteorologie nebo hydrodynamiky obecně. Kniha seznamue čtenáře s technikami vyšetření stability hydrodynamického proudění ak v lineárním, tak nelineárním přiblížení (část I.). Druhá část knihy poednává o obecněších problémech nelineární geofyzikální hydrodynamiky a netradičních postupech při studiu proudění tekutin. Dodeme, že právě nelineární analýza e perspektivním oborem moderní matematiky, což dobře dokumentue předkládaná monografie. Publikace e určena pracovníkům se zaměřením na dynamiku tekutin na univerzitách i ve výzkumných ústavech. Dobře však poslouží i studentům a doktorandům na vysokých školách univerzitního i technického směru, a to i takových oborů ako e fyzika atmosféry nebo matematické a počítačové modelování.

3

4 Hydrodynamická stabilita atmosféry a nelineární problémy geofyzikální hydrodynamiky Jiří Horák *), Aleš Raidl +) *) Ústav fyziky atmosféry AV ČR +) Univerzita Karlova v Praze, Matematicko-fyzikální fakulta, katedra meteorologie a ochrany prostředí

5 OBSAH Předmluva...9 ČÁST I... ÚVOD... PERTURBAČNÍ TEORIE...6. Perturbační pohybové rovnice...7 NORMÁLNÍ MODY... 4 KELVINOVA-HELMHOLTZOVA INSTABILITA, INSTABILITA TAYLOROVA A HELMHOLTZOVA TYPU PERTURBAČNÍ STAVOVÁ A TERMODYNAMICKÁ ROVNICE STABILITA VNITŘNÍCH GRAVITAČNÍCH (VZTLAKOVÝCH) VLN NELINEÁRNÍ ZOBECNĚNÍ METODY ČÁSTICE KRITICKÉ RICHARDSONOVO ČÍSLO Klasické odvození Milesova-Howardova teorému Odvození Milesova-Howardova teorému na základě energetických úvah a metody částic STABILITA RAYLEIGHOVY-BÉNARDOVY KONVEKCE...57 STABILITNÍ KRITÉRIA VYPLÝVAJÍCÍ Z RAYLEIGHOVY ROVNICE...7 STABILITA FRONTÁLNÍCH VLN...8 INERČNÍ INSTABILITA Základní mechanismus inerční instability Nelineární zobecnění podmínek inerční instability... SYMETRICKÁ INSTABILITA BAROTROPNÍ A BAROKLINNÍ INSTABILITA Z HLEDISKA PŘEMĚNY ENERGIE... 5 FORMULACE ROVNIC PRO STUDIUM STABILITY KVAZIGEOSTROFICKÝCH ATMOSFÉRICKÝCH POHYBŮ NUTNÁ PODMÍNKA BAROTROPNÍ INSTABILITY Příklady možných barotropně instabilních profilů proudění Zobecnění Kuovy nutné podmínky barotropní instability...9 5

6 7 BAROKLINNÍ INSTABILITA Základní mechanismus baroklinní instability Baroklinní instabilita spoitého modelu na f rovině Baroklinní instabilita v diskrétním dvovrstevnatém modelu...54 LITERATURA K ČÁSTI I... 7 ČÁST II...7 ÚVOD...75 O SYSTÉMECH HYDRODYNAMICKÉHO TYPU K definici systémů hydrodynamického typu Ekvivalence tripletu (neednoduššího netriviálního systému hydrodynamického typu) a Eulerových diferenciálních rovnic rotace...9. Strukturální vlastnosti kvadraticky nelineárních systémů. Afinní invarianty a kriterium existence kvadratického integrálu v systémech. řádu Strukturální vlastnosti kvadraticky nelineárních systémů. Afinní invarianty a kriterium existence kvadratického integrálu v systémech. řádu Integrace pohybových rovnic tripletu....6 Asymptotické tvary řešení a kvadratické formy dynamického tripletu vyádřené pomocí elementárních funkcí K statistickému popisu systémů hydrodynamického typu....8 Komplexifikace systémů hydrodynamického typu. Komplexní triplet v geofyzikální hydrodynamice...4 O SYMETRIZOVANÝCH NELINEÁRNÍCH SYSTÉMECH.... Symetrizované systémy a eich obecné vlastnosti.... Symetrizované komplexní systémy... 4 SYSTÉMY S DVĚMA KVADRATICKÝMI INTEGRÁLY KVADRATICKY NELINEÁRNÍ SYSTÉMY SE DVĚMA INTEGRÁLY POHYBOVÉ ROVNICE n-dimenzionálního TUHÉHO TĚLESA A SYMETRIZOVANÉ SYSTÉMY PRVNÍ INTEGRÁLY SYSTÉMU EULEROVÝCH ROVNIC SIMPLEKTICKÁ STRUKTURA NA ORBITÁCH, INVOLUCE INTEGRÁLŮ A ÚPLNÁ INTEGRABILITA SYSTÉMU EULEROVÝCH ROVNIC POHYBOVÉ ROVNICE ZOBECNĚNÉHO TUHÉHO TĚLESA A JEJICH VZTAH S ROVNICEMI HYDRODYNAMIKY...56 POHYBOVÉ ROVNICE n-dimenzionálního TĚŽKÉHO SETRVAČNÍKU...64 INTEGRACE KOMPLEXNÍ ANALOGIE POHYBOVÝCH ROVNIC n-dimenzionálního TĚŽKÉHO TĚLESA...67 GEODETIKY NA RIEMANNOVÝCH VARIETÁCH...74 SOUVISLOSTI S NELINEÁRNÍMI SYSTÉMY MECHANIKY TEKUTIN Adungované rovnice systémů hydrodynamického typu K problému uzavírání řetězce rovnic pro momenty trodimenzionálního systému Navierových-Stokesových rovnic při velkých Reynoldsových číslech Arnoldova konstrukce zobecněného tuhého tělesa Kelvinův (Thomsonův) teorém a Moffatův hydrodynamický invariant Zobecněné tuhé těleso a dynamika globálních barotropních a baroklinních toků v geofyzikální hydrodynamice Diferenciální formy...7 6

7 .7 Teorém Noetherové....8 Simplektická struktura na orbitách koadungované reprezentace a levoinvariantní metriky Liouvilleův teorém a Hamiltonovy systémy...6. Hamiltonův formalismus na Lieových grupách...8. Matematické úlohy dynamiky stratifikované tekutiny...4. Tichonovovy systémy. Pomalá a rychlá dynamika...7 ZÁVĚREČNÉ POZNÁMKY...74 LITERATURA K ČÁSTI II

8 PŘEDMLUVA Kniha e určena především posluchačům meteorologie a klimatologie na Matematicko-fyzikální fakultě Univerzity Karlovy v Praze. Publikace e mimo iné zamýšlena ako pokročilý studiní materiál k přednášce Vybrané partie geofyzikální hydrodynamiky určené pro poslední ročník magisterského studia, popřípadě doktorského studia meteorologie a klimatologie. Některé partie monografie však istě nadou uplatnění i v kurzu Dynamické meteorologie nebo hydrodynamiky obecně. Záměrem autorů e seznámit studenty uvedené specializace a případné další záemce s lineární analýzou stability atmosférických procesů, s obecněšími problémy nelineární geofyzikální hydrodynamiky a s netradičními postupy při studiu proudění tekutin, s nimiž se záemci mohou setkat v soudobé literatuře. Těmito postupy rozumíme matematické struktury respektuící současný stav lineární a nelineární analýzy, ve druhém případě velkou měrou přihlížeící k algebraickým metodám. Právě nelineární analýza reprezentue eden z perspektivních oborů matematiky a eí zaměření na fyzikální disciplíny se výrazně proevue v poslední době i při matematickém modelování v dynamice tekutin. To však neznamená, že některé eich problémy nelze řešit lineární analýzou. Svědčí o tom prvá část předkládané monografie, která ako celek tématicky navazue na díla o deterministickém chaosu, vydaná nakladatelstvím Academia v letech 99, 996 a. S tím souvisí ak výběr látky, tak i metody výkladu. Další informace o celkovém zaměření monografie nalezne záemce v úvodních kapitolách. Z matematických prostředků předpokládáme u čtenáře znalost základů diferenciálního a integrálního počtu, diferenciální geometrie a vektorové analýzy. S použitím náročněších partií matematiky se čtenář setká v částech zaměřených na nelineární systémy hydrodynamiky, reprezentovanými konečnědimenzionálními aproximacemi výchozích parciálních diferenciálních rovnic evolučních rovnic dynamiky atmosféry. Jeich součástí e i teorie 9

9 grup a eí speciální oblast, teorie reprezentací. Snažili sme se, aby kniha, pokud e to možné, tvořila uzavřený celek a nenutila čtenáře sáhnout k doplňuící matematické literatuře. Záemcům, kteří chtěí hlouběi proniknout do matematického modelování atmosférických pohybů kvadraticky nelineárními systémy hydrodynamického typu, doporučueme ke studiu kapitoly 7 a 8 z knihy J. Horáka, L. Krlína a A. Raidla Deterministický chaos a eho fyzikální aplikace (Academia, Praha ), zaměřené na matematické modely klimatu a na nelineární analýzu chaotických časových řad. Samotné matematice klimatu e věnováno dílo Matematické modelování v problémech klimatu, které vyšla tamtéž v roce 6. O autorství knihy se autoři podělili takto: Jiří Horák sepsal druhou část (II.) a Aleš Raidl e autorem první části (I.). Ještě e třeba učinit poznámku o odkazování na rovnice. Protože se prakticky v části I. neodkazueme na rovnice z části II. a obráceně, sou rovnice v obou částech (pro zkrácení) číslovány odděleně. Autoři vyadřuí vděčnost prof. RNDr. Janu Bednářovi, CSc. za péči a úsilí, které věnoval tomu, aby publikace spatřila světlo světa. Za nakreslení některých obrázků z první části knihy a všech obrázků z eí druhé části autoři děkuí kolegovi RNDr. Jiřímu Mikšovskému, Ph.D. Dík patří rovněž manželce druhého z autorů (A. R.) PhDr. Marině Raidlové za pečlivé přepsání a převedení do elektronické podoby celé druhé části knihy. Speciální poděkování patří doc. RNDr. Otakaru Zikmundovi, CSc. eho podrobné přečtení rukopisu a navržené úpravy přispěly k odbornému i azykovému zpřesnění textu. Autoři

10 ČÁST I

11

12 ÚVOD První část knihy poednává o hydrodynamické stabilitě, respektive instabilitě, neboť právě instabilní proudění se bude těšit našemu zvýšenému zámu. Výběr látky byl uspořádán tak, aby podával určitý přehled o stabilitě atmosférického proudění různých měřítek. Výklad začínáme kapitolou o perturbační metodě a poruchách vlnového charakteru, které hraí ústřední roli v celé první polovině monografie. Další význačnou úlohu při výkladu představue různým způsobem modifikovaná metoda vzduchové částice, kterou vychylueme z eí rovnovážné polohy několika způsoby, a to vertikálně, horizontálně nebo šikmo. Ačkoliv stabilitu atmosféry zkoumáme povětšinou na základě linearizovaných rovnic, v některých případech provádíme i zobecnění na nelineární situace. Výklad postupue od zkoumání stability atmosférických pohybů menších měřítek, aké představue například Kelvinova-Helmholtzova instabilita, přes popis Rayleighovy-Bénardovy konvekce následovaný rozborem instability mezoměřítka (symetrická a částečně inerční instabilita), až po problematiku stability kvazigeostrofických pohybů synoptického měřítka konkrétně výkladem o barotropní a zeména baroklinní instabilitě. Do publikace sme zařadili také některé části, které tvoří dnes iž klasické partie teorie hydrodynamické stability, například Milesův-Howardův teorém, polokruhový teorém a Rayleighův, popřípadě Førtoftův teorém. U čtenáře první části knihy se všeobecně předpokládá znalost základů hydrodynamiky, které lze získat z výborných monografií Batchelora [] a Landaua, Lifsitze [], a dále vědomostí z oblasti proudění vzduchu v atmosféře, tzn. z dynamické meteorologie. V tomto směru ako zdro informací dobře poslouží Holtonova kniha [], Duttonova monografie [4], z česky psané odborné literatury také příručka Pechaly a Bednáře [5]. Omezený prostor, který pro výklad problematiky máme, nám neumožnil zařadit řadu zaímavých statí o hydrodynamické stabilitě. Máme zde na

13 mysli zeména kapitoly o nelineárních interakcích mezi základním stavem a perturbacemi. Rovněž, až na výimku představovanou Rayleighovou- Bénardovou konvekcí, neuvažueme disipaci. Samostatnou kapitolu by si istě vyžádálo i studium barotropní stability Rossbyho vln. Potřebné informace v tomto směru istě čtenář nalezne v monografiích (seřazeno chronologicky) Lina [6], Chandrasekhara [7], Drazina a Reida [8], popřípadě Gonrèche a Mannevilla [9]. Z hlediska geofyzikální hydrodynamiky lze záemcům doporučit vynikaící knihu Pedloskeho []. Co e vlastně předmětem zámu teorie hydrodynamické stability? Tato teorie studue stabilitu určitého základního, chcete-li výchozího stavu, vůči poruchám různého charakteru, které na tento základní stav působí. Poruchy nebo-li perturbace mohou díky stabilitě základního stavu zanikat, nebo naopak v instabilním případě s časem sílit. Velmi často uvažueme, že perturbace maí na počátku infinitezimální charakter. Jeich případné zvětšování však může představovat spouštěcí mechanismus, kdy kupříkladu ustálené laminární proudění přede v neuspořádané, chaotické proudění turbulenci. Poněkud zednodušeně a s istou dávkou nadsázky lze říci, že proevy počasí spočívaí v nestabilitě atmosférické cirkulace například podle moderních představ soudobé dynamické meteorologie vznikaí synoptické poruchy ve středních zeměpisných šířkách díky baroklinní instabilitě původně zonálního západního proudění. Prostřednictvím baroklinní instability tak může doít k přestavbě zonální atmosférické cirkulace v cyklonální. Studium vzáemného působení fluktuací a základního stavu se rozpadá na dva zásadní problémy. Na určení základního stavu osvobozeného od fluktuací a na popis evoluce poruch (fluktuací). Druhým úkolem se budeme vesměs zabývat v následuících kapitolách, kdy odvodíme rovnice pro perturbace a tyto poruchy budeme povětšinou uvažovat ve tvaru vln. Proto se nyní zastavme u problematiky stanovení základního stavu. To není při studiu pohybů v atmosféře tak ednoduché, ak by se na první pohled mohlo zdát. Mohlo by nás napadnout, že takový základní stav by bylo možné získat časovým průměrováním proudění přes dostatečně dlouhý časový interval; podobný postup se vskutku používá například při studiu turbulence. Je užitečné si však uvědomit, že takto získaný akýsi střední základní stav iž obsahue a e ovlivněn fluktuacemi, od kterých bychom e chtěli oprostit. Fluktuace totiž mohou vést ke vznikům toků tepla a hybnosti s obecně nenulovými časovými průměry. Časově vystředované proudění tak zahrnue i existuící fluktuace. Jak v této souvislosti poznamenává Pedlosky [], časově průměrované proudění se obvykle eví stabilněší než skutečný stav bez fluktuací. Neznalost základního stavu nás tedy nutí k eho definování. Musí to být však definice dostatečně smysluplná. V atmosféře obvy- 4

14 kle předpokládáme, že základní stav e tvořen zonálním geostrofickým prouděním. To dobře odpovídá podmínkám, když studueme stabilitu pohybů velkého měřítka. V práci se snažíme nalézt istý kompromis mezi tím, aby na edné straně byl základní stav atmosféry dostatečně ednoduchý a mohli sme získané rovnice řešit bez použití metod numerické matematiky, a na druhé straně dosti složitý na to, aby výsledný model popisoval vlastnosti atmosféry dostatečně věrně. Naštěstí se ukazue, ak uvidíme z dalšího výkladu, že i poměrně ednoduchá konfigurace základního stavu, například při studiu baroklinní instability, uspokoivě postihue řadu skutečných rysů zemské atmosféry. 5

15 PERTURBAČNÍ TEORIE Úlohy dynamické meteorologie a geofyzikální hydrodynamiky vůbec sou spoeny s nutností řešit soustavu hydrodynamických rovnic, t. tří pohybových rovnici, rovnice kontinuity, stavové rovnice a první hlavní věty termodynamické. Zmíněnou soustavu lze psát v mnoha tvarech, z nichž edním z možných e tento: v + ( v ) v = α p Ω v + g + f r, (.a) t dα α = + v α = α v, (.b) dt t pα = RT, (.c) dq dt cp dt = α dt d p d t. (.d) Souřadnicovou soustavu O(x,y,z) volíme pravotočivou, obvykle pevně spoenou s rotuící Zemí tak, že osa x míří k východu, osa y na sever a osa z kolmo vzhůru. Čas značíme t, v se složkami (u, v, w) představue rychlost proudění, p e tlak, Ω (, Ω cosϕ, Ω sinϕ) e úhlová rychlost rotace Země, kterou v dostatečně přesném přiblížení považueme za konstantní (Ω = 7,9 5 s, ϕ e zeměpisná šířka). Tíhové zrychlení Země e reprezentováno vektorem g (,, g) a f r značí sílu tření. Veličina α představue měrný obem, souviseící s hustotou ρ vztahem α = /ρ, R e měrná plynová konstanta, T teplota a q e teplo vztažené na ednotku hmoty dodané, nebo odebrané studované soustavě. Na tomto místě poznameneme, že v případě nutnosti, pracueme-li například s oceánem, e nutné soustavu hydrodynamických rovnic obohatit o další rovnice, typicky o rovnici salinity (slanosti) a vhodným způsobem upravit i stavovou rovnici; viz např. []. 6

16 Analytické řešení soustavy (.) není v obecném případě známo, zeména díky existenci nelineárních členů. Jeí řešení tedy musíme hledat buď pomocí numerické integrace, nebo přistoupit k zavedení zednodušuících předpokladů. Vhodnou metodou, která zednodušue výchozí rovnice, e perturbační teorie. Spočívá v tom, že studované proudění považueme za součet dvou toků (proudění): základního stavu osvobozeného od fluktuací, a malých poruch (perturbací). Přitom předpokládáme, že ) základní stav splňue soustavu rovnic (.), ) výsledné proudění (základní stav + perturbace) splňue soustavu rovnic (.). Předpokládáme-li navíc, že ) poruchové (perturbační) veličiny sou řádově menší než im odpovídaící veličiny popisuící základní stav, hovoříme o lineární perturbační metodě. Hydrodynamické rovnice napsané pro výsledný stav zednodušíme pomocí rovnic (.), napsaných pro základní proudění, eich vzáemným odečtením. Předpoklad ) nám pak navíc umožňue zanedbat v rovnicích členy, které sou nelineární vzhledem k poruchám. Získáme tak rovnice popisuící chování poruch. Tyto rovnice pak nazýváme perturbačními rovnicemi.. Perturbační pohybové rovnice Pro ilustraci nyní odvodíme perturbační pohybové rovnice. Veličiny vztahuící se k základnímu stavu označíme pruhem, tzn. v, α, p. Poruchové veličiny označíme svislou čárkou, tzn. v, α, p reprezentuí postupně perturbace v poli rychlosti proudění, měrného obemu a tlaku. Zopakume znovu pro přehlednost, že základní stav e dán veličinami v, α, p, výsledný stav e dán veličinami v + v, α + α, p + p. Pochopitelně vezmeme-li v úvahu i rovnice (.c) a (.d), sme nuceni uvažovat i případné poruchy v poli teploty atd., ale v tomto ilustrativním případě, kdy používáme pouze pohybové rovnice, vystačíme s poruchami v poli rychlosti, měrného obemu a tlaku. Podle předpokladu ) platí pohybová rovnice pro základní stav, tedy v + ( v ) v = α p Ω v + g, t 7

17 kde sme pro ednoduchost zanedbali tření. Podle předpokladu ) platí pohybová rovnice (.a) i pro výsledný stav, tzn. ( v + v ) + (( v + v ) )( v + v ) = ( α + α ) ( p+ p ) Ω ( v + v ) + g. t Odečteme-li od poslední rovnice rovnici předposlední, získáme v + ( v v ) + ( v ) v + ( v ) v = α p α p α p Ω v. t Uvážíme-li i předpoklad ), můžeme členy, které sou nelineární vzhledem k poruchám zanedbat, protože sou co do velikosti alespoň o řád menší než členy zbývaící. V takovém případě dostáváme v + ( v ) v + ( v ) v = α p α p Ω v, t což e hledaná lineární perturbační pohybová rovnice. Analogicky postupueme i při odvozování perturbační rovnice kontinuity, stavové rovnice i první hlavní věty termodynamické. Ještě poznameneme, že místo měrného obemu α bývá obvykleší používat v pohybových rovnicích hustotu ρ =/α tak, ak to budeme činit pozděi. Lineární perturbační metoda představue isté omezení v tom smyslu, že umožňue studium stability základního proudění, které e vystaveno pouze malým (v podstatě nekonečně malým) poruchám. Selhává však v případě, kdy amplitudy poruch narostou po určité době v důsledku instability do takových velikostí, že iž není možno nelineární členy v rovnicích opomenout. Podobně, e-li základní proudění stabilní vzhledem k nekonečně malým poruchám, nedává lineární perturbační metoda žádné informace o tom, e-li toto proudění stabilní i vzhledem k poruchám dostatečně velkým. Přesto e možné, ak uvidíme pozděi, pomocí lineární teorie popsat některé vlastnosti fluktuací v reálné atmosféře, například délku dominantní vlnové poruchy nebo eí vertikální strukturu. Poznameneme eště, že lineární perturbační metoda e v dynamické meteorologii spoena zeména s Berknesovým ménem (viz například []). Aplikume nyní výše popsanou lineární perturbační metodu na proudění ve vertikální rovině (x, z). Pro ednoduchost neuvažume rotaci Země a atmosféru považume za nestlačitelnou tekutinu. Není-li dále explicitně uvedeno inak, neuvažueme ani síly tření. Základní stav definume následovně: u( z ), w =, p( z ), ρ ( z). Pro takové základní proudění maí pohybové rovnice v rovině (x, z) tvar 8

18 p x =, (.a) p z = ρ g. (.b) Rovnice kontinuity pro základní stav e splněna identicky. Poruchy v poli rychlosti ve směru osy x a z nechť sou u ( x, z, t), w ( x, z, t), v poli tlaku p ( xzt,, ) a poli v hustoty ρ ( x, zt, ). Výsledný stav má tedy tvar u( z ) + u ( x, z, t), w ( x, z, t), p( z) + p ( x, z, t), ρ( z) + ρ ( x, z, t). Podle předpokladu ) perturbační metody můžeme psát ( u + u ) ( u + u ) ( u + u ) ( p+ p ) ( ρ + ρ ) + ( u + u ) + w = t x z, (.a) x w w w ( p+ p ) ( ρ + ρ ) + ( u + u ) + w = g( ρ + ) t x z ρ, (.b) z ( ρ + ρ ) ( ρ + ρ ) ( ρ + ρ ) + ( u + u ) + w =. (.c) t x z V této soustavě rovnic zanedbáme nelineární členy vzhledem k poruchám a odečteme od každé z rovnic (.) odpovídaící rovnici (.). Tímto postupem dostáváme následuící perturbační rovnice u u d u p + u + w =, (.4a) t x dz ρ x w w p ρ + u = g, (.4b) t x ρ z ρ ρ d u ρ + + w ρ =. (.4c) t x dz Není obtížné se přesvědčit, že rovnici kontinuity pro perturbace e možné rovněž psát ve tvaru: u w + =. (.4d) x z 9

19 Zaveďme dále proudovou funkci ψ vztahy Tím rovnice (.4a) až (.4c) předou na tvar ψ ψ u =, w = z x. (.5) ψ du u ψ ψ p + =, (.6a) t z x z x dz ρ x ψ ψ ρ + = g, (.6b) ρ ρ p u t x x z ρ d u ρ + + ψ ρ =. (.6c) t x x dz Rovnici (.6b) parciálně derivume podle x a odečtěme i od rovnice (.6a) parciálně derivované podle z. Tím dostaneme dρ ψ du dρ du ψ g ρ ψ ρ ρ + u =. (.7) t x dz z dz dz dz x ρ x Derivume rovnici (.6c) parciálně podle x, dělme i ρ a vyádřeme z ní (/ ρ)( ρ / x). Výsledek pak dosaďme do rovnice (.7). Poté dostáváme d u du ψ δ δ g u ψ ψ + + = ψ δ, (.8) t x z dz dz x x kde sme označili dρ δ. ρ dz Tím sme převedli řešení soustavy perturbačních rovnic (.4) pro neznámé u, w, ρ a p na řešení edné diferenciální rovnice pro proudovou funkci ψ. K rovnici (.8) (steně ako k soustavě (.) resp. (.4)) e třeba přidat vhodné okraové, popřípadě počáteční podmínky, ak provedeme pozděi.

20 NORMÁLNÍ MODY Vhodnou metodou řešení rovnice (.8) e metoda normálních modů. Protože koeficienty v rovnici (.8) nezávisí ani na čase t ani na souřadnici x, eí řešení hledáme ve tvaru i ( ) { ψˆ z } ψ ( xzt,, ) =R ( )e k x ct, (.) kde R značí reálnou část výrazu, před kterým stoí. Vlnové číslo k ve směru osy x musí být reálné, aby amplituda vlny (modu) byla při velkých x konečná. Amplitudová funkce ψˆ a růstový faktor (rychlost růstu) kc i mohou být komplexní (c i značí imaginární část fázové rychlosti c). Zapíšeme-li fázovou rychlost c ako součet reálné a imaginární části a dosadíme-li toto vyádření do (.), máme c= c + ic (.) r i kc i ( ) { ˆ } i t k x c r t ψ z ψ ( xzt,, ) =R ( )e e. (.) Je-li kc i =, pak se amplituda poruchy s časem nemění, tzn. e stabilní. Jeli kc i <, pak porucha s časem slábne. Naopak, e-li kc i >, pak porucha s časem zesilue. V posledních dvou případech říkáme, že e porucha instabilní. Na tomto místě e však třeba poznamenat, že někteří autoři, například [], zavádí poem stability (instability) poněkud odlišně, a to: kc i = neutrální porucha, kc i < stabilní porucha, kc i > instabilní porucha. My se budeme vždy snažit o explicitní rozlišení, aby bylo zřemé, o aký časový vývo poruchu se edná. V dalším textu budeme písmeno R vynechávat a budeme mít na paměti, že fyzikální význam maí en reálné části výrazů (.), (.), respektive eich analogie.

21 Všimněme si, že při kc i > se může porucha stát po uplynutí dostatečně dlouhé doby natolik velká, že se nelineární efekty stanou natolik významnými, že lineární přístup pozbyde platnosti. Proto e vhodné metodu normálních modů používat, v souladu s lineární perturbační teorií, en na počáteční stadia vývoe poruch. Dosazením (.) do rovnice (.8) dostáváme dψˆ dψˆ d u du ( u c) k ψˆ δ ( u c) ˆ g ˆ δ ψ = δψ, (.4) dz dz dz dz což e iž en obyčená diferenciální rovnice pro amplitudovou funkci ψ ˆ. Rovnice (.4) e velmi důležitá neen proto, že í budeme studovat v dalším textu, ale i pro to, že z ní vyplývaí další vztahy, které hraí důležitou úlohu v teorii hydrodynamické stability. Předně, uvážíme-li, že se hustota ρ ( z) mění s výškou obvykle mnohem pomalei než rychlost proudění u( z ), a že δ <<, můžeme v poslední rovnici zanedbat ty členy obsahuící δ, které se nacházeí na eí levé straně, a ponechat pouze ten člen s δ, který stoí na pravé straně rovnice (.4). Fyzikálně to znamená, že zanedbáváme změny hustoty u členů postihuících setrvačnost, ale ponecháváme u členu, který popisue archimédovský vztlak. Taková situace se velmi podobá Boussinesquově aproximaci [8]. Po naznačené úpravě přede (.4) na tvar dψˆ d u gδ ( u c) k ψˆ ˆ ˆ ψ + ψ =, (.5) dz d z ( u c) který nazýváme Taylorova-Goldsteinova rovnice. Půdeme-li eště dále a nebudeme-li uvažovat změny hustoty vůbec (budeme pracovat například s homogenní tekutinou), redukue se rovnice (.4), popřípadě (.5), na rovnici dψˆ d u ( u c) k ψˆ ψˆ =, (.6) dz dz o které hovoříme ako o Rayleighově rovnici. Pro dvě posledně menované rovnice byla odvozena řada teorémů, které se váží ke stabilitě různých typů proudění. Některé si v následuícím textu uvedeme. Závěrem tohoto oddílu si eště povšimněme, že sme poruchy (.) popřípadě (.) uvažovali dvourozměrné, nezávislé na souřadnici y. K tomu nás vede tvrzení Squireova teorému, podle kterého v homogenní tekutině

22 existue ke každé instabilní trorozměrné vlně vždy vlna dvorozměrná, která e instabilněší a která se pohybue rovnoběžně se směrem proudění. Na případ stratifikované tekutiny Squireův teorém zobecnil Yih (bližší podrobnosti viz [4]). Předmětem našeho prioritního zámu sou právě mody (vlny) co možná neinstabilněší, nehledě na to, že uvažování dvorozměrných namísto trorozměrných poruch výpočty poněkud zednoduší.

23 4 KELVINOVA-HELMHOLTZOVA INSTABILITA, INSTABILITA TAYLOROVA A HELMHOLTZOVA TYPU V této kapitole se budeme zabývat řešením rovnice (.4) za istých zednodušuících předpokladů. Ukážeme aký vliv má na stabilitu proudění rozložení hustoty, vertikální střih větru (vertikální gradient rychlosti proudění) a tloušťka vrstvy, ve které tekutina proudí. Uvažume dvě nad sebou ležící vrstvy dvou nestlačitelných tekutin, které se navzáem nemísí, s hustotami ρ, ρ a konstantními rychlostmi základního proudění u, u. Zanedbáme-li zemskou rotaci, e plocha odděluící obě tekutiny v klidovém stavu horizontální. Umístěme do této roviny počátek pravoúhlé souřadnicové soustavy. Osa x nechť e orientována ve směru proudění obou tekutin a osa z nechť míří kolmo vzhůru. Dále označme všechny veličiny vztahuící se k horní tekutině indexem, k dolní tekutině indexem. Nechť e horní tekutina omezena neprostupnou horizontální rovinou ve výšce z = h a podobně dolní tekutina nechť e ohraničena rovinou ve výšce z = h. Na základní stav charakterizovaný veličinami u, u, p ( z ), p ( z ), ρ, ρ nechť sou superponovány poruchy v poli rychlosti proudění a tlaku: u ( x, z, t), u ( x, z, t), w ( x, z, t), w ( x, z, t), p ( xzt,, ), p ( xzt,, ). Výsledný stav tedy můžeme charakterizovat takto: horní tekutina: u + u ( x, z, t), w ( x, z, t), p( z) + p ( x, z, t), ρ, spodní tekutina: u + u ( x, z, t), w ( x, z, t), p( z) + p ( x, z, t), ρ. Perturbace v poli rychlosti proudění můžeme nahradit perturbačními proudovými funkcemi ψ, ψ podle vztahu (.5). Namísto pohybových rovnic a rovnice kontinuity e pak možno použít rovnice typu (.4). To znamená, že 4 d ψˆ i k( x ct) ( u ˆ ˆ c) k ψ =, ψ = ψ e, (4.a) dz

24 d ψˆ i k( x ct) ( u ˆ ˆ c) k ψ =, ψ = ψ e. (4.b) dz Předpokládáme-li, že u c, u c, můžeme řešení rovnic (4.) psát ve tvaru kz ψˆ = Ae + Be, (4.a) kz kz ψˆ = Ae + B e, (4.b) kz Kde A, A, B, B sou integrační konstanty, které určíme z okraových podmínek. Kinematická okraová podmínka na horní hranici vrchní tekutiny vyžadue, aby normálová složka rychlosti k neprostupné hranici byla rovna nule, to znamená Označme tedy ψˆ ( z = h) = Ae + Be =. (4.a) kh kh A e e =, C kh kh B kde C e nová konstanta. Dosazením poslední rovnice do (4.a) máme [ ] ψ ˆ () z = Csinh k( z h ). (4.4a) Zcela analogicky aplikueme kinematickou okraovou podmínku na dolní hranici spodní vrstvy tekutiny, tedy Označme ˆ ( ) e kh kh ψ z = h = A + B e =. (4.b) A e kh e C B kh =, kde C e konstanta. Dosazením poslední rovnice do (4.b) máme [ ] ψ ˆ ( z) = Csinh k( z+ h ). (4.4b) Abychom mohli formulovat dynamické okraové podmínky na rozhraní obou tekutin, určíme poruchy p, p v tlakovém poli. Z rovnice (.6a) vyplývá po dosazení pomocí (.5), že 5

25 i ( p ) ρ i k ( u c) Ccosh k( z h ) e k x ct =, (4.5a) x i ( ) cosh ( ) e i k( x p k ρ u c C k z+ h ct) =. (4.5b) x Podobně z rovnice (.6b) máme ( ) sinh ( ) e i k( x p ρ ct) k u c C k z h =, (4.6a) z ( ) sinh ( ) e i k( x p k ρ u c C k z+ h ct) =. (4.6b) z Integrume rovnice (4.6) podle souřadnice z: i k( x ct) p = kρ( u c)cosh k( z h) e + f( x), (4.7a) i k( x ct) p = kρ( u c)cosh k( z+ h) e + f( x), (4.7b) kde f (x) a f (x) sou integrační funkce. Parciálním derivováním rovnic (4.7) podle x a následným porovnáním s rovnicemi (4.5) zistíme, že f ( x) = D, f ( x) = D a D a D sou integrační konstanty. Pro ednoduchost e volme rovny nule, tedy p k u c k z h i ( ) ( )cosh ( ) e k x = ρ ct, (4.8a) i ( ) ( )cosh ( ) e k x = ρ + ct. (4.8b) p k u c k z h Pro přehlednost eště uveďme tvar poruch v poli rychlosti proudění: ψ i ( ) u kccosh k( z h) e k x = = ct z, (4.9a) ψ i ( ) u kccosh k( z h) e k x = = + ct z, (4.9b) ψ i ( ) w ikcsinh k( z h) e k x = = ct x, (4.a) ψ i ( ) w ikcsinh k( z h) e k x = = + ct x. (4.b) Dynamická okraová podmínka na rozhraní mezi tekutinami vyžadue spoitost tlaku při přechodu přes toto rozhraní. Předpokládáme-li, že částice, 6

26 které spočívaí na tomto rozhraní, na něm budou setrvávat, e možné psát zmíněnou dynamickou okraovou podmínku následovně d [ ( p p ) + ( p ) p ] =. (4.) rozhraní dt Podmínka e sice definována pro rozhraní, ale uvážíme-li, že se zabýváme lineární teorií, ve které považueme poruchy za daleko menší než veličiny základního stavu, lze předpokládat, že odchylka rozhraní od eho klidové polohy e nevelká. Podmínku (4.) proto můžeme vztáhnout k rozhraní v poloze z =. Tedy d [ ( p p ) ( ) + p p ] =. (4.) z= dt Poslední výraz představue dvě rovnice (pro dolní a horní tekutinu), které po aaaaaaaaaa d provedení Eulerova rozvoe = + v a zanedbání nelineárních členů, maí tvar dt t ( p p ) ( p p ) + u + wg ( ρ ρ ) t x, (4.a) z= ( p p ) ( p p ) + u + w g( ρ ρ ) t x, (4.b) z= kde sme využili rovnice hydrostatické rovnováhy. Dosadíme-li nyní do rovnic (4.) pomocí (4.8) a (4.) obdržíme C kρ( u c) cosh( kh) g( ρ ρ)sinh( kh) = = C[ kρ( u c)( u c)cosh( kh) ] [ ρ ( )( ) cosh( )] = C k u c u c kh, (4.4a) = C kρ( u c) cosh( kh) g( ρ ρ)sinh( kh). (4.4b) Vyádříme-li z obou posledních rovnic poměr C /C a porovnáme e navzáem, získáme kvadratickou rovnici pro fázovou rychlost c: ( ρa + ρa) c ( ρua + ρua) c+ g( ρ ρ ) aa + ρu a + ρ u a kde sme označili k =, (4.5) 7

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Úvod do analytické mechaniky

Úvod do analytické mechaniky Úvod do analytické mechaniky Vektorová mechanika, která je někdy nazývána jako Newtonova, vychází bezprostředně z principů, které jsou vyjádřeny vztahy mezi vektorovými veličinami. V tomto případě např.

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova

Teplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova 1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15

Obsah PŘEDMLUVA...9 ÚVOD TEORETICKÁ MECHANIKA...15 Obsah PŘEDMLUVA...9 ÚVOD...11 1. TEORETICKÁ MECHANIKA...15 1.1 INTEGRÁLNÍ PRINCIPY MECHANIKY... 16 1.1.1 Základní pojmy z mechaniky... 16 1.1.2 Integrální principy... 18 1.1.3 Hamiltonův princip nejmenší

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy Moderní technologie ve studiu aplikované fyziky CZ.1.07/..00/07.0018 7. Funkce jedné reálné proměnné, základní pojmy V této chvíli jsme již ve výkladu přikročili ke kapitole, kterou můžeme považovat za

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ TĚŽIŠTĚ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.10 TĚŽIŠTĚ Těžiště (hmotný střed) je působiště tíhové síly působící na těleso. Těžiště zavádíme jako působiště

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny

Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Transportní jevy v plynech Reálné plyny Fázové přechody Kapaliny Hustota toku Zatím jsme studovali pouze soustavy, které byly v rovnovážném stavu není-li soustava v silovém poli, je hustota částic stejná

Více

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH

1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH 1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A 62. ročník matematické olympiády Úlohy krajského kola kategorie A 1. Je dáno 21 různých celých čísel takových, že součet libovolných jedenácti z nich je větší než součet deseti ostatních čísel. a) Dokažte,

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Rozumíme dobře Archimedovu zákonu?

Rozumíme dobře Archimedovu zákonu? Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

Výsledný tvar obecné B rce je ve žlutém rámečku

Výsledný tvar obecné B rce je ve žlutém rámečku Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné

Více

5.2.4 Rayleighova Taylorova nestabilita

5.2.4 Rayleighova Taylorova nestabilita 74 Nestability v plazmatu 5..4 Rayleighova Taylorova nestabilita Rayleighova Taylorova nestabilita (RT nestabilita) vzniká na rozhraní dvou tekutin různých hustot (například je-li v gravitačním poli hustší

Více

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b,

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b, Elementární funkce Mezi elementární komplení funkce se obvykle počítají tyto funkce:. Lineární funkce Lineární funkce je funkce tvaru f(z) az + b, kde a a b jsou konečná komplení čísla. Její derivace je

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy

FYZIKA II. Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy FYZIKA II Petr Praus 9. Přednáška Elektromagnetická indukce (pokračování) Elektromagnetické kmity a střídavé proudy Osnova přednášky Energie magnetického pole v cívce Vzájemná indukčnost Kvazistacionární

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Měření tíhového zrychlení reverzním kyvadlem

Měření tíhového zrychlení reverzním kyvadlem 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 202 Založeno na materiálech doc. Michala Kulicha Náhodný vektor často potřebujeme

Více

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více