Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat

Rozměr: px
Začít zobrazení ze stránky:

Download "Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat"

Transkript

1 Zdroje informací v organizaci IS/ICT BI v rámci IS/ICT historie architektura OLTP x DW ukládání dat Vladimíra Zádová

2 BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních operací podniku

3 Informační systémy na počátku 3. tisíciletí pro řízení vnitřních procesů back-office aplikace pro podporu základních řídících administrativních operací podniku pro řízení vztahů podniků s okolím front-office aplikace, aplikace s přidanou hodnotou (valueadded ) pro rozvoj řízení podniku a podporu rozhodování back-office aplikace

4 Aplikace pro řízení vnitřních procesů podniku - klasické celopodnikové aplikace ERP (Enterprise Resource Planning) Aplikace pro podporu základních řídících a administrativních operací podniku kancelářské systémy řízení pracovních toků (workflow) aplikace a technologie pro správu dokumentů všeobecné informace a instrukce (hlavně na bázi Intranetu )

5 Aplikace pro řízení vztahů organizací s okolím mění kooperace mezi podniky CRM (Customer Relationship Management) elektronické podnikání SCM (Supply Chain Management)

6 CRM procesy a aktivity, které souvisí se zákazníkem existujícím či potenciálním podpora prodeje podpora zákazníka podpora marketingu

7 Elektronické podnikání elektronický obchod (e-commerce) elektronické zásobování (e-procurement) elektronická tržiště (Marketplaces) elektronické obchodování rozlišuje realizace obchodních vztahů mezi dvěma organizacemi -B2B, B2C, B2R, B2G, B2E (R - reseller, G - government, E -employee)

8 SCM, SCM/APS koordinuje toky výrobků, služeb, informací a financí mezi dodavateli surovin, jejich zpracovateli, výrobci, obchodníky, zákazníky dvě kategorie aplikace pro plánování optimální způsob směrování množství materiálu a zboží potřebného v místech určení aplikace pro realizaci fyzické zásoby, obrátky zboží, objednávek a dodávky materiálu, finance Pozn.: APS =Advanced Planning and Schedulling (systém pokročilého plánování)

9 Aplikace pro podporu rozhodování Business Intelligence EIS (Executive Information Systems - manažerské informační systémy) datové sklady ( Data Warehouse) datová tržiště (Data Mart) dolování dat (Data Mining), OLAP (On-line Analytical Processing), reporting.. Customer Intelligence CRM + BI = CI

10 Business Intelligence BI Je sada procesů, aplikací a technologií, jejichž cílem je účinně a účelně podporovat rozhodovací procesy ve firmě Dva pohledy na BI - široký rámec - BI jako jeden z nástrojů vedle / nad DW

11 Nástroje BI Produkční systémy ETL EAI DSA ODS DW/DM OLAP Reporting Manažerské aplikace ( EIS ) Dolování dat Nástroje pro zajištění kvality dat Nástroje pro správu metadat

12 Obecná koncepce architektury BI Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005

13 Komponenty BI řešení a jejich vazby Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005

14 Enterprise Application Integration EAI Nástroje využívané ve vrstvě zdrojových systémů Pracují v reálném čase Cíl: integrovat primární podnikové systémy redukovat počet aplikačních rozhraní hlavně datová integrace

15 ETL Extract, Transformation, Loading = datové pumpy extrakce dat ze zdrojových systémů zpracování dat uložení dat práce v dávkovém režimu

16 DSA (Data Staging Area, dočasné úložiště dat) - pro uložení dat z produkč. systémů obsahuje neagregovaná aktuální data (do té doby, než jsou uloženy do dalšího úložiště dat- ODS, DW, DM)

17 Sklady provozních dat ( ODS - Operational Data Store) Cíl: poskytnutí integrovaného a aktuáln lního pohledu konzistentní, konsolidovaná, subjektově orientovaná data strukturou jsou obdobná datům v DW, ale na rozdíl od DW mají jen aktuální data ( i agregovaná) pravidelná aktualizace, odpovídají aktuálnímu stavu provozu, obsah dat je měněn po každém nahrání

18 ODS jako zdroj datové integrace dat ze zdrojových systémů Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005

19 ODS jako databáze aktuálních dat odvozená z DW Zdroj: Novotný, Pour, Slánský: Business Intelligence, Grada 2005

20 DW - definice je subjektově orientovaná, integrovaná, časově variantní a stálá kolekce dat pro podporu rozhodování manažerů B. Inmon subjektová orientace DW je organizován podle hlavních subjektů podniku (zákazníci, prodej, produkt..), ne podle procesů (aplikací) reflektuje potřeby uložení dat pro rozhodování v jedné databázi DW jsou uložena data pouze jednou (např. o produktu, zaměstnanci ) integrovaná do celku jsou vkládána data z různých aplikací - nekonzistentnost, různé formáty integrací těchto dat - prezentace unifikovaného pohledu

21 DW časově variantní data v DW jsou platná a přesná jen v bodech, ne intervalech času uložení historie dat - hodnoty v časových bodech ( den, měsíc, Q, rok..) v DW vždy dimenze času stálá data v DW nevznikají, nedají se žádnými nástroji měnit aktualizace DW - jen přidávání dat v pravidelných časových intervalech (jako doplněk), integrace přírustků další definice - většinou zahrnují procesy spojené s přístupem k datům z původních zdrojů

22 Datová tržiště (Data Mart) příčiny vytváření pro nejčastější analýzy pro skupinu uživatelů - business process, oddělení vytvoření DM s více agregovanými daty, s menším objemem dat - pro zlepšeníčasu odezvy k poskytování vhodněji strukturovaných dat - z hlediska požadavků nástrojů přístupu pro snazší implementaci pro nižší náklady proti DW pro lepší zaměření koncového uživatele

23 Datová tržiště závislá nezávislá odlišnost ve způsobu výstavby a aktualizace dat extrakce přímo z produkčních systémů zdroj dat - DW

24 Reporting standardní dotazování jedná se zejména o SQL dotazy v relačním prostředí výstupy standardní předpřipravené dotazy, nepredikovatelné ad hoc dotazy určené zejména pro nižší management

25 EIS původně chápány jako aplikace pro podporu strategického rozhodování vrcholového managementu později pak i pro podporu rozhodování středního managementu a podnikových specialistů s vývojem další ších aplikací na podporu rozhodování není hranice mezi jimi a OLAP ostrá integrují všechny zdroje dat z transakčních systémů, které jsou důležité pro řízení organizace jako celku postupně integrovány i externí zdroje

26 Procesy zpracování dotazy/reporting dotazy na to CO je v databázi OLAP PROČ jsou některé fakty pravdivé uživatel generuje hypotézu a OLAP slouží k jejímu ověření je závislý na schopnostech analytika, ten se iterací dostává k výsledku DM představuje nástroje, které generují hypotézy a pokračují v provádění objevování - bez navádění uživatelem

27 OLTP X DW-OLAP Proč vůbec DW - nelze přímo z OLTP? Třeba: porovnat charakteristiku OLTP dat a OLAP/DM rozdílnost cílů OLTP vypovídají o stavu podnikových procesů X OLAP/DM = cílem je analýza dat, zkoumání z hlediska více dimenzí potřeba optimalizovat ukládání dat tomu se lépe hodí uložení v DW, popř. ODS

28 Data v OLTP a DW OLTP - operativní data zdroje: zejména aplikace přístup: více současně pracujících uživatelů aktualizace:častá, relativně malých objemů dat Operace INSERT, UPDATE, DELETE dotazy nad daty selektivní ( zejména předpřipravené dotazy) přesnost výstupu - na Kč, haléře,.. četnost stejných dotazů - i vícekrát denně ukládání dat strukturovaně - normalizovaná relační databáze nověji objektově relační, objektová databáze požadavky - nekonfliktní zpracování operací, zajištění integrity dat procesní orientace ( stavy procesů, detailní data)

29 Data v OLTP a DW Data Warehouse zdroje: podnikové OLTP, operativní data + externí data přístup: malé množství specializovaných uživatelů - management aktualizace:řídká - jen přidávání dat ze zdrojů, delšíčasové intervaly dotazy intenzivní na data, složité dotazy, postupná iterace, sumarizace výstupy zaokrouhlené (i na tisíce) ukládání dat strukturovaně speciálně navržená relační databáze multidimenzionální kostka

30 Organizace dat v DW Založené na RMD Multidimenzionální kostka

31 Multidimenzionální data Příklad 2-dimenzionálního dotazu. Jaký je celkový příjem firmy( př. zabývající se prodejem nemovitostí) v každém městě pro Q 1999 Porovnání reprezentace: 3-atributové relace X 2-dimenzionální matice 8

32 Multidimenzionální data 9

33 Reprezentace multidimenzionálních dat Příklad 3-dimenzionální otázky. Jaký je celkový příjem firmy zabývající se prodejem nemovitostí - za jednotlivé druhy v každém městě, za čtvrtletí 1997 Porovnání reprezentace: 4-atributové relace X 3-dimenzionální kostky 10

34 Multidimenzionální data 4-atributové relace X 3-dimenzionální kostky

35 DATA v DW

36 Reprezentace multidimenzionálních dat Kostka reprezentuje data jako buňky Relace reprezentuje multidimenzionální data ve 2 dimenzích

37

38 multidimenzionální model dat logický návrh pomocí RMD konstrukty - fakty, dimenze, atributy dimenze, dimenzionální tabulky jednoatributový klíč ( tvoří cizí klíč v tabulce faktů) atributy - slouží jako zdroj pro různá omezení daná v dotazech na DW atributy spíše textové jedna dimenze může být ve více hvězdicových schématech většina dimenzí se mění pouze pomalu obdobné vlastnosti jako číselníky (katalog výrobků, údaje o okresech..)

39 tabulka faktů obsahuje buď přímo ukazatele, resp. se z faktů dají ukazatele určit mezi dimenzí a fakty je vztah 1: N mezi dimenzemi nejsou žádné přímé vztahy fakty jsou neklíčové atributy v tabulce faktů obvykle jsou numerické, aditivní

40 Modely

41 Star schéma (hvězdicové schéma)

42

43 Schéma souhvězdí

44

45 proces ETL zdroje dat příklad

46 vstupy proces extrakce, filtrování, čištění a vkládání ze zdrojových systémů do DW ETL pumpy extrakce transformace restrukturalizace dat do podoby odpovídající DW filtrace (odstranění chybných i neúplných záznamů) standardizace dat odstranění nežádoucích atributů denormalizace dat kombinace datových zdrojů vkládání a indexace konzistence dat samých, konzistence s ostatními daty v DW

47 Zdroje dat zdroje důvěryhodnost vše nebo část (jen některé atributy, či jen část sledovaných dat) porovnat stejné údaje z různých zdrojů (DW vytvářen z různých zdrojů) z hlediska obsahu ( m.j. m, cm, dm) formátu (cena zboží jiná přesnost, m/ž 0/1) významově stejné zdroje jsou různě pojmenovány a naopak

48 Zdroje dat pokr. změny zdrojů během let struktura dat ze stejných zdrojů (archiv a současnost) formálně stejný objekt z více zdrojů ( zákazník: zákazník x potenc. zákazník) četnost přenášení zdrojů

49 ETL pravidla pro přenos Prosté kopírování Přepočty jednotek Standardizace formátů Odstraňování duplicit v datech z různých zdrojů Rozdělení atributu do několika cíl. atributů ( př. adresa) Slučování atributu do jednoho Odvozování nových atributů (př. datum) Převodní funkce některé použijí pro více atributů, jinde pro atribut samostatná funkce

50 Po přenosu Kontrola kvality a ošetření chybějících údajů vypuštění záznamů kde chybí jednotné označení chybějících údajů a upozornění na neúplnost dat Statistika pro každý atribut rozsah (doména) a četnost hodnot, které může nabývat (lze odhalit chybné hodnoty)

51 OLAP analýza

52 ROLAP, MOLAP a HOLAP souvisí s uložením dat v OLAP ROLAP (Relational( OLAP) pro práci s relační databází (RDBMS) výhoda: dynamický přístup k detailním informacím v DW nevýhoda při nárustu komplexnosti a objemu databáze výrazné zpomalení odezvy na dotazy; snížení použitelnosti MOLAP (Multidimensional( OLAP) pro práci s multidimenzionální databází výhoda: rychlá odezva na dotaz a velké analytické možnosti nevýhoda: orientace na práci s agregovanými hodnotami bez možnosti zpracování velmi detailních informací. HOLAP (Hybrid OLAP) kombinují přednosti obou technologií. klient OLAP zpracovává relativně malé objemy dat uložené v paměti, výpočty jsou prováděny většinou v reálném čase

53 Základní operace OLAP drill-down, roll-up snížení, zvýšení stupně agregace slicing (selekce), dicing provedenířezu v multidimenzionální databázi pivoting mění úhel pohledu na data ( jedná se o prezentaci obsahu) drill across spojení tabulek faktů přes tabulky dimenzí ( na stejné úrovni granularity) Operace různě kombinovány v jedné i ve více dimenzích ovlivňují podobu datového skladu

54 Dolování dat (Data Mining) Dolování dat je proces výběru, prohledávání a modelování ve velkých objemech dat sloužící k odhalení dříve neznámých vztahů mezi daty za účelem získání obchodní výhody Cíl: obchodní výhoda řešení konkrétního problému nalezení cesty k zlepšení procesu předem definován, na jeho základě připravena data; není jednorázová analýza příprava podnikových procesů - aby umožnily využívání analýz (kontinuálně) a podporovaly zpětné vazby od uživatelů. Zpětné vazby ovlivňují proces sběru dat i definice nových cílů.

55 Cíle v procesu získávání znalostí verifikace - ověření hypotézy explorace - hledání nových znalostí predikce... prediktivní modely deskripce... deskriptivní modely cíle - pomocí modelů (odkrývání vzorů) prediktivní model předpovídá hodnoty určených atributů na základě známých hodnot jiných atributů. deskriptivní model popisuje vzory v existujících datech, jimi může ovlivňovat rozhodování. Hlavní rozdíl : v prediktivních modelech se provádí predikce explicitně pomocí deskriptivních modelů lze určit predikci implicitně

56 Budování datového skladu Multidimenzionální modelování Přístupy k budování - Kimball x Inmon (BUS architektura)

57 (Multi)dimenzionální modelování

58 Dimenzionální modelování speciální technika určená pro logický návrh DW tak, aby vedl k výsledku - multidimenzionálnímu schématu

59 Základní představa

60 Dimenzionální modelování Požadavky uživatelů Proces návrhu 4 kroky: výběr procesu/ů stanovení granularity (úroveň detailu) výběr dimenzí určení faktů Zdroje dat

61 fakty aditivní fakty fakty, které mohou být sumarizovány přes všechny dimenze semiaditivní fakty fakty, které nejsou aditivní alespoň k jedné dimenzi neaditivní fakty nejsou aditivní k žádné dimenzi neaditivní jsou ty fakty, k jejichž výpočtu je třeba podílu ( při roll up nelze sumarizovat; rozdíl suma podílu x podíl sum) třeba uložit čitatele a jmenovatele zvlášť neaditivní je i jednotková cena, denní stav účtu... tedy fakty, které vyjadřují statickou úroveň

62 Dimenze čas výskyt téměř vždy v DW, DM, lépe explicitně den, den v týdnu, měsíci, týden, q, rok (prodejní sezóna, konec týdne,..) (lze více hierarchií - kalendářní a fiskální vyjádření) někdy pro analýzu i část dne - pak je lépe přidat dimenzi čas

63 Dimenze a změny změny hodnot atributů dimenzí mohou probíhat rychle i pomalu, odlišení: pomalu se měnící dimenze (většina) rychle se měnící dimenze pro každý atribut třeba stanovit strategii pro vyjádření změn třeba již při i analýze zjistit od managementu jaké změny hodnot atributů jsou možné jaký výstup ( informace) budou s ohledem na tyto změny požadovat

64 Budování DW centralizovaný datový sklad - Bill Inmon data warehouse jako množina datových trhů - Ralph Kimball

65

66 Centralizovaný datový sklad - Bill Inmon Podnikový data warehouse obsahuje detailní, atomicky integrovaná historická data

67 Sjednocené data marty - Ralph Kimball Data warehouse není nic víc než sjednocení všech konzistentních data martů

68 Integrace integrování jednotlivých dimenzionálních modelů do jednoho DW dovolí kombinovat fakty z odlišných procesů nejen drill down, drill up ale i drill across Pozn.: drill across - řešení dotazů přes vnější spojení společných tabulek dimenzí

69 Bus architektura pro DW sběrnicová architektura je nezávislá na technologii a databázové platformě umožňuje použít přírůstkový přístup k stavbě DW různé týmy, asynchronnířešení

70 DW bus architektura definování standardního rozhraní pro DW a jeho respektování umožňuje postupné zapojení a využívání jednotlivých DM jako celku stanovení rámce návrh standardizovaných dimenzí návrh faktů přizpůsobené dimenze, přizpůsobené fakty (conformed) standardizované dimenze a fakty zajišťují jednotnou interpretaci v organizaci umožňuje efektivní komunikaci uvnitř týmů a mezi týmy vytváření DM přísné dodržení architektury

71 Stanovení matice Z dimenzí a procesů se stanoví sběrnicová matice řádky značí jednotlivé datová tržiště sloupce jednotlivé dimenze každý řádek dává přehled o dimenzích použitých pro DM

72 Obecné dimenze Business procesy Obchodní prodeje X X X X Obchodní zásoby X X X Obchodní dodávky X X X Skladové zásoby X X X X Skladové dodávky X X X X Objednávky X X X X X D atu m P rod ukt P rod ejna R eklam a S klad D odavatel D opravce

73 dimenze jsou buď identické nebo striktně matematické podmnožiny z nejvyšší granularity detailní dimenze mají shodný dimenzionální klíč shodná jména a definice atributů stejné domény (shodnost datového obsahu znamená stejnou interpretaci a prezentaci)

74 Problémy DW podcenění zdrojů pro vkládání dat podhodnoceníčasu na vkládání skryté problémy zdrojů chybovost, nepřesnost (změna zdrojů během let) požadovaná data nejsou podchycena modifikovat OLTP či tvorba nového růst požadavků koncových uživatelů díky učení se vzniká potřeba změn: jemnější granularita, lepší prostředky; růst požadavků na pracovníky IT vlastnictví dat drahá udržování dlouhá doba trvání projektu složitost integrace důležitá dokumentace OLTP procesů, ale i BI (OLAP, ETL,DW)

75 Problémy DW podcenění kapacity pro vkládání dat (loading) podhodnocení času požadovaného pro extrakci, čištění a vkládání dat do DW ( předpokladá se až 80% času na celý vývoj) dobré nástroje mohou urychlit

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu

BI v rámci IS/ICT komponenty BI architektura. Charakteristika dat a procesů v IS/ICT. Datové sklady ukládání dat návrh datového skladu BI v rámci IS/ICT komponenty BI architektura Charakteristika dat a procesů v IS/ICT Datové sklady ukládání dat návrh datového skladu BI CRM ERP SCM Aplikace pro podporu základních řídících a administrativních

Více

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování

Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Trendy v IS/ICT přístupy k návrhu multidimenzionální modelování Aplikace IS/ICT BI SCM e-business ERP ERP CRM II e-business Aplikace pro podporu základních řídících a administrativních operací 1 Informační

Více

Návrh datového skladu z hlediska zdrojů

Návrh datového skladu z hlediska zdrojů Návrh datového skladu Návrh datového skladu OLTP ETL OLAP, DM Operativní data Datové sklady Zdroje dat Transformace zdroj - cíl Etapy realizace 1 Návrh datového skladu Hlavní úskalí analýzy a návrhu spočívá

Více

Business Intelligence

Business Intelligence Business Intelligence BI jako součást IS/ICT IS/ICT BI v rámci IS/ICT BI architektura, komponenty procesy v BI data v IS/ICT organizace dat v DW (Multi)dimenzionální modelování budování DW Pro další informace

Více

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS

DATABÁZOVÉ SYSTÉMY. Vladimíra Zádová, KIN, EF TUL - DBS DATABÁZOVÉ SYSTÉMY Současné aplikace IS/ICT Informační systémy a databázové systémy Databázová technologie Informační systémy Aplikační architektura Vlastníci, management Business Intelligence, manažerské

Více

Datový sklad. Datový sklad

Datový sklad. Datový sklad Datový sklad Postavení v rámci IS/ICT Specifika návrhu Modelování Datový sklad POSTAVENÍ NÁVRH Postavení datového skladu (DW) v IS/ICT z hlediska aplikací jako součást Business Intelligence z hlediska

Více

Datové sklady. Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT. Vladimíra Zádová, KIN, EF, TUL

Datové sklady. Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT. Vladimíra Zádová, KIN, EF, TUL Datové sklady Multidimenzionální modelování Modely datového skladu Návrh datového skladu v rámci návrhu IS/ICT Multidimenzionální modelování (Multi)dimenzionální modelování speciální technika určená pro

Více

Podnikové informační systémy Jan Smolík

Podnikové informační systémy Jan Smolík Podnikové informační systémy Jan Smolík Zobecněné schéma aplikační architektury Vlastníci, management Aplikační architektura podnikové informatiky Business Intelligence, manažerské aplikace Obchodní partneři

Více

3 zdroje dat. Relační databáze EIS OLAP

3 zdroje dat. Relační databáze EIS OLAP Zdroje dat 3 zdroje dat Relační databáze EIS OLAP Relační databáze plochá dvourozměrná tabulková data OLTP (Online Transaction Processing) operace selekce projekce spojení průnik, sjednocení, rozdíl dotazování

Více

10. Datové sklady (Data Warehouses) Datový sklad

10. Datové sklady (Data Warehouses) Datový sklad 10. Datové sklady (Data Warehouses) Datový sklad komplexní data uložená ve struktuře, která umožňuje efektivní analýzu a dotazování data čerpána z primárních informačních systémů a dalších zdrojů OLAP

Více

Ing. Roman Danel, Ph.D. 2010

Ing. Roman Danel, Ph.D. 2010 Datový sklad Ing. Roman Danel, Ph.D. 2010 Co je to datový sklad a kdy se používá? Pojmem datový sklad (anglicky Data Warehouse) označujeme zvláštní typ databáze, určený primárně pro analýzy dat v rámci

Více

Základy business intelligence. Jaroslav Šmarda

Základy business intelligence. Jaroslav Šmarda Základy business intelligence Jaroslav Šmarda Základy business intelligence Business intelligence Datový sklad On-line Analytical Processing (OLAP) Kontingenční tabulky v MS Excelu jako příklad OLAP Dolování

Více

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1

DATABÁZOVÉ SYSTÉMY. Metodický list č. 1 Metodický list č. 1 Cíl: Cílem předmětu je získat přehled o možnostech a principech databázového zpracování, získat v tomto směru znalosti potřebné pro informačního manažera. Databázové systémy, databázové

Více

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems

T T. Think Together 2012. Martin Závodný THINK TOGETHER. Business Intelligence systémy Business Intelligence systems Česká zemědělská univerzita v Praze Provozně ekonomická fakulta Doktorská vědecká konference 6. února 2012 T T THINK TOGETHER Think Together 2012 Business Intelligence systémy Business Intelligence systems

Více

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně

Datové sklady. Ing. Jan Přichystal, Ph.D. 1. listopadu 2011. PEF MZLU v Brně PEF MZLU v Brně 1. listopadu 2011 Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské spousty nejrůznějších údajů. Příkladem mohou být informace z obchodování s cennými papíry

Více

kapitola 2 Datové sklady, OLAP

kapitola 2 Datové sklady, OLAP Tomáš Burger, burger@fit.vutbr.cz kapitola 2 Datové sklady, OLAP Získávání znalostí z databází IT-DR-3 / ZZD Co je to datový sklad A data warehouse is a subjectoriented, integrated, time-variant and nonvolatile

Více

Business Intelligence. Adam Trčka

Business Intelligence. Adam Trčka Business Intelligence Adam Trčka 09:00 11:30: BI v kostce Navrhněme si sklad Ukázka BI Datamining 12:30 14:30: Pokračování kurzu 14:30 15:00: Q&A Agenda Co se dnes dovíme? Data informace znalost Business

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

Informační systémy 2006/2007

Informační systémy 2006/2007 13 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení Informační systémy 2006/2007 Ivan Kedroň 1 Obsah Analytické nástroje SQL serveru. OLAP analýza

Více

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP

Obsah. Úvod do problematiky. Datový sklad. Proces ETL. Analýza OLAP Petr Jaša Obsah Úvod do problematiky Data vs. informace Operační vs. analytická databáze Relační vs. multidimenzionální model Datový sklad Důvody pro budování datových skladů Definice, znaky Schéma vazeb

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází 1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,

Více

Datová kvalita základ úspěšného BI. RNDr. Ondřej Zýka, Profinit

Datová kvalita základ úspěšného BI. RNDr. Ondřej Zýka, Profinit Datová kvalita základ úspěšného BI RNDr. Ondřej Zýka, Profinit 1.6.2012 Datová exploze Snižování nákladů o Zdvojnásobení objemu podnikových dat každé dva roky o Konkurenční tlak o Ekonomická krize o V

Více

Základní informace o co se jedná a k čemu to slouží

Základní informace o co se jedná a k čemu to slouží Základní informace o co se jedná a k čemu to slouží založené na relačních databází transakční systémy, které jsou určeny pro pořizování a ukládání dat v reálném čase (ERP, účetní, ekonomické a další podnikové

Více

Infor Performance management. Jakub Urbášek

Infor Performance management. Jakub Urbášek Infor Performance management Jakub Urbášek Agenda prezentace Stručně o produktu Infor PM 10 Komponenty Infor PM - PM OLAP a PM Office Plus Reporting Analýza Plánování / operativní plánování Infor Performance

Více

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný

CPM/BI a jeho návaznost na podnikové informační systémy. Martin Závodný CPM/BI a jeho návaznost na podnikové informační systémy Martin Závodný Agenda Význam CPM/BI Aplikace CPM/BI Projekty CPM/BI Kritické body CPM/BI projektů Trendy v oblasti CPM/BI Diskuse Manažerské rozhodování

Více

Data v informačních systémech

Data v informačních systémech Data v informačních systémech Vladimíra Zádová, KIN 6. 5. 2015 Obsah přednášky informační systémy (IS) vztah dat a informačních systémů databáze, databázový systém základní dělení IS, trendy pojmy (terminologie)

Více

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9

Obsah. Kapitola 1. Kapitola 2. Kapitola 3. Úvod 9 Obsah Úvod 9 Kapitola 1 Business Intelligence, datové sklady 11 Přechod od transakčních databází k analytickým..................... 13 Kvalita údajů pro analýzy................................................

Více

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Architektury Informačních systémů. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Architektury Informačních systémů Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Nutné pojmy Co je to informační systém? Jaké oblasti zahrnuje? Jaká je vazba IS na podnikovou strategii?

Více

Business Intelligence

Business Intelligence Business Intelligence Josef Mlnařík ISSS Hradec Králové 7.4.2008 Obsah Co je Oracle Business Intelligence? Definice, Od dat k informacím, Nástroj pro operativní řízení, Integrace informací, Jednotná platforma

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na

Více

NÁSTROJE BUSINESS INTELLIGENCE

NÁSTROJE BUSINESS INTELLIGENCE NÁSTROJE BUSINESS INTELLIGENCE Milena Tvrdíková VŠB Technická univerzita Ostrava, Ekonomická fakulta, Katedra informatiky v ekonomice, Sokolská 33, 701021 Ostrava1, ČR, milena.tvrdikova@vsb.cz Abstrakt

Více

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ

ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ ARCHITEKTURA INFORMAČNÍCH SYSTÉMŮ PODLE ÚROVNĚ ŘÍZENÍ Podle toho, zda informační systém funguje na operativní, taktické nebo strategické řídicí úrovni, můžeme systémy rozdělit do skupin. Tuto pyramidu

Více

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/

Aplikace IS, outsourcing, systémová integrace. Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Aplikace IS, outsourcing, systémová integrace Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Kontext Dodavatelé Strategická Zákazníci ERP Taktická Operativní Kategorie ERP - zaměřeno na

Více

Konceptuální modely datového skladu

Konceptuální modely datového skladu Vladimíra Zádová Katedra informatiky, TU Liberec, e-mail: vladimira.zadova@tul.cz Abstrakt: Příspěvek je zaměřen na modely datového skladu pro konceptuální úroveň návrhu. Existující modely pro tuto úroveň

Více

Multidimenzionální pohled na zdravotnické prostředí. INMED Petr Tůma

Multidimenzionální pohled na zdravotnické prostředí. INMED Petr Tůma Multidimenzionální pohled na zdravotnické prostředí INMED - 21.11.2003 Petr Tůma Koncepce multid pohledu Poskytování péče probíhá v multidimenzionálním světě; dimenze tento svět mapují podobně jako souřadnice

Více

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph)

Marketingová komunikace. 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3bph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3bph) 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Zdroje Studijní materiály Heleny Palovské

Více

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005

INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 INFORMAČNÍ SYSTÉMY (IS) Ing. Pavel Náplava Katedra počítačů K336, ČVUT FEL Praha 2004/2005 AGENDA definice IS, zavedení pojmů možnosti a rozdělení typická struktura technologie nasazení praktická ukázka

Více

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák

Analýza a návrh datového skladu pro telekomunikační společnost. Bc. Josef Jurák Analýza a návrh datového skladu pro telekomunikační společnost Bc. Josef Jurák Diplomová práce 2006 ABSTRAKT Business Intelligence a Data warehouse jsou základní prostředky pro podporu rozhodování, které

Více

Moderní přístupy tvorby datových skladů

Moderní přístupy tvorby datových skladů Mendelova univerzita v Brně Provozně ekonomická fakulta Moderní přístupy tvorby datových skladů Diplomová práce Vedoucí práce: Ing. Jan Přichystal, Ph.D. Bc. Luboš Bednář Brno, 2010 Rád bych touto cestou

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty

Více

Management IS. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1

Management IS. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1 Management IS Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz 22/ 1 Učitelé Přednášející: Cvičící: Doc.Ing.Miloš Koch,CSc. Ing.Aleš Klusák Kontakt: koch@fbm.vutbr.cz 22/ 2 Literatura Skripta: Koch,M. Dovrtěl,J.:

Více

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19

Základy databází. O autorech 17 PRVNÍ ČÁST. KAPITOLA 1 Začínáme 19 3 Obsah Novinky v tomto vydání 10 Význam základních principů 11 Výuka principů nezávisle na databázových produktech 12 Klíčové pojmy, kontrolní otázky, cvičení, případové studie a projekty 12 Software,

Více

výskyt události reakce na událost

výskyt události reakce na událost ARCHITEKTURA DATOVÉHO SKLADU A PŘÍSTUP K DATŮM V REÁLNÉM ČASE Dušan Kajzar Slezská univerzita v Opavě, Filozoficko - přírodovědecká fakulta, Ústav informatiky, Bezručovo nám. 13, 746 00 Opava, e-mail:

Více

Úvodní přednáška. Význam a historie PIS

Úvodní přednáška. Význam a historie PIS Úvodní přednáška Význam a historie PIS Systémy na podporu rozhodování Manažerský informační systém Manažerské rozhodování Srovnávání, vyhodnocování, kontrola INFORMACE ROZHODOVÁNÍ organizace Rozhodovacích

Více

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky

In orma I a. O nl Dva. Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky I Libor Gála Jan Pour Prokop Toman., O nl Dva.. In orma I a Počítačové aplikace v podnikové a mezipodnikové praxi Technologie informačních systému R1zení a rozvoj podnikové informatiky Českó společnost

Více

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek

Databáze. datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek Databáze datum jmeno prijmeni adresa_ulice adresa_mesto cislo_uctu platba zustatek 980103 Jan Novak Dlouha 5 Praha 1 9945371 100.00 100.00 980105 Jan Novak Dlouha 5 Praha 1 9945371 1500.00 1600.00 980106

Více

Informace v organizaci. Vladimíra Zádová, KIN, EF TUL

Informace v organizaci. Vladimíra Zádová, KIN, EF TUL Informace v organizaci Globální a informační strategie IS/ICT současné aplikace Způsoby tvorby a provozu aplikací Bezpečnost Řízení podnikové informatiky Inovace státní správa, veřejná správa, banky dodavatelé

Více

Business Intelligence a datové sklady

Business Intelligence a datové sklady Business Intelligence a datové sklady Ing Jan Přichystal, PhD Mendelova univerzita v Brně 2 prosince 2014 Ing Jan Přichystal, PhD Úvod Intenzivní nasazení informačních technologií způsobuje hromadění obrovské

Více

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o.

GIS jako důležitá součást BI. Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. GIS jako důležitá součást BI Jan Broulík, Petr Panec ARCDATA PRAHA, s.r.o. ARCDATA PRAHA, s.r.o. THE GEOGRAPHIC ADVANTAGE Motto Sladit operační taktiku s organizační strategií Strategie bez taktiky je

Více

Návrh a analýza požadavků na výběr manažerského informačního systému

Návrh a analýza požadavků na výběr manažerského informačního systému Návrh a analýza požadavků na výběr manažerského informačního systému The Design and Analysis of Requirements for the Selection of Business Information Systems Jaroslav Hanák Bakalářská práce 2015 ABSTRAKT

Více

Moderní metody automatizace a hodnocení marketingových kampaní

Moderní metody automatizace a hodnocení marketingových kampaní Moderní metody automatizace a hodnocení marketingových kampaní SAS CI Roadshow 2014 24/09/2014 Vít Stinka Agenda Představení společnosti Unicorn Systems Aliance Unicorn Systems a SAS Celkový koncept Customer

Více

TM1 vs Planning & Reporting

TM1 vs Planning & Reporting R TM1 vs Planning & Reporting AUDITOVATELNOST? ZABEZPEČENÍ? SDÍLENÍ? KONSOLIDACE? PROPOJITELNOST???? TM1?? COGNOS PLANNING IBM COGNOS 8 PLANNING Cognos Planning Podpora plánovacího cyklu Jednoduchá tvorba

Více

Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů

Kapitola 1: Úvod. Systém pro správu databáze (Database Management Systém DBMS) Účel databázových systémů - 1.1 - Kapitola 1: Úvod Účel databázových systémů Pohled na data Modely dat Jazyk pro definici dat (Data Definition Language; DDL) Jazyk pro manipulaci s daty (Data Manipulation Language; DML) Správa

Více

Nová dimenze rozhodovacího procesu

Nová dimenze rozhodovacího procesu Nová dimenze rozhodovacího procesu Marek Matoušek Pavel Mašek Data, nebo INFORMACE Využití dostupných firemních dat Několik systémů, mnoho různých dat Různé divize, různé potřeby Potřeba integrace dat

Více

Chytrá systémová architektura jako základ Smart Administration

Chytrá systémová architektura jako základ Smart Administration Chytrá systémová architektura jako základ Smart Administration Ing. Petr Škvařil, Pardubický kraj Dipl. Ing.Zdeněk Havelka PhD. A-21 s.r.o. 1 Nepříjemné dotazy Jsme efektivní v provozování veřejné správy?

Více

Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT

Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT Multidimenzionální modelování v rámci analýzy a návrhu IS/ICT Abstrakt: Vladimíra Zádová Katedra informatiky, TU Liberec, e-mail: vladimira.zadova@tul.cz Strukturovaný a objektový přístup jsou klasické

Více

KIV/SI. Přednáška č.8. Jan Valdman, Ph.D. jvaldman@dns.cz

KIV/SI. Přednáška č.8. Jan Valdman, Ph.D. jvaldman@dns.cz KIV/SI Přednáška č.8 Jan Valdman, Ph.D. jvaldman@dns.cz 19.4.2011 Business Intelligence (BI) The Top Challenges of Midsize Companies Improve efficiency, reduce costs Strengthen customer relationships,

Více

Obsah Úvod 11 Jak být úspěšný Základy IT

Obsah Úvod 11 Jak být úspěšný Základy IT Obsah Úvod 11 Jak být úspěšný 13 Krok 0: Než začneme 13 Krok 1: Vybrat si dobře placenou oblast 14 Krok 2: Vytvořit si plán osobního rozvoje 15 Krok 3: Naplnit osobní rozvoj 16 Krok 4: Osvojit si důležité

Více

v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání

v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání Podpora rozhodování v praxi Rizika a přínosy zavádění BI jako nástroje pro řízení podnikání HanušRais Business DevelopmentManager SAS Institute ČR s.r.o. Agenda Úvod - Profil SAS Institute Pojem Business

Více

Databázové a informační systémy

Databázové a informační systémy Databázové a informační systémy doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Obsah Jak ukládat a efektivně zpracovávat

Více

Konsolidovaný reporting CZ/SK v Cognos případová studie sanofi-aventis

Konsolidovaný reporting CZ/SK v Cognos případová studie sanofi-aventis Konsolidovaný reporting CZ/SK v Cognos případová studie sanofi-aventis Rosťa Levíček 22. listopadu 2011 Obsah Výchozí stav a požadavky Architektura řešení v CZ Varianty konsolidace Klíčové faktory úspěchu

Více

Využití IT nástrojů pro měření a řízení výkonnosti. Michal Kroutil 22.11.2005

Využití IT nástrojů pro měření a řízení výkonnosti. Michal Kroutil 22.11.2005 Využití IT nástrojů pro měření a řízení výkonnosti Michal Kroutil 22.11.2005 1 Obsah 1 2 3 4 5 Představení Ciber Novasoft Klíčové ukazatele výkonnosti Zdroje dat SAP SEM Implementační projekt 2 Představení

Více

KIS A JEJICH BEZPEČNOST-I

KIS A JEJICH BEZPEČNOST-I KIS A JEJICH BEZPEČNOST-I INFORMAČNÍ SYSTÉMY POUŽÍVANÉ V MANAŽERSKÉ PRAXI pplk. Ing. Petr HRŮZA, Ph.D. Univerzita obrany, Fakulta ekonomiky a managementu Katedra vojenského managementu a taktiky E-mail.:

Více

GIS a Business Intelligence

GIS a Business Intelligence GIS pre územnú samosprávu GIS a Business Intelligence (pohled ze strany GIS) Rudolf Richter, BERIT services s.r.o. 1 Východiska pro rozhodování Data existují, ale jsou fragmentována v různorodých produkčních

Více

Získávání znalostí z databází. Alois Kužela

Získávání znalostí z databází. Alois Kužela Získávání znalostí z databází Alois Kužela Obsah související pojmy datové sklady, získávání znalostí asocianí pravidla 2/37 Úvod získávání znalostí z dat, dolování (z) dat, data mining proces netriviálního

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS Relační databázový model Databázové (datové) modely základní dělení klasické databázové modely relační databázový model relační databázový model Základní konstrukt - relace relace, schéma relace atribut,

Více

Modelování a návrh datových skladů

Modelování a návrh datových skladů Modelování a návrh datových skladů Doc. Ing. B. Miniberger, CSc. BIVŠ Obsah 1. Přednáška I. Základy modelování datových skladů (DW) 2. Přednáška II. ETL procesy III. Data Mining IV. Kvalita dat a BI Literatura

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Úvod do problematiky Doc. RNDr. Iveta Mrázová,

Více

Vnitřní integrace úřadu Středočeského kraje

Vnitřní integrace úřadu Středočeského kraje VIÚ Středočeského kraje, Mgr. Jan Drnovský, Mgr. Václav Pávek 09/11/15 Vnitřní integrace úřadu Středočeského kraje Vnitřní integrace úřadu KUSK Krajský úřad Středočeského kraje 2 Obecné předpoklady řešení

Více

Systémy pro podporu rozhodování. Datové sklady, OLAP

Systémy pro podporu rozhodování. Datové sklady, OLAP Systémy pro podporu rozhodování Datové sklady, OLAP 1 4. Datový management: sklady, přístup a vizualizace Principy MSS Nové koncepce Objektové databáze Inteligentní databáze Datové sklady On-line analytické

Více

Problémové domény a jejich charakteristiky

Problémové domény a jejich charakteristiky Milan Mišovič (ČVUT FIT) Pokročilé informační systémy MI-PIS, 2011, Přednáška 02 1/16 Problémové domény a jejich charakteristiky Prof. RNDr. Milan Mišovič, CSc. Katedra softwarového inženýrství Fakulta

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS ANALYTICKÉ SLUŽBY BUSINESS INTELLIGENCE VE

Více

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1)

Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1. Your Organization (Line #1) Advanced SQL Modeling in RDBMS - SQL Spreadsheet part1 2005-12-31 1.12.2009 Your Daniel Name Vojtek Jakub Your Valčík Title Your Organization (Line #1) Your Organization Query Languages (Line #2) I Agenda

Více

Architektura informačních systémů. - dílčí architektury - strategické řízení taktické řízení. operativní řízení a provozu. Globální architektura

Architektura informačních systémů. - dílčí architektury - strategické řízení taktické řízení. operativní řízení a provozu. Globální architektura Dílčí architektury Informační systémy - dílčí architektury - EIS MIS TPS strategické řízení taktické řízení operativní řízení a provozu 1 Globální Funkční Procesní Datová SW Technologická HW Aplikační

Více

QAD Business Intelligence

QAD Business Intelligence QAD Business Intelligence Vladimír Bartoš, Pavel Němec Konzultanti 13.6.2012 Komponenty QAD BI Analytické tabule pro podporu rozhodování Spolupráce uživatelů nad analyzovanými daty Reporty Generátor analytických

Více

Využití moderní self-service BI technologie v praxi

Využití moderní self-service BI technologie v praxi Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Katedra informačních technologií Studijní program: Aplikovaná informatika Obor: Informační systémy a technologie Využití moderní self-service

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS ZHODNOCENÍ BUSINESS INTELLIGENCE SYSTÉMU

Více

Obsah: Základní pojmy, definice Informační systémy IT architektura Typické aplikační komponenty Implementace aplikací

Obsah: Základní pojmy, definice Informační systémy IT architektura Typické aplikační komponenty Implementace aplikací Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 30 Téma: INFORMAČNÍ SYSTÉMY A ARCHITEKTURA IT V PODNIKU Lektor: Ing. Michal Beránek Třída/y:

Více

Datové sklady a možnosti analýzy a reportování dat ve výuce

Datové sklady a možnosti analýzy a reportování dat ve výuce Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze Datové sklady a možnosti analýzy a reportování dat ve výuce Autor bakalářské práce: David

Více

ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ

ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ ANALÝZA NÁKUPNÍHO KOŠÍKU SEMINÁŘ 18.11.2012 Radim Tvardek, Petr Bulava, Daniel Mašek U&SLUNO a.s. I Sadová 28 I 702 00 Ostrava I Czech Republic PŘEDPOKLADY PRO ANALÝZU NÁKUPNÍHO KOŠÍKU 18.11.2012 Daniel

Více

Vývoj informačních systémů. Obecně o IS

Vývoj informačních systémů. Obecně o IS Vývoj informačních systémů Obecně o IS Informační systém Informační systém je propojení informačních technologií a lidských aktivit směřující k zajištění podpory procesů v organizaci. V širším slova smyslu

Více

Objektově orientované databáze. Miroslav Beneš

Objektově orientované databáze. Miroslav Beneš Objektově orientované databáze Miroslav Beneš Obsah přednášky Motivace Vlastnosti databázových systémů Logické datové modely Nevýhody modelů založených na záznamech Co potřebujeme modelovat? Identifikace

Více

Hospodářská informatika

Hospodářská informatika Hospodářská informatika HINFL, HINFK Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu reg.

Více

Vytvoření datového skladu

Vytvoření datového skladu Bankovní institut vysoká škola Praha Katedra informatiky a kvantitativních metod Vytvoření datového skladu Diplomová práce Autor: Petr Havlas Informační technologie a management Vedoucí práce: doc. Ing.

Více

2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování

2. Modelovací jazyk UML 2.1 Struktura UML 2.1.1 Diagram tříd 2.1.1.1 Asociace 2.1.2 OCL. 3. Smalltalk 3.1 Jazyk 3.1.1 Pojmenování 1. Teoretické základy modelování na počítačích 1.1 Lambda-kalkul 1.1.1 Formální zápis, beta-redukce, alfa-konverze 1.1.2 Lambda-výraz jako data 1.1.3 Příklad alfa-konverze 1.1.4 Eta-redukce 1.2 Základy

Více

Efektivní řízení pomocí Business Intelligence. Ján Zajíc (Clever Decision) Robert Havránek (Microsoft)

Efektivní řízení pomocí Business Intelligence. Ján Zajíc (Clever Decision) Robert Havránek (Microsoft) Efektivní řízení pomocí Business Intelligence Ján Zajíc (Clever Decision) Robert Havránek (Microsoft) Kde najdete nejefektivnějšího manažera? Hierarchie řízení a informační potřeby High level, agregované

Více

Platforma Microsoft zajistila společnosti ISS nový finanční analytický systém

Platforma Microsoft zajistila společnosti ISS nový finanční analytický systém Microsoft Windows Server Platforma Microsoft zajistila společnosti ISS nový finanční analytický systém Přehled Země: Česká Republika Odvětví: Facility services Profil zákazníka: ISS WORLD Czech Republic

Více

Proces vývoje HRIS Vema (Human Resources Information System) Jaroslav Šmarda

Proces vývoje HRIS Vema (Human Resources Information System) Jaroslav Šmarda Proces vývoje HRIS Vema (Human Resources Information System) Jaroslav Šmarda Proces vývoje HRIS Vema Vlastnosti HRIS (Human Resources Information System) HRIS Vema Proces vývoje HRIS Vema Vema, a. s. Přední

Více

INFORMAČNÍ SYSTÉMY. 03. 01. 2006, Ing. Jiří Mráz

INFORMAČNÍ SYSTÉMY. 03. 01. 2006, Ing. Jiří Mráz INFORMAČNÍ SYSTÉMY 03. 01. 2006, Ing. Jiří Mráz PŘEDNÁŠEJÍCÍ Jiří Mráz Production Coordinator UNICORN jiri.mraz@unicorn.cz AGENDA Informační a komunikační technologie (ICT) podniku Informační systémy Zakázkový

Více

NÁVRH MODELU ORACLE BI JAKO NÁSTROJE PRO PODPORU ROZHODOVÁNÍ

NÁVRH MODELU ORACLE BI JAKO NÁSTROJE PRO PODPORU ROZHODOVÁNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV INFORMATIKY FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF INFORMATICS NÁVRH MODELU ORACLE BI JAKO NÁSTROJE PRO

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS DATOVÝ SKLAD

Více

PostgreSQL jako platforma pro datové sklady

PostgreSQL jako platforma pro datové sklady PostgreSQL jako platforma pro datové sklady Vratislav Beneš benes@optisolutions.cz 1. Co to jsou datové sklady? 2. Požadavky na datový sklady 3. Technické řešení datového skladu 4. PostgreSQL a datové

Více

Databáze v MS ACCESS

Databáze v MS ACCESS 1 z 14 19.1.2014 18:43 Databáze v MS ACCESS Úvod do databází, návrh databáze, formuláře, dotazy, relace 1. Pojem databáze Informací se data a vztahy mezi nimi stávají vhodnou interpretací pro uživatele,

Více

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz

Vývoj moderních technologií při vyhledávání. Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz Vývoj moderních technologií při vyhledávání Patrik Plachý SEFIRA spol. s.r.o. plachy@sefira.cz INFORUM 2007: 13. konference o profesionálních informačních zdrojích Praha, 22. - 24.5. 2007 Abstrakt Vzhledem

Více

Performance Management What if?

Performance Management What if? Performance Management What if? Ondřej Bothe, IT Specialist ondrej_bothe@cz.ibm.com Agenda: Koncept PM s What if nástroji Ukázka tvorby What if modelu (Ukázka pokročilejší What if aplikace) Performance

Více

Role BI v e-business řešeních pohled do budoucnosti

Role BI v e-business řešeních pohled do budoucnosti Ing. Ota Novotný, Ph.D. katedra informačních technologií Vysoká škola ekonomická v Praze novotnyo@vse.cz katedra informačních technologií VŠE Praha jsme uznávanou autoritou v oblasti aplikované informatiky

Více