1.3.5 Dynamika pohybu po kružnici I

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1.3.5 Dynamika pohybu po kružnici I"

Transkript

1 1.3.5 Dynamika pohybu po kružnici I Předpoklady: 1304 Při pohybu po kružnici je výhodnější popisova pohyb pomocí úhlových veličin, keré korespondují s normálními veličinami, keré jsme používali dříve. normální veličiny pojíko úhlové veličiny m s ϕ r ϕ rad dráha s [ ] rychlos v [ m/s ] = úhel [ ] úhlová rychlos [ rad/s ] s v = ω r v = ω = ϕ zrychlení v m/s úhlové zrychlení rad/s v a = ε r ω a = ε = rovnoměrný pohyb rovnoměrný pohyb po kružnici v = konsana ω = konsana s = s + v ϕ = ϕ0 + ω 0 rovnoměrně zrychlený pohyb rovnoměrně zrychlený pohyb po kružnici a = konsana ε = konsana v = v + a ω = ω0 + ε 1 s = s0 + v0 + a 0 1 ϕ = ϕ0 + ω0 + ε Zaím jsme se u kruhového pohybu zabývali pouze kinemaikou (popis pohybu). Nedokli jsme se dynamiky (popisu příčin pohybu). Dynamika přímočarého pohybu: 1. Newonův zákon: Těleso, na keré působí nulová výsledná síla, se (v inerciální sousavě souřadnic) pohybuje rovnoměrně přímočaře. F. Newonův zákon: a = (kde je síla, am je zrychlení). m Př. 1: Na obrázku je nakreslena při pohledu shora kulička položená na sole a přidělaná k nii. Ni je na druhém konci připevněná a kulička se ak okolo ohoo bodu ve vodorovném rovině rovnoměrně oáčí. a) Jaké jsou při omo pohybu hodnoy úhlového zrychlení ε a ečného zrychlení a? b) Nakresli do obrázku síly, keré působí na kuličku v každém ze zachycených okamžiků, a jejich výslednici. Tření zanedbej. 1

2 c) Nakresli do obrázku ke každé zachycené poloze kuličky její vekor rychlosi. a) Hodnoy úhlového zrychlení ε a ečného zrychlení a Rovnoměrný pohyb po kružnici ε = 0 a = ε r a = 0 b) Síly, keré působí na kuličku F p Při pohledu z bodu je vidě, že na kuličku působí ři síly: raviační síla F směrem dolů, síla podložky F p směrem nahoru (sejně velká jako raviace), síla provázku F p vodorovně v každém okamžiku ve směru k mísu upevnění provázku. Proože síly F a síla rovná síle F p. F p mají opačný směr a sejnou velikos, v každém okamžiku se výsledná Kulička by se měla pohybova se zrychlením, keré má v každém okamžiku směr kolmý ke směru jejího pohybu. c) Nakresli do obrázku ke každé zachycené poloze kuličky její vekor rychlosi.

3 v v v Velikos rychlosi zůsává sále sejná ečné zrychlení a musí bý nulové. Směr vekoru rychlosi se neusále mění kulička se pohybuje se zrychlením, keré je v každém okamžiku kolmé na směr jejího pohybu (směřuje edy k mísu upevnění provázku). Kdyby libovolně malá čás vekoru zrychlení měla sejný směr jaký má vekor rychlosi, změnila by se velikos rychlosi (a kulička by se již nepohybovala rovnoměrným pohybem po kružnici). Jak silovým rozborem ak sledováním vekoru rychlosi jsme dospěli ke sejnému závěru: Předmě, kerý se pohybuje rovnoměrným kruhovým pohybem, se pohybuje s normálovým zrychlením a n. Normálové zrychlení: je v každém okamžiku kolmé na směr pohybu, nemění velikos rychlosi, ale pouze její směr, způsobuje dosředivá síla. Dosředivá síla působí směrem do sředu k ose oáčení. POZOR: Dosředivá síla není žádným novým ypem síly. Jde o roli, kerou mohou hrá síly různého původu. Analoie pro sudeny: Do řídy chodí různí sudeni (sejně ak exisují různé druhy sil raviační, řecí, ), každý z ěcho sudenů může hrá roli služby (sejně ak může roli dosředivé síly hrá v různých siuacích každá ze zmiňovaných sil). Př. : Najdi důvody proč, nemůžeme do silového rozboru nakresli odsředivou sílu. Odsředivá síla nesplňuje požadavky na sílu: nemůžeme naléz původce, nemůžeme naléz parnerskou sílu. Zkusíme si odsředivou sílu nakresli do obrázku: 3

4 F o F o F o Záleželo by na vzájemné velikos odsředivé síly a síly dosředivé (v konkréním případě síly niě), pokud plailo: Fo < Fn výsledná síla by byla menší a nedokázala by kuličce uděli dosaečné normálové zrychlení. Fo = Fn výsledná síla by byla nulová a kulička by se musela pohybova rovnoměrně přímočaře. Fo > Fn výsledná síla by směřovala od sředu oáčení a kulička by zaáčela na druhou sranu než ve skuečnosi. Př. 3: Vysvěli, proč je člověk na kolooči nebo při průjezdu zaáčkou lačen směrem z kruhu. Z předchozího víme, že eno efek nemůže způsobova odsředivá síla, proože žádná neexisuje. Pohybující se člověk má endenci se pohybova rovnoměrně přímočaře (podle zákona servačnosi) snaží se pohybova rovně a nechce samovolně zaáče. K zaáčení ho donuí jedině síla, kerá působí směrem do sředu: na kolooči síla sedačky, na kerou jsme se nalačili díky servačnému pohybu po přímce (a edy od sředu oáčení), v auomobilu síla bočních dveří, síla pásu nebo boční srany sedačky, na keré se nalačíme díky servačnému pohybu po přímce (a edy od sředu oáčení). Pedaoická poznámka: Předchozí dva příklady jsou velmi důležié. Pokud chcee dosáhnou oho, aby sudeni vnímali fyziku jako vědu o reálném svěě, musíe je přesvědči o om, že odsředivá síla neexisuje (a ona skuečně neexisuje). Neexisenci odsředivé síly si můžeme ukáza i pokusem. Těžkou ocelovou kuličku rozočíme na kopírovacím papíru (na vrdé podložce) a ni pusíme. Z okopírované sopy je zcela zřejmé, že se kulička od okamžiku pušění pohybuje po ečně (edy sejně jako by na ní působila pouze raviace a sůl). 4

5 Na předměy pohybující se po kružnici nepůsobí odsředivá síla. Odsředivá síla neexisuje, její exisence by znamenala neplanos základních fyzikálních zákonů a oální krach fyziky jako akové. Dodaek: Termín odsředivá síla se bohužel ve školské fyzice používá při popisují dějů z pohledu pozorovaele, kerý se oáčí a zároveň si předsavuje, že sojí na mísě (ve věšině případů jde o počínání zjevně absurdní). I v omo případě je však nuné odsředivou sílu jakožo zdánlivou sílu srikně odlišova od pravých, o kerých jsme mluvili dosud, proože nesplňuje požadavky kladené na sílu a její exisence závisí na mísě odkud děj pozorujeme. Z didakického hlediska je její zavádění zjevně zcela konraprodukivní, proože vede k omu, že naprosá věšina sudenů (určiě přes 95 %) španě chápe pohybové zákony. Více v následující kapiole 4 Inerciální a neinerciální sousavy. Použií ermínu odsředivá síla mimo fyziku (odsředivka, působení odsředivé síly při jízdě obloukem, ) v naprosé věšině vychází ze španého pochopení fyzikálního použií ermínu, proože se všechny yo děje popisují z hlediska vnějšího pozorovaele (edy z inerciální souřadné sousavy) a v akovém případě o žádné odsředivé síle mluvi nemůžeme. Jak funuje ždímačka (odsředivka)? Rozhodně v ní nepůsobí žádná odsředivá síla. Ždímačka pouze rozočí buben s prádlem. Podle 1. Newonova zákona by prádlo v bubnu chělo leě rovně (po ečně), v om mu však brání sěna bubnu. Sejným (ečným) směrem by chěla leě i voda v prádla a na rozdíl od prádle ak dokonce i leě může, proože v bubnu jsou malé díry. Že voda odléá po ečně a ne od sředu, si můžeme snadno ověři při máchnuí namočenou houbou. Př. 4: Na obrázku je nakreslena rajekorie auomobilu na čási závodní dráhy. Auomobil dráhu projel vyznačeným směrem. Plná čára znamená, že v daných mísech auomobil zrychloval, čárkovaná čára znamená rovnoměrný pohyb a ečkovaná zpomalování. Nakresli do mís označených křížky vekor výsledné síly, kerá působila na auomobil. V přímočaré čási rai závisí vekor výsledné síly pouze na om, zda auo zrychluje nebo zpomaluje zrychlený pohyb výsledná síla má sejný směr jako jízda auomobilu, rovnoměrný pohyb výsledná síla je nulová, zpomalený pohyb výsledná síla má opačný směr než jízda auomobilu. 5

6 V křivočaré čási rai musí mí výsledná síla ješě dosředivou čás, kerá zajisí auomobilu normálové zrychlení nuné k udržení na rai. Pedaoická poznámka: U ohoo příkladu je nuné necha sudeny, aby si výslednici do obrázku nakreslili opravdu sami. Budee překvapeni, kolik z nich je nakreslí španě. V první fázi neříkám, jak má bý správné řešení, ale radím, aby si vzpomněli na dosavadní průběh hodiny. Př. 5: Najdi síly, keré hrají roli dosředivé síly v následujících pohybech: a) Měsíc obíhá kolem Země. b) Auo projíždí zaáčkou. c) Sáňkař projíždí klopenou zaáčkou sáňkařské dráhy. d) Točíme kuličkou na provázku ve svislé poloze, zajímáme se o nejnižší bod její rajekorie. e) Točíme kuličkou na provázku ve svislé poloze, zajímáme se o nejvyšší bod její rajekorie. a) Měsíc obíhá kolem Země. F d Roli dosředivé síly hraje raviační síla F, kerou Země přiahuje Měsíc. b) Auo projíždí zaáčkou. Roli dosředivé síly hraje ření mezi koly a vozovkou (proo při náledí, když je ření velmi malé, aua nemohou zaáče a pokračují rovnoměrně přímočaře mimo vozovku). c) Sáňkař projíždí klopenou zaáčkou sáňkařské dráhy. 6

7 F d Roli dosředivé síly hraje z věší čási laková síla podložky, z menší čási ření. d) Točíme kuličkou na provázku ve svislé poloze, zajímáme se o nejnižší bod její rajekorie. F d Roli dosředivé síly hraje čás síly, kerou na kuličku působí provázek (další čás éo síly vyrovnává působení raviace). e) Točíme kuličkou na provázku ve svislé poloze, zajímáme se o nejvyšší bod její rajekorie. F d Roli dosředivé síly hraje raviační síla. Buď pouze čásečně (když se kulička očí rychle) nebo zcela, pokud je pohyb kuličky příliš pomalý zaočí raviace rajekorii kuličky příliš a a do nejvyššího bodu vůbec nevysoupá. Řešení předchozích dvou bodů si snadno můžeme vyzkouše, když ve svislém směru rozočíme libovolný předmě. Ucííme, že v nejnižším bodě nás provázek áhne nejvíce (síla 7

8 provázku zajišťuje dosředivou sílu i vyrušení raviace), v nejvyšším bodě naopak nemusí áhnou vůbec (při vhodné rychlosi raviace zajisí celou dosředivou sílu). Př. 6: Vysvěli, proč se sedačky na řeízkovém kolooči během jízdy vychýlí ze svislého směru. Jak vzniká dosředivá síla nuná k udržení sedačky na kruhové dráze? Jak souvisí výchylka s rychlosí oáčení? Nakreslíme si síly, keré působí na člověka na sedačce kolooče: F - raviační síla Země působící kolmo dolů, F z - aková síla závěsu působící ve směru řeězů, musí mí akovou velikos, aby její svislá složka vyrušila sílu F (sedačka nespadla dolů). Najdeme výslednici ěcho dvou sil: F v Výsledná síla má pouze vodorovnou složku, kerá směřuje do sředu kolooče hraje roli dosředivé síly. Nakreslíme si siuaci pro různé výchylky sedačky od svislého směru: Kolooč sojí, sedačka je svislá. Kolooč se rozáčí, sedačka je málo nakloněná. Kolooč se očí rychle, sedačka je hodně nakloněná. F v F v Nulová výsledná síla odpovídá faku, že se sedačka nepohybuje. Malá výsledná síla odpovídá faku, že se sedačka se pohybuje pomalu a je řeba malá dosředivá síla. Velká výsledná síla odpovídá faku, že se sedačka se pohybuje rychle a je řeba velká dosředivá síla. Výsledek odpovídá zkušenosi: čím rychleji se kolooč očí, ím věší je výchylka sedačky, ím věší vzniká výsledná síla, kerá hraje roli dosředivé síly, kerá udržuje sedačku na kruhové dráze. Na konci hodiny si ješě ujasníme, co znamená bezížný sav. 8

9 Bezížný sav si spojujeme se záběry posádek kosmické lodi, keré se volně vznášejí uvniř lodě sejně jako veškeré vniřní vybavení. Bezížný sav neznamená, že na předmě nepůsobí raviační síla (všechny předměy na oběžné dráze přiahuje Země). Bezížný sav můžeme realizova i v leadle, keré necháme pada volným pádem k zemi. Proč se v akové siuaci začne zdá, že na předměy v leadle nepůsobí raviace? Leadlo i předměy v něm padají se sejným zrychlením, na oo zrychlování se spořebuje celá raviační síla a žádný z předměů ak nemusí působi žádná další síla, aby zůsal v klidu vůči zbyku leadla. (Dokud leadlo leí ve sejné výšce, musíme v leadle sedě na sedačce, kerá na nás působí silou, kerá vyruší raviaci. Sejně ak mi musíme drže silou ieliovou ašku, aby nepadla na podlahu. Jakmile začne leadlo pada volným pádem, ielika začne pada s ním a nemusíme na ni působi žádnou silou. Zdá se nám, že na ní nepůsobí zemská íže.) Sejná siuace nasává na oběžné dráze. Všechny předměy v kosmické lodi celá raviační síla drží na oběžné dráze a nemusí ak na ně působi žádná další síla, aby zůsaly vůči lodi v klidu. Shrnuí: Předměy, keré se pohybují rovnoměrným pohybem po kružnici, se pohybují se zrychlením (mění se směr jejich rychlosi) a musí na ně edy působi výsledná dosředivá síla. 9

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 19. 11. 2012 Číslo DUM: VY_32_INOVACE_14_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 3. Newtonovy zákony 1 Autor: Jazyk: Aleš Trojánek čeština

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3 Fyzikajekolemnás(Polohaajejízměny) Sudijní ex pro řešiele FO a osaní zájemce o fyziku Ivo Volf Miroslava Jarešová Obsah Slovo úvodem 3 1 Popis polohy ělesa 4 1.1 Jednorozměrnýprosor.......................

Více

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1 Výnosnos obchodních sraegií echnické analýzy Michal Dvořák Srovnání výnosnosi základních obchodních sraegií echnické analýzy při obchodování měn CZK/USD a CZK/EUR Verze 3 03 Michal Dvořák Záměr Na přednáškách

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8.

VY_52_INOVACE_2NOV51. Autor: Mgr. Jakub Novák. Datum: 17. 1. 2013 Ročník: 8. VY_52_INOVACE_2NOV51 Autor: Mgr. Jakub Novák Datum: 17. 1. 2013 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Pohyb těles, síly Téma: Nakloněná rovina Metodický

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Manuál k vyrovnávacímu násroji pro vorbu cen pro vodné a sočné MINISTERSTVO

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

POROZUMĚNÍ POJMU SÍLA

POROZUMĚNÍ POJMU SÍLA TEST POROZUMĚNÍ POJMU SÍLA original Force Concept Inventory 1992 D. Hestenes, M. Wells, G. Swackhamer In: Phys. Teach. 30 (3), 141-158 (1992) Revised 1995: I. Halloun, R. Hake, E. Mosca Department of Physics

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

2.1.17 Parametrické systémy lineárních funkcí II

2.1.17 Parametrické systémy lineárních funkcí II .1.17 Parametrické sstém lineárních funkcí II Předpoklad: 11 Pedagogická poznámka: Celá hodina vznikla na základě jednoho příkladu ze sbírk úloh od Jindr Petákové. S příkladem mělo několik generací studentů

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ...

Dynamika 43. rychlost pohybu tělesa, třecí sílu, tlakovou sílu ... Dynamika 43 Odporové síly a) Co je příčinou vzniku odporových sil?... b) Jak se odporové síly projevují?... c) Doplňte text nebo vyberte správnou odpověď: - když se těleso posouvá (smýká) po povrchu jiného

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

ROVNOMĚRNĚ ZRYCHLENÝ POHYB

ROVNOMĚRNĚ ZRYCHLENÝ POHYB ROVNOMĚRNĚ ZRYCHLENÝ POHYB Pomůcky: LabQuest, sonda čidlo polohy (sonar), nakloněná rovina, vozík, který se může po nakloněné rovině pohybovat Postup: Nakloněnou rovinu umístíme tak, aby svírala s vodorovnou

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Prognózování vzdělanostních potřeb na období 2006 až 2010

Prognózování vzdělanostních potřeb na období 2006 až 2010 Prognózování vzdělanosních pořeb na období 2006 až 2010 Zpráva o savu a rozvoji modelu pro předvídání vzdělanosních pořeb ROA - CERGE v roce 2005 Vypracováno pro čás granového projeku Společnos vědění

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE VYSOKÁ ŠKOL BÁNSKÁ - TECHNICKÁ UNIVERZIT OSTRV EKONOMICKÁ FKULT MODELOVÁNÍ KLSIFIKCE REGIONÁLNÍCH TRHŮ PRÁCE Jana Hančlová Ivan Křivý Jaromír Govald Miroslav Liška Milan Šimek Josef Tvrdík Lubor Tvrdý

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Masarykova univerzia Přírodovědecká fakula VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Bakalářská práce Lucie Pečinková Vedoucí bakalářské práce: Mgr. Per ČERVINEK Brno 202 Bibliografický záznam

Více

Fyzika pokus 11. 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa

Fyzika pokus 11. 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa Fyzika pokus 11 11.1 Zjištění těžiště tuhého tělesa 11.2 funkce těžiště na stabilitu tuhého tělesa Projekt TROJLÍSTEK podpora výuky přírodopisu, biologie, fyziky a chemie žáků ve věku 11 až 15 let reg.

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7

Obsah 1. 1 Měření... 3 1.1 Fyzikální veličina... 4 1.2 Jednotky... 7 Obsah Obsah Měření... 3. Fyzikální veličina... 4. Jednotky... 7 Kinematika... 9. Klid a pohyb těles... 0. Rovnoměrný pohyb... 3.3 Zrychlený pohyb... 8.4 Volný pád....5 Pohyb po kružnici... 3 3 Dynamika...

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic?

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic? Podzim 24 Výzkumná práce 2 Sekorové produkiviy a relaivní cena neobchodovaelných saků: Opravdu příliš mnoho povyku pro nic? Makroekonomický vývoj 15 Akuální makroekonomický vývoj České republiky 32 Prognóza

Více

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva

Vysoká škola báňská Technická univerzita Ostrava MODULOVANÉ SIGNÁLY. učební text. Zdeněk Macháček, Pavel Nevřiva Vysoká škola báňská Tehniká univerzia Osrava MODULOVANÉ SIGNÁLY učební ex Zdeněk Maháček, Pavel Nevřiva Osrava Reenze: Ing. Jiří Kozian, Ph.D. RNDr. Miroslav Liška, CS. Název: Modulované signály Auor:

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost).

Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). Mechanika teorie srozumitelně www.nabla.cz Druhý Newtonův pohybový zákon Začneme opakováním z předchozí kapitoly (První Newtonův pohybový zákon setrvačnost). 1. úkol: Krabičku uvedeme strčením do pohybu.

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGOIE EF Výledky řešení úlo 45. ročníku FO ka. E F Ivo Volf * ÚV FO Univerzia Hradec Králové Mirolav anda ** ÚV FO Pedagogická fakula ZČU Plzeň Jak je již v naší ouěži obvyklé uvádíme pouze

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

Fyzikální korespondenční škola 2. dopis: experimentální úloha

Fyzikální korespondenční škola 2. dopis: experimentální úloha Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 2/23 Inflace po vsupu do měnové unie vybrané problémy Jan Kubíček INSIU PRO EKONOMICKOU A EKOLOGICKOU POLIIKU A KAERA HOSPOÁŘSKÉ POLIIKY VYSOKÁ ŠKOLA EKONOMICKÁ

Více

Zadání projektu Pohyb

Zadání projektu Pohyb Zadání projektu Pohyb Časový plán: Zadání projektu, přidělení funkcí, časový a pracovní plán 22. 9. Vlastní práce 3 vyučovací hodiny + výuka v TV Prezentace projektu 11. 10. Test a odevzdání portfólií

Více

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci EduCom Teno maeriál vznikl jako součás projeku EduCom, kerý je spolufinancován Evropským sociálním fondem a sáním rozpočem ČR. ŘEZÉ PODMÍKY Jan Jersák Technická univerzia v Liberci Technologie III - OBRÁBĚÍ

Více

Zásady hodnocení ekonomické efektivnosti energetických projektů

Zásady hodnocení ekonomické efektivnosti energetických projektů Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper o. 1/24 ondový penzijní sysém v konvergující ekonomice Jan Kubíček ISIU PRO EKOOMICKOU A EKOLOGICKOU POLIIKU VYSOKÁ ŠKOLA EKOOMICKÁ V PRAZE AKULA ÁROOHOSPOÁŘSKÁ

Více

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. PEZIJÍ PLÁ Allianz ransformovaný fond, Allianz penzijní společnos, a. s. Preambule Penzijní plán Allianz ransformovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransformovaný fond ),

Více

3.2.4 Huygensův princip, odraz vlnění

3.2.4 Huygensův princip, odraz vlnění ..4 Huygensův princip, odraz vlnění Předpoklady: 0 Izotropní prostředí: prostředí, které je ve všech bodech a směrech stejné vlnění se všech směrech šíří stejnou rychlostí ve všech směrech urazí za čas

Více

Inovace výuky fyziky na základní škole a gymnáziu. Physics Education the Innovation at Primary and Grammer School

Inovace výuky fyziky na základní škole a gymnáziu. Physics Education the Innovation at Primary and Grammer School Inovace výuky fyziky na základní škole a gymnáziu Physics Education the Innovation at Primary and Grammer School Josef Janás 9 Abstrakt In the article two themes from the kinematics and the hydromechanics

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

KEPLEROVY ZÁKONY. RNDr. Vladimír Vaščák. Metodický list

KEPLEROVY ZÁKONY. RNDr. Vladimír Vaščák. Metodický list KEPLEROVY ZÁKONY RNDr. Vladimír Vaščák Metodický list RNDr. V L A D I M Í R V A Š Č Á K Metodický list RNDr. Vladimír Vaščák www.vascak.cz Obsah O aplikaci... 1 Verze pro PC, ipad a Android... 2 1. Keplerův

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší.

při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší. EF1: Dva cyklisté Lenka jede rychlostí v1 = 10 m/s, Petr rychlostí v2 = 12 m/s, tedy v2 > v1, délka uzavřené trasy L = 1200 m. Když vyrazí cyklisté opačnými směry, potom pro čas setkání t platí v1 t +

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2

FYZIKA 2. ROČNÍK ( ) V 1 = V 2 =V, T 1 = T 2, Q 1 =Q 2 c 1 = 139 J kg 1 K 1-3. Řešení: m c T = m c T 2,2 . Do dou sejných nádob nalijeme odu a ruť o sejných objemech a eploách. Jaký bude poměr přírůsků eplo kapalin, jesliže obě kapaliny přijmou při zahříání sejné eplo? V = V 2 =V, T = T 2, Q =Q 2 c = 9 J

Více

Univerzita Pardubice. Dopravní fakulta Jana Pernera

Univerzita Pardubice. Dopravní fakulta Jana Pernera Univerzia Pardubice Dopravní fakula Jana Pernera Fakory ovlivňující popávku po osobních auomobilech v ČR Bc. Tomáš Mikas Diplomová práce 2011 Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré lierární

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

POKUSY S PRAKEM Václav Piskač, Brno 2014

POKUSY S PRAKEM Václav Piskač, Brno 2014 POKUSY S PRAKEM Václav Piskač, Brno 2014 V předchozím článku jsem popsal stavbu praku střílejícího tenisové míčky. Nyní se chci zabývat jeho využitím ve výuce. Prak umožňuje střílet míčky prakticky stálým

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 7/2003 Český akciový rh jeho efekivnos a makroekonomické souvislosi Helena Horská INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ POLITIKY

Více

Ekonomické aspekty spolehlivosti systémů

Ekonomické aspekty spolehlivosti systémů ČESKÁ SPOLEČNOST PRO JAKOST Novoného lávka 5, 116 68 Praha 1 43. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupiny pro spolehlivos k problemaice Ekonomické aspeky spolehlivosi sysémů

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 10/2003 Konvergence nominální a reálné výnosnosi finančního rhu implikace pro poby koruny v mechanismu ERM II Vikor Kolán INSTITUT PRO EKONOMICKOU A EKOLOGICKOU

Více

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110 Seznam paramerů Vydání 04/0 sinamics SINAMICS G110 Dokumenace k výrobku SINAMICS G110 Příručka pro začínající uživaele Příručka pro začínající uživaele si klade za cíl umožni uživaelům rychlý přísup k

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP NVEZTA PADBCE FAKLTA CHEMCKO-TECHNOLOGCKÁ Kadra fyzky ZÁKLADY FYZKY Pro obory DMML, TŘD a AD prznčního suda DFJP NDr. Jan Z a j í c, CSc., 005 3. ELEKTCKÝ POD 3. ZÁKLADNÍ POJMY Pod pojmm lkrcký proud chápm

Více

11 13 let, popř. i starší

11 13 let, popř. i starší Název: Provazochodec Výukové materiály Téma: Stabilita, těžiště Úroveň: 2. stupeň ZŠ Tematický celek: Materiály a jejich přeměny Předmět (obor): Doporučený věk žáků: Doba trvání: Specifický cíl: fyzika

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. /003 Hyperbolické diskonování a jeho význam v ekonomickém modelování Michal Andrle Jan Brůha INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více