Univerzita Tomáše Bati ve Zlíně Fakulta technologická. Ing. Ondřej Hudeček Ing. Tomáš Sedláček, PhD.

Rozměr: px
Začít zobrazení ze stránky:

Download "Univerzita Tomáše Bati ve Zlíně Fakulta technologická. Ing. Ondřej Hudeček Ing. Tomáš Sedláček, PhD."

Transkript

1 Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ing. Ondřej Hudeček Ing. Tomáš Sedláček, PhD. 1

2 Obsah Úvod do problematiky Dostupná technologická zařízení Pracující v podtlaku Pracující při atmosférických tlacích Podpůrné plyny využívané při plazmatických procesech Aplikace plazmy Využití plazmy jako zdroje pro úpravu povrchových vlastností Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Plazmové leptání Plasmové depozice 2

3 Úvod do problematiky 3

4 Plazma Definice Čtvrté skupenství hmoty Ionizovaný plyn Kvazineutrální avšak silně vodivá Ve vesmíru více jak 99 % Vznik Odtržení elektronu z elektronového obalu atomů plynu, resp. roztržením molekul (ionizace) dodáním energie či srážkami mezi sebou. Nejběžněji dodávaná energie původu elektrického -> elektrony -> naráží do neutrálních částic: Elastické srážky změna kinetické energie Plastické srážky vznik excitovaných neutrálních částic resp. iontů Klasifikace Elektronová hustota Teplota plasmy Horká (9 700 C) - vysoká elektronová hustota; plastické kolize mezi elektrony a částicemi vytváří reaktivní částice, elastické zahřívají těžké částice a tak se energie elektronů spotřebovává Studená ( C) nízká elektronová hustota; plastické srážky způsobují chemické změny plazmatu, menší množství elastických srážek lehce zahřívá těžké částice 4

5 Plazma Definice Čtvrté skupenství hmoty Ionizovaný plyn Kvazineutrální avšak silně vodivá Ve vesmíru více jak 99 % Vznik Odtržení elektronu z elektronového obalu atomů plynu, resp. roztržením molekul (ionizace) dodáním energie či srážkami mezi sebou. Nejběžněji dodávaná energie původu elektrického -> elektrony -> naráží do neutrálních částic: Elastické srážky změna kinetické energie Plastické srážky vznik excitovaných neutrálních částic resp. iontů Klasifikace Elektronová hustota Teplota plasmy Horká (9 700 C) - vysoká elektronová hustota; plastické kolize mezi elektrony a částicemi vytváří reaktivní částice, elastické zahřívají těžké částice a tak se energie elektronů spotřebovává Studená ( C) nízká elektronová hustota; plastické srážky způsobují chemické změny plazmatu, menší množství elastických srážek lehce zahřívá těžké částice Obr. 1 Fáze vzniku plazmatu 5

6 Plazma Definice Čtvrté skupenství hmoty Ionizovaný plyn Kvazineutrální avšak silně vodivá Ve vesmíru více jak 99 % Vznik Odtržení elektronu z elektronového obalu atomů plynu, resp. roztržením molekul (ionizace) dodáním energie či srážkami mezi sebou. Nejběžněji dodávaná energie původu elektrického -> elektrony -> naráží do neutrálních částic: Elastické srážky změna kinetické energie Plastické srážky vznik excitovaných neutrálních částic resp. iontů Klasifikace Elektronová hustota Teplota plasmy Horká (9 700 C) - vysoká elektronová hustota; plastické kolize mezi elektrony a částicemi vytváří reaktivní částice, elastické zahřívají těžké částice a tak se energie elektronů spotřebovává Studená ( C) nízká elektronová hustota; plastické srážky způsobují chemické změny plazmatu, menší množství elastických srážek lehce zahřívá těžké částice 6

7 Dostupná technologická zařízení 7

8 Dostupná technologická zařízení Pracující v podtlaku <1,3 kpa Středně-nízké tlaky <1, ; 1,3> kpa Nízké tlaky <1, ; 1, > kpa Velmi nízké tlaky <1, kpa Pracující při atmosférických tlacích Korónový výboj Dielektrický bariérový výboj (tichý) Doutnavý výboj Obloukový výboj 8

9 Plazma ve středně-nízkých tlacích Paralelně uložené elektrody 9

10 Plazma ve středně-nízkých tlacích Magnetronové plazmatické zdroje 10

11 Plazma ve středně-nízkých tlacích Indukčně spřažené plazmatické zdroje 11

12 Plazma v nízkých tlacích Zdroj plasmy založený na ostřelování elektrony 12

13 Plazma v nízkých tlacích Plazma generovaná mikrovlnným zářením 13

14 Plazma ve velmi nízkých tlacích Aplikací, které by vyžadovaly práci při tak nízkých tlacích mnoho není a proto je tato varianta velmi ojedinělá Technologické řešení těchto systémů je velmi podobné výše jmenovaným Mikroelektronika díky velmi dlouhé střední volné dráze mezi atomy je možno dosahovat extrémních přesností kupříkladu přesná mřížka leptaných procesorů (64 nm, 32nm atd.) a dalších mikroelektronických komponent Pro napařování či depozici, protože takto dopravované částice razí dráhu od zdroje přímo na substrát bez nežádoucích kolizí Nevýhodou je značná rozptýlenost částic v plynu a tím vysoce snížená pravděpodobnost vzniku dostatečného množství plastických srážek Ke zvýšení účinnosti je nezbytné zapojit do systému soustavu magnetů usměrňující tok částic v komoře 14

15 Plazma při atmosférických tlacích Korónový výboj 15

16 Plazma při atmosférických tlacích Dielektrický bariérový výboj (tichý) 16

17 Plazma při atmosférických tlacích Doutnavý výboj 17

18 Plazma při atmosférických tlacích Obloukový výboj 18

19 Podpůrné plyny využívané při plazmatických procesech 19

20 Podpůrné plyny využívané při plazmatických procesech Inertní plyny Převážně He, Ar, Ne Velmi kvalitní a homogenní plazma Energie vzniká především srážkami Rozprašování, ale také na předúpravy a čistění Zlepšují adhezi, štěpí nebo navazují H Kyslíkaté plyny Nejčastěji na modifikaci povrchů O 2 reaguje s mnoha polymery za vzniku karboxylových, karbonylových, hydroxylových aj. Dochází k fyzikálnímu narušování povrchu Mimo kyslík také CO, CO 2, SO 2 nebo H 2 O plazma Dusíkaté a fluoridové plyny Smáčivost, tiskuschopnost, biokompatibilita Nejčastěji N 2, NH 3 Dále pak F 2, HF pro zvýšení hydrofobity Uhlovodíkové plyny Metan, etan, etylén, acetylén a benzen Generace hydrogenovaných uhlíkatých filmů Mimořádná mikrotvrdost, antireflexivní, nepropustnost pro páry Organosilikátové plyny Především pro plazmovou polymeraci Opouzdření na mikroelektroniku a dielektrika, antireflexivní povlaky, tenkostěnné povlaky vedoucí světlo v integrované optice Silany (Si), disilany (SiSi), disiloxany (SiOSi), disilanazaty (SiNHSi) a disilthiany (SiSSi) 20

21 Aplikace plazmy 21

22 Využití plazmy jako zdroje pro úpravu povrchových vlastností Většinou korónový nebo doutnavý výboj Úprava jen několika málo prvních monomolekulárních vrstev materiálu I přes šetrnost úpravy lze výrazně měnit - Povrchovou energii Obr. 2 Změna kontaktního úhlu PET vystaveného různým trváním CO 2 OAUGDP plasmou jako funkce času ve dnech po úpravě Obr. 3 Změna povrchové energie PP netkané textilie (34 g/m 2 ) vystavené různým trváním CO 2 OAUGDP plasmou jako funkce času ve dnech po úpravě 22

23 Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Navlhavost Obr. 4 SEM snímek PP vlákna a) neupraveného b) upraveného OAUGDP plazmou po dobu 30 s s CO 2 podpůrným plynem 23

24 Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Navlhavost Obr. 5 Fotografie PET fólie zachycující vodní kontaktní úhel a) neupraveného b) upraveného vzorku OAUGDP plazmou po dobu 10 s s CO2 podpůrným plynem při frekvenci 3 khz a napětí 9 kv 24

25 Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Navlhavost Obr. 6 Schéma MOD VIII reaktoru pracujícím na principu OAUGDP (CO 2, VF zdroj 3 khz, napětí 7,5 kv RMS ) 25

26 Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Potiskovatelnost, barvitelnost, omyvatelnost Obr. 7 Fotografie zachycující předúpravy plastových dílců: před tiskem, flokováním či lakováním pomocí technologie APPJ 26

27 Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Přilnavost či kohezní vlastnosti Obr. 8 Fotografie zachycující předúpravy plastových dílců:před druhým vstřikováním, zvyšovaní adheze datových nosičů pomocí technologie APPJ 27

28 Využití plazmy jako zdroje pro úpravu povrchových vlastností I přes šetrnost úpravy lze výrazně měnit - Sterilnost resp. čistotu Obr. 9 TEM snímek buněk E. Coli před a) a po b) 30 s vystavení plazmatem v rámci technologie OAUGDP při 10 kv RMS a 7,1 khz a vzduchem jako podpůrným plynem Obr. 10 Schéma zmiňované aparatury OAUGDP 28

29 Využití plazmy jako zdroje pro úpravu povrchových vlastností Podstata úpravy Přidáním/ubráním povrchové vrstvičky nebo povrchového náboje Změna chemické struktury povrchu Změna povrchových vlastností po fyzikální stránce Nikdy Nepoškozuje nebo nemění vlastnosti v objemu materiálu Neimplementuje do povrchu ionty či atomy Neodstraňuje větší množství materiálu z povrchu Nepřenáší na povrch více jak několik monovrstev Upravuje Objemné výrobky Tenké filmy či fólie Tkaniny a netakané textilie Přírodní či syntetická vlákna Sypké směsi Dělení Aktivní - substrát zastupuje pozici elektrody Pasivní substrát je obstřelován 29

30 Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Většinou se využívá plazmy o vysoké hustotě se záporným potenciálem ke stěnám komory Ionty se urychlují a vpravují do materiálu Ještě častěji je, ale využíváno vzniku radikálů štěpením polymerního povrchu Zde se penetruje hlouběji do povrchu takže už se nejedná jen o modifikaci povrchu Velmi hojně využíváno v metalurgii, pro zlepšování tribologických vlastností, odolnosti vůči korozi, tepelné odolnosti atd. Často také v mikroelektronice, biomedicíně (implantáty, katétry aj.), úpravě plastových povrchů z hlediska změny navlhavosti, adheze a elektroforetických vlastností 30

31 Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Obr. 14 Schéma ilustrující zamezení trombózy okolo PET katetru (vlevo) upraveného pomocí amonné plazmové implementace (vpravo) 31

32 Využití plazmy jako zdroje pro úpravu povrchových vlastností implementací Obr. 15 Postup úpravy PE povrchu k dosažení antibakteriální aktivity jak vůči gram negativním tak gram pozitivním bakteriím 32

33 Plazmové leptání Velmi tenká hranice od předešlého čistění povrchu Využití převážně v mikroelektronice Jak ve vakuu tak při atmosférických podmínkách i při nízkých teplotách Pro leptání plastů nejčastěji Ar, He, Ne v kombinaci s O 2 nebo N 2 33

34 Plazmové leptání Obr. 16 Chemické děje mezi He a O 2 při jejich pobytu v plazmatu Obr. 17 Leptání iontovým paprskem z Ar plazmy Obr. 18 Chemické děje mezi He a N 2 při jejich pobytu v plazmatu 34

35 Plazmové leptání Obr. 19 Využití plazmatického leptání při výrobě mikroprocesorů 35

36 Plazmové leptání Obr. 20 Naleptaný křemíkový plátek 36

37 Plazmové leptání Obr. 21 a) SEM snímek PMMA povrchu upraveného metodou přímého plazmatického leptání b) vykazující velmi dobré antireflexivní vlastnosti (průchod svetla) Obr. 22 Příklad využití antireflexního nano-strukturovaného povrchu (PMMA) na krycí sklo přístrojové desky Audi A6 (vlevo neupravený, vpravo upravený povrch) 37

38 Plasmové depozice Rozdíl od implementace se na povrch nanáší vrstva naprosto odlišných vlastností Deponuje se procesy polymerace a kopolymerace v plazmatu, napařováním a rozprašováním plazmy Filmy mohou disponovat vlastnostmi: Vodivé/nevodivé Anti/Reflexivní Vhodnými pro optické a magnetické datové nosiče Výjimečnými dekorativními vlastnostmi Zajišťujícími vysokou oděruvzdornost a antikorozivní odolnost Velmi nízkou propustností pro plyny a vodní páry Dostatečnou biokompatibilitu s tkání Rozlišujeme Napařování Fyzikální podstaty Naprašování Chemická depozice napařováním Chemické podstaty 38

39 Plasmové depozice - Napařováním Obr. 23 Schéma systému umožňujícího depozici materiálu sprejováním v plazmatu Obr. 24 Schéma plazmového VF hořáku 39

40 Plasmové depozice - Naprašováním Obr. 25 Schéma systému umožňujícího depozici materiálu jeho obstřelováním ve formě terčíku ionty uniklými z plazmy 40

41 Chemická depozice napařováním V tomto případě se jedná o depozici využívající chemických procesů mezi plazmou a jednoho nebo více druhů hmoty mezi sebou Rozlišujeme Přímé napařování Nepřímé napařování Prekurzor je nejčastěji v plynném skupenství, ale také jemné částice Nanášet se tak mohou Oxidy (SiO x, SiO2, InOx, SnOx, TiO2, CaO2 atd.) Polymery (polyoelfiny, fluoropolyemry, silikonové polymery) Uhlíkové povlaky (DLC uhlík, nanotuby atd.) Plasmové polymerace vytvoření tenké vrstvy na povrchu substrátu díky polymeraci organického monomeru, jako CH 4, C 2 H 6, C 2 F 4 a C 3 F 6, přítomných v plazmatu Lze rozlišovat polymeraci Plazmatem iniciovanou Polymerace probíhající přímo v plazmatu Vzniklý polymer kratší makromolekuly, náhodně větvené a především vysoce síťované 41

42 Chemická depozice napařováním Obr. 26 Schéma systému plazmou asistované depozice napařováním ve vakuu Obr. 27 Schéma systému APPJ umožňující depozici tenkých vrstev při atmosférickém tlaku 42

43 Chemická depozice napařováním Obr. 28 Různé varianty průmyslového využití APPJ Obr. 27 Schéma systému APPJ umožňující depozici tenkých vrstev při atmosférickém tlaku 43

44 Plazmové depozice Aplikace Mikroelektronika Optika Biomedicína (Ne)permeabilní membrány Automobilový průmysl Obalový průmysl Nábytkářský průmysl Petrochemický průmysl Textilie a vlákna 44

45 Plazmové depozice Obr. 29 Schéma vysoce tvrdým polymerem potažené optické vlákno 45

46 Plazmové depozice Obr. 30 Mikro-indentační zkouška tvrdosti na povlaku připraveného plazmovou depozicí na PMMA substrát. 46

47 Plazmové depozice Obr. 31 SEM snímek zachycující deponovanou vrstvu směsi etylenu a CO 2 do níž byly následně zakomponovány stříbrné nanočástice 47

48 Plazmové depozice Obr. 32 Plazmovou depozicí potáhnutý stent, výrazně zvyšující jeho biokompatibilitu s lidskou tkání 48

49 Plazmové depozice Obr. 33 Plastový substrát potisknutý plazmovým naprašováním (vlevo); využití této technologie při výrobě ohebných OLED displejů (vpravo) 49

50 Plazmové depozice Obr. 34 Příklady využití plazmové depozice v praxi 50

51 Závěr Šetrnost k opracovávaným materiálům i přes tuto skutečnost velmi efektivní Konvečními metodami nenapodobitelné procesy (deponování, změna povrchových vlastností, nano-povrchy, biokompatibilita) Zároveň mnohdy výrazně šetrnější k životnímu prostředí Někdy vyšší cena zařízení redukována výraznou úsporou materiálových nákladů 51

52 52

Plazma v technologiích

Plazma v technologiích Plazma v technologiích Mezi moderními strojírenskými technologiemi se stále častěji prosazují metody využívající různé formy plazmatu. Plazma je plynné prostředí skládající se z poměrně volných částic,

Více

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev

Využití plazmových metod ve strojírenství. Metody depozice povlaků a tenkých vrstev Využití plazmových metod ve strojírenství Metody depozice povlaků a tenkých vrstev Metody depozice povlaků Využití plazmatu pro depozice (nanášení) povlaků a tenkých vrstev je moderní a stále častěji aplikovaná

Více

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008

Vybrané technologie povrchových úprav. Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Vybrané technologie povrchových úprav Metody vytváření tenkých vrstev Doc. Ing. Karel Daďourek 2008 Metody vytváření tenkých vrstev Vakuové metody dnes nejužívanější CVD Chemical vapour deposition PE CVD

Více

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz

REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV. Jan VALTER HVM Plasma s.r.o. www.hvm.cz REAKTIVNÍ MAGNETRONOVÉ NAPRAŠOV OVÁNÍ Jan VALTER SCHEMA REAKTIVNÍHO NAPRAŠOV OVÁNÍ zdroj výboje katoda odprašovaný terč plasma inertní napouštění plynů reaktivní zdroj předpětí p o v l a k o v a n é s

Více

Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015

Anotace přednášek LŠVT 2015 Česká vakuová společnost. Téma: Plazmové technologie a procesy. Hotel Racek, Úštěk, 1 4. června 2015 Anotace přednášek LŠVT 2015 Česká vakuová společnost Téma: Plazmové technologie a procesy Hotel Racek, Úštěk, 1 4. června 2015 1) Úvod do plasmochemie Lenka Zajíčková, Ústav fyzikální elektroniky, PřF

Více

Openair - Plasma Systems

Openair - Plasma Systems Openair - Plasma Systems Co je plazma? Plazma je čtvrté skupenství hmoty, které je vytvářeno působením velkého množství energie na plyny, které se pak stávají ionizovanými a vykazují stejný počet kladných

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_12 Název materiálu: Elektrický proud v plynech. Tematická oblast: Fyzika 2.ročník Anotace: Prezentace slouží k výkladu elektrického proudu v plynech. Očekávaný

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

Metody depozice povlaků - CVD

Metody depozice povlaků - CVD Procesy CVD, PA CVD, PE CVD Chemická metoda depozice vrstev CVD využívá pro depozici směs chemicky reaktivních plynů (např. CH 4, C 2 H 2, apod.) zahřátou na poměrně vysokou teplotu 900 1100 C. Reakční

Více

FYZIKA VE FIRMĚ HVM PLASMA

FYZIKA VE FIRMĚ HVM PLASMA FYZIKA VE FIRMĚ HVM PLASMA Jiří Vyskočil HVM Plasma spol.s r.o. Na Hutmance 2, 158 00 Praha 5 OBSAH HVM PLASMA spol. s r.o. zaměření a historie firmy hlavní činnost a produkty POVRCHOVÉ TECHNOLOGIE metody

Více

Metody depozice tenkých vrstev pomocí nízkoteplotního plazmatu

Metody depozice tenkých vrstev pomocí nízkoteplotního plazmatu Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra aplikované fyziky a techniky diplomová práce Metody depozice tenkých vrstev pomocí nízkoteplotního plazmatu Vypracoval: Martin Günzel

Více

Vliv plazmatické předúpravy na adhezní vlastnosti textilií

Vliv plazmatické předúpravy na adhezní vlastnosti textilií Obsah 1 ÚVOD... 8 2 LITERÁRNÍ PRŮZKUM... 10 2.1 Plazma... 10 2.1.1 Fyzikální popis plazmatu... 10 2.1.2 Výskyt plazmy v přírodě... 11 2.1.3 Rozdělení plazmatu... 13 2.1.4 Vlastnosti plazmatu... 15 2.1.5

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

lní úpravy povrchu textilních materiálů Fyzikáln Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz Přednášky z : Textilní fyzika

lní úpravy povrchu textilních materiálů Fyzikáln Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz Přednášky z : Textilní fyzika Fyzikáln lní úpravy povrchu textilních materiálů Martina Viková LCAM DTM FT TU Liberec, martina.vikova@vslib.cz Smáčen ení adheze pro dosažení dobrého smáčení pevné látky kapalinou je třeba aby povrchové

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory

Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory Vysoká škola chemicko-technologická v Praze Technologie a vlastnosti tenkých vrstev, tenkovrstvé senzory Technologie CVD, PVD, PECVD, MOVPE, MBE, coating technologie (spin-, spray-, dip-) Ondřej Ekrt Vymezení

Více

Uhlíkové struktury vázající ionty těžkých kovů

Uhlíkové struktury vázající ionty těžkých kovů Uhlíkové struktury vázající ionty těžkých kovů 7. června/june 2013 9:30 h 17:30 h Laboratoř metalomiky a nanotechnologií, Mendelova univerzita v Brně a Středoevropský technologický institut Budova D, Zemědělská

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

OTĚRUVZDORNÉ POVLAKY VYTVÁŘENÉ METODAMI ŽÁROVÉHO NÁSTŘIKU

OTĚRUVZDORNÉ POVLAKY VYTVÁŘENÉ METODAMI ŽÁROVÉHO NÁSTŘIKU OTĚRUVZDORNÉ POVLAKY VYTVÁŘENÉ METODAMI ŽÁROVÉHO NÁSTŘIKU Ing. Alexander Sedláček S.A.F. Praha, spol. s r.o. 1. Úvod, princip 2. Přehled metod vytváření ochranných povlaků 3. Použití technologií žárového

Více

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch

Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Sekunda (2 hodiny týdně) Chemické látky a jejich vlastnosti Směsi a jejich dělení Voda, vzduch Atom, složení a struktura Chemické prvky-názvosloví, slučivost Chemické sloučeniny, molekuly Chemická vazba

Více

Fyzikální metody depozice KFY / P223

Fyzikální metody depozice KFY / P223 Fyzikální metody depozice KFY / P223 Obsah Vymezení pojmu tenkých vrstev, význam TV ve vědě a technice, přehled metod vytváření TV Růst tenkých vrstev: módy a fáze růstu TV, vliv parametrů procesu. Napařování

Více

STUDIUM PLASMATICKY NANÁŠENÝCH VRSTEV

STUDIUM PLASMATICKY NANÁŠENÝCH VRSTEV STUDIUM PLASMATICKY NANÁŠENÝCH VRSTEV *J. Mihulka **M. Másilko ***L. Unzeitig ****supervisor: O. Kovářík *Gymnázium, Roudnice nad Labem, Havlíčkova 175 ** Gymnázium, Roudnice nad Labem, Havlíčkova 175

Více

Elektrická zařízení III.ročník

Elektrická zařízení III.ročník Elektrická zařízení III.ročník (Ing. Jiří Hájek) Přehled témat a tématických celků, odpřednášených pro žáky SPŠE oboru Zařízení silnoproudé elektrotechniky v rámci předmětu Elektrická zařízení El. světlo

Více

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala

ÚPRAVA VODY V ENERGETICE. Ing. Jiří Tomčala ÚPRAVA VODY V ENERGETICE Ing. Jiří Tomčala Úvod Voda je v elektrárnách po palivu nejdůležitější surovinou Její množství v provozních systémech elektráren je mnohonásobně větší než množství spotřebovaného

Více

Celosvětová produkce plastů

Celosvětová produkce plastů PRODUKCE PLASTŮ Zpracování plastů cvičení 1 TU v Liberci, FS Celosvětová produkce plastů Mil. tun Asie (bez Japonska) 16 % Střední a západní Evropa 21 % Společenství nezávislých států 3 % 235 mil. tun

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

Mgr. Ladislav Blahuta

Mgr. Ladislav Blahuta Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ZÁKLADNÍ

Více

Základy obsluhy plazmatických reaktorů, seznámení s laboratorní technikou

Základy obsluhy plazmatických reaktorů, seznámení s laboratorní technikou Úloha č. 1 Základy obsluhy plazmatických reaktorů, seznámení s laboratorní technikou Úkoly měření: 1. Zopakujte si základní pojmy z oblasti fyziky plazmatu a plazmochemie. Využijte přednáškové texty a

Více

ZÁŘENÍ V ASTROFYZICE

ZÁŘENÍ V ASTROFYZICE ZÁŘENÍ V ASTROFYZICE Plazmový vesmír Uvádí se, že 99 % veškeré hmoty ve vesmíru je v plazmovém skupenství (hvězdy, mlhoviny, ) I na Zemi se vyskytuje plazma, např. v podobě blesků, polárních září Ve sluneční

Více

1. Látkové soustavy, složení soustav

1. Látkové soustavy, složení soustav , složení soustav 1 , složení soustav 1. Základní pojmy 1.1 Hmota 1.2 Látky 1.3 Pole 1.4 Soustava 1.5 Fáze a fázové přeměny 1.6 Stavové veličiny 1.7 Složka 2. Hmotnost a látkové množství 3. Složení látkových

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

VAKUOVÁ TECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Semestrální projekt FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VAKUOVÁ TECHNIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Semestrální projekt FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VAKUOVÁ TECHNIKA Semestrální projekt Téma: Aplikace vakuového napařovaní v optice Vypracoval:

Více

optické vlastnosti polymerů

optické vlastnosti polymerů optické vlastnosti polymerů V.Švorčík, vaclav.svorcik@vscht.cz Definice světelného paprsku světlo se šíří ze zdroje podél přímek (paprsky) Maxwell: světlo se šířív módech (videch) = = jediná možná cesta

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

VY_32_INOVACE_CHK4_5460 ŠAL

VY_32_INOVACE_CHK4_5460 ŠAL VY_32_INOVACE_CHK4_5460 ŠAL Výukový materiál v rámci projektu OPVK 1.5 Peníze středním školám Číslo projektu: CZ.1.07/1.5.00/34.0883 Název projektu: Rozvoj vzdělanosti Číslo šablony: III/2 Datum vytvoření:

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

Plasty A syntetická vlákna

Plasty A syntetická vlákna Plasty A syntetická vlákna Plasty Nesprávně umělé hmoty Makromolekulární látky Makromolekuly vzniknou spojením velkého množství atomů (miliony) Syntetické či přírodní Známé od druhé pol. 19 století Počátky

Více

9. ČIDLA A PŘEVODNÍKY

9. ČIDLA A PŘEVODNÍKY Úvod do metrologie - 49-9. ČIDLA A PŘEVODNÍKY (V.LYSENKO) Čidlo (senzor, detektor, receptor) je em jedné fyzikální veličiny na jinou fyzikální veličinu. Snímač (senzor + obvod pro zpracování ) je to člen

Více

Úvod do studia organické chemie

Úvod do studia organické chemie Úvod do studia organické chemie 1828... Wöhler... uměle připravil močovinu Organická chemie - chemie sloučenin uhlíku a vodíku, případně dalších prvků (O, N, X, P, S) Příčiny stability uhlíkových řetězců:

Více

EU peníze středním školám digitální učební materiál

EU peníze středním školám digitální učební materiál EU peníze středním školám digitální učební materiál Číslo projektu: Číslo a název šablony klíčové aktivity: Tematická oblast, název DUMu: Autor: CZ.1.07/1.5.00/34.0515 III/2 Inovace a zkvalitnění výuky

Více

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ

Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ Monika Fialová VAKUOVÁ FYZIKA II. ZÍSKÁVÁNÍ NÍZKÝCH TLAKŮ CHARAKTERISTIKY VÝVĚV vývěva = zařízení snižující tlak plynu v uzavřeném objemu parametry: mezní tlak čerpací rychlost pracovní tlak výstupní tlak

Více

Potravinářské aplikace

Potravinářské aplikace Potravinářské aplikace Nanodisperze a nanokapsle Funkční složky (např. léky, vitaminy, antimikrobiální prostředky, antioxidanty, aromatizující látky, barviva a konzervační prostředky) jsou základními složkami

Více

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide Metody tepelného dělení, problematika základních materiálů Tepelné dělení materiálů je lze v rámci strojírenské

Více

Vliv mikrovlnného plazmatu vzduchu na smáčivost povrchů syntetických polymerů. Bc. Ivana Kupská

Vliv mikrovlnného plazmatu vzduchu na smáčivost povrchů syntetických polymerů. Bc. Ivana Kupská Vliv mikrovlnného plazmatu vzduchu na smáčivost povrchů syntetických polymerů Bc. Ivana Kupská Diplomová práce 2010 Příjmení a jméno: Kupská Ivana Obor: CHTM-MI P R O H L Á Š E N Í Prohlašuji, že beru

Více

Lepení plastů a elastomerů

Lepení plastů a elastomerů Lepení plastů a elastomerů 3 Proč používat lepidla Loctite nebo Teroson namísto jiných spojovacích metod Tato příručka nabízí základní vodítko pro výběr vhodného lepidla Loctite nebo Teroson výrobků Henkel

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

Adresa místa konání: Na Slovance 2, 182 21 Praha 8 Cukrovarnická 10, 162 53 Praha 6

Adresa místa konání: Na Slovance 2, 182 21 Praha 8 Cukrovarnická 10, 162 53 Praha 6 Dny otevřených dveří 2010 Název ústavu: Fyzikální ústav AV ČR, v. v. i. Adresa místa konání: Na Slovance 2, 182 21 Praha 8 Cukrovarnická 10, 162 53 Praha 6 Datum a doba otevření: 4. 11. 9 až 16 hod. pro

Více

Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042

Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Vzdělávání výzkumných pracovníků v Regionálním centru pokročilých technologií a materiálů reg. č.: CZ.1.07/2.3.00/09.0042 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Stadium životního cyklu Zkušební provoz. Masová výroba. Nanotechnologie osvícení křemičitého skla. Zlepšuje účinnost solárních panelů.

Stadium životního cyklu Zkušební provoz. Masová výroba. Nanotechnologie osvícení křemičitého skla. Zlepšuje účinnost solárních panelů. Tabulka vyráběné nanoprodukce (nebo s použitím nanotechnologie) a nejvíce blížících se k praktické realizaci inovací v nanotechnologiích z Nižněnovgorodské oblasti Název inovace Nanotechnologie osvícení

Více

Přednáška 10. Příprava substrátů: chemické ošetření, žíhání, iontové leptání.

Přednáška 10. Příprava substrátů: chemické ošetření, žíhání, iontové leptání. Přednáška 10 Příprava substrátů: chemické ošetření, žíhání, iontové leptání. Proč? Každá vrstva nanesená na povrch materiálu by měla být s povrchem nějak spojena. Nejčastěji budeme požadovat mechanickou

Více

Ústav výrobního inženýrství NABÍDKA SPOLUPRÁCE. Univerzita Tomáše Bati ve Zlíně, Fakulta technologická

Ústav výrobního inženýrství NABÍDKA SPOLUPRÁCE. Univerzita Tomáše Bati ve Zlíně, Fakulta technologická Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav výrobního inženýrství NABÍDKA SPOLUPRÁCE Univerzita Tomáše Bati ve Zlíně, Fakulta technologická www.uvi.ft.utb.cz Oblasti spolupráce a služeb

Více

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup

3. FILTRACE. Obecný princip filtrace. Náčrt. vstup. suspenze. filtrační koláč. výstup 3. FILTRACE Filtrace je jednou ze základních technologických operací, je to jedna ze základních jednotkových operací. Touto operací se oddělují pevné částice od tekutiny ( směs tekutiny a pevných částic

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

STANDARD KVALITY PRO VÝROBNÍ ŘADU ISOFUSION V700 SKLOVITÉ POVLAKY 1. ROZSAH PŮSOBNOSTI

STANDARD KVALITY PRO VÝROBNÍ ŘADU ISOFUSION V700 SKLOVITÉ POVLAKY 1. ROZSAH PŮSOBNOSTI STANDARD KVALITY PRO VÝROBNÍ ŘADU ISOFUSION V700 SKLOVITÉ POVLAKY 1. ROZSAH PŮSOBNOSTI Tato norma určuje požadavky na jakost pro ISOFUSION V700 zpracování sklovitých povlaků vrstvou skelného smaltování

Více

Úprava povrchu pomocí korony.

Úprava povrchu pomocí korony. Úprava povrchu pomocí korony. Úprava povrchu fólií koronou (Corona Treatment) se stala prakticky jednou z nejrozšířenějších metod. Tato metoda se používá pro úpravu povrchového napětí fólií z polymerů,

Více

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v

Více

Polymery lze rozdělit podle několika kritérií. Podle původu rozlišujeme polymery přírodní a syntetické. Přírodní polymery jsou:

Polymery lze rozdělit podle několika kritérií. Podle původu rozlišujeme polymery přírodní a syntetické. Přírodní polymery jsou: MAKROMOLEKULÁRNÍ LÁTKY (POLYMERY) Makromolekuly jsou molekulové systémy složené z velkého počtu atomů vázaných chemickými vazbami do dlouhých řetězců. Tyto řetězce tvoří pravidelně se opakující části,

Více

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13 OBSAH 1 ÚVOD................................................. 7 1.1 Výrobek a materiál........................................ 7 1.2 Přehled a klasifikace materiálů pro výrobu..................... 8 2

Více

Příprava bioaktivních povrchů pomocí fyzikálně-chemických metod a jejich aplikace. František Bílek

Příprava bioaktivních povrchů pomocí fyzikálně-chemických metod a jejich aplikace. František Bílek Příprava bioaktivních povrchů pomocí fyzikálně-chemických metod a jejich aplikace František Bílek Bakalářská práce 2006 ABSTRAKT Polymerní materiály vzhledem ke svým charakteristikám, chemické stabilitě,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM Pavla Rovnaníková, Martin Sedlmajer, Martin Vyšvařil Fakulta stavební VUT v Brně Seminář Vápno, cement, ekologie, Skalský Dvůr 12. 14.

Více

Vyjmenujte tři základní stavební částice látek: a) b) c)

Vyjmenujte tři základní stavební částice látek: a) b) c) OPAKOVÁNÍ Vyjmenujte tři základní stavební částice látek: a) b) c) Vyjmenujte tři základní stavební částice látek: a) atom b) molekula c) ion Vyjmenujte skupenství, ve kterých se může látka nacházet: a)

Více

Speciální metody obrábění

Speciální metody obrábění Předmět: Ročník: Vytvořil: Datum: Základy výroby druhý M. Geistová 6. září 2012 Název zpracovaného celku: Speciální metody obrábění Speciální metody obrábění Použití: je to většinou výkonné beztřískové

Více

Skupenské stavy látek. Mezimolekulární síly

Skupenské stavy látek. Mezimolekulární síly Skupenské stavy látek Mezimolekulární síly 1 Interakce iont-dipól Např. hydratační (solvatační) interakce mezi Na + (iont) a molekulou vody (dipól). Jde o nejsilnější mezimolekulární (nevazebnou) interakci.

Více

Lepení materiálů. RNDr. Libor Mrňa, Ph.D.

Lepení materiálů. RNDr. Libor Mrňa, Ph.D. Lepení materiálů RNDr. Libor Mrňa, Ph.D. Princip Adheze Smáčivost Koheze Dělení lepidel Technologie lepení Volba lepidla Lepení kovů Zásady navrhování lepených konstrukcí Typy spojů Princip lepení Lepení

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2 Plyny Plyn T v, K Vzácné plyny 11 plynných prvků He, Ne, Ar, Kr, Xe, Rn 165 Rn 211 N 2 O 2 77 F 2 90 85 Diatomické plynné prvky Cl 2 238 H 2, N 2, O 2, F 2, Cl 2 H 2 He Ne Ar Kr Xe 20 4.4 27 87 120 1 Plyn

Více

Spojení hmotové spektrometrie se separačními metodami

Spojení hmotové spektrometrie se separačními metodami Spojení hmotové spektrometrie se separačními metodami RNDr. Radomír Čabala, Dr. Katedra analytické chemie Přírodovědecká fakulta Univerzita Karlova Praha Spojení hmotové spektrometrie se separačními metodami

Více

TECHNOLOGIE POVRCHOVÝCH ÚPRAV. 1. Definice koroze. Soli, oxidy. 2.Rozdělení koroze. Obsah: Činitelé ovlivňující korozi H 2 O, O 2

TECHNOLOGIE POVRCHOVÝCH ÚPRAV. 1. Definice koroze. Soli, oxidy. 2.Rozdělení koroze. Obsah: Činitelé ovlivňující korozi H 2 O, O 2 TECHNOLOGIE POVRCHOVÝCH ÚPRAV Obsah: 1. Definice koroze 2. Rozdělení koroze 3. Ochrana proti korozi 4. Kontrolní otázky 1. Definice koroze Koroze je rozrušování materiálu vlivem okolního prostředí Činitelé

Více

Povrchová úprava laminátů s použitím polyuretanových nátěrových hmot

Povrchová úprava laminátů s použitím polyuretanových nátěrových hmot Povrchová úprava laminátů s použitím polyuretanových nátěrových hmot Ing. Ladislav Hubáček; Ing. Jan Skoupil CSc., Ing. Jiří Husák, CSc., Ing. Ivan Beránek, Ing. Blanka Orságová SYNPO, akciová společnost

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz. Technologická zařízení

Studentská 1402/2 461 17 Liberec 1 tel.: +420 485 353 006 cxi.tul.cz. Technologická zařízení Technologická zařízení Oddělení prototypových technologií a procesů 3D tiskárna Objet Connex 500 Systém od firmy Objet je určen pro výrobu rozměrných a přesných modelů. Maximální rozměry modelů: 490 x

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Výzkum slitin titanu - od letadel po implantáty

Výzkum slitin titanu - od letadel po implantáty Výzkum slitin titanu - od letadel po implantáty josef.strasky@gmail.com Titan Saturn a TITAN sonda Pioneer, 26. srpen 1976 Titan Titan Titan Unikátní vlastnosti titanu + nejvyšší poměr mezi pevností a

Více

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů

Více

Lisy působí na tvářený materiál klidným tlakem a prokovou materiál v celém průřezu. Oproti bucharům je práce na nich bez rázů a bezpečnější.

Lisy působí na tvářený materiál klidným tlakem a prokovou materiál v celém průřezu. Oproti bucharům je práce na nich bez rázů a bezpečnější. 4. Způsoby výroby nenormalizovaných polotovarů Polotovary vyráběné tvářením za tepla Nenormalizované polotovary vyráběné tvářením za tepla se vyrábí nejčastěji kováním. Při kování měníme tvar budoucího

Více

Název školy: SPŠ Ústí nad Labem, středisko Resslova

Název školy: SPŠ Ústí nad Labem, středisko Resslova Název školy: SPŠ Ústí nad Labem, středisko Resslova Číslo projektu: CZ.1.07/1.5.00/34.10.1036 Klíčová aktivita: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Digitální učební materiály Autor:

Více

Lasery optické rezonátory

Lasery optické rezonátory Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

PVD povlaky pro nástrojové oceli

PVD povlaky pro nástrojové oceli PVD povlaky pro nástrojové oceli Bc. Martin Rund Vedoucí práce: Ing. Jan Rybníček Ph.D Abstrakt Tato práce se zabývá způsoby a možnostmi depozice PVD povlaků na nástrojové oceli. Obsahuje rešerši o PVD

Více

Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010

Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Plasty Základy materiálového inženýrství Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Základní vlastnosti plastů Výroba z levných surovin. Jsou to sloučeniny

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996

Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ60 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Poly(para-xylylen) Zuzana Kostíková

Poly(para-xylylen) Zuzana Kostíková Poly(para-xylylen) Zuzana Kostíková Bakalářská práce 2015 ABSTRAKT Bakalářská práce se zabývá poly(para-xylylenem) neboli Parylenem, jeho výrobou, strukturou, vlastnostmi a využitím. Parylen nachází,

Více

b) nevodiče izolanty nevedou el. proud plasty, umělé hmoty, sklo, keramika, kámen, suché dřevo,papír, textil

b) nevodiče izolanty nevedou el. proud plasty, umělé hmoty, sklo, keramika, kámen, suché dřevo,papír, textil VEDENÍ EL. PROUDU V PEVNÝCH LÁTKÁCH 1) Látky dělíme (podle toho, zda jimi může procházet el.proud) na: a) vodiče = vedou el. proud kovy (měď, hliník, zlato, stříbro,wolfram, cín, zinek) uhlík, tuha b)

Více

SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ

SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ Předmět: Ročník: Vytvořil: Datum: STROJÍRENSKÁ TECHNOLOGIE TŘETÍ JANA ŠPUNDOVÁ 06.04.2014 Název zpracovaného celku: SPECIÁLNÍ METODY OBRÁBĚNÍ SPECIÁLNÍ METODY OBRÁBĚNÍ Používají se pro obrábění těžkoobrobitelných

Více

DUM VY_52_INOVACE_12CH32

DUM VY_52_INOVACE_12CH32 Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH32 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová

CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT. Hmota a její formy VY_32_INOVACE_18_01. Mgr. Věra Grimmerová Průvodka Číslo projektu Název projektu Číslo a název šablony klíčové aktivity CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce

Více

Plasty pro stavebnictví a architekturu 4 Aerogel

Plasty pro stavebnictví a architekturu 4 Aerogel Plasty pro stavebnictví a architekturu 4 Aerogel 14. 2. 2008, IVANA VEJRAŽKOVÁ Aerogel vypadá jako materiál z nějakého sci-fi filmu nehmotná látka se vznáší v prostoru a výzkumní pracovníci ji přidržují

Více

CEPLANT Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy

CEPLANT Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy CEPLANT Regionální VaV centrum pro nízkonákladové plazmové a nanotechnologické povrchové úpravy Operační program Výzkum a Vývoj pro Inovace prioritní osa 2.1 Regionální VaV centra Reg.č. CZ.1.05/2.1.00/03.0086

Více

DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU

DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU DOKUMENTACE K PILOTNÍ JEDNOTCE SONOLÝZY OZONU SOUHRN VÝSTUPU B2D1 PROJEKTU LIFE2WATER EXECUTIVE SUMMARY OF DELIVERABLE B2D1 OF LIFE2WATER PROJECT BŘEZEN 2015 www.life2water.cz ÚVOD Sonolýzou ozonu se rozumí

Více

Křemík a jeho sloučeniny

Křemík a jeho sloučeniny Křemík a jeho sloučeniny Mgr. Jana Pertlová Copyright istudium, 2008, http://www.istudium.cz Žádná část této publikace nesmí být publikována a šířena žádným způsobem a v žádné podobě bez výslovného svolení

Více

Speciální hybridní vrstvy připravené metodou sol-gel a jejich biomedicínské aplikace

Speciální hybridní vrstvy připravené metodou sol-gel a jejich biomedicínské aplikace Speciální hybridní vrstvy připravené metodou sol-gel a jejich biomedicínské aplikace Petr Exnar, Irena Lovětinská-Šlamborová Katedra chemie a Ústav zdravotnických studií, Technická univerzita v Liberci

Více

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry získat výhodné mechanické vlastnosti ve vztahu k funkčnímu uplatnění tvářence Výhody tváření : vysoká produktivita práce automatizace

Více