Evoluční algoritmy a umělý život

Rozměr: px
Začít zobrazení ze stránky:

Download "Evoluční algoritmy a umělý život"

Transkript

1 Evoluční algoritmy a umělý život Roman Neruda Ústav informatiky AVČR Olomouc, červen 2012

2 Od Darwina a Mendela...

3 ... k inteligentním agentům.

4 Umělý život

5 Odkazy: Steven Levy: Artificial life. Pantheon books, New York,

6 Podstata života? Kombinace 4 elementů Voda, vzduch, oheň, zem (Empedokles) Duše/psyche/anima (Demokritos) 3 duše (Aristoteles) Nic (Descartes) Élan vital (Bergson) Elektřina (M. Shelly)

7 Dnešní biologie Živé organismy lze charakterizovat jako strukturálně vysoce složité, hierarchicky uspořádané, termodynamicky otevřené a autoregulující se nukleoproteinové soustavy, jejichž podstatnými vlastnostmi jsou metabolismus, autoreprodukce a schopnost vyvíjet se. (Rozsypal a kol, 1994) Things with the capacity for metabolism and motion. Life is a self-sustained chemical system capable of undergoing Darwinian evolution. Life is matter that can reproduce itself and evolve as survival dictates.

8 Artificial life reprodukce

9 A-life, život jaký by mohl být Studuje základní rysy, procesy a zákony života Pomocí počítačových modelů, hardwarových robotů a biochemických technologií Soft, hard, wet

10 Silný a slabý ALife Umělý život Život je abstraktní proces, který nezávisí na médiu (Von Neumann) Slabý: Život je jen biologický, sw a hw simulace nám objasňují jeho mechanismy. Silný: Umělá inteligence Silná: cílem je stvořit umělý myslící systém Slabá: systémy, které se chovají v určitém kontextu inteligentně Umělé neuronové sítě Evoluční algoritmy Symbolické uvažování

11 Logika reprodukce

12 Celulární automaty Von Neumann: Sebereplikující se roboti Matematický model CA Studium chaotického chování, emergence

13 Řád chaosu Lindenmayerovy systémy Popis rostoucích struktur pomocí formálních gramatik Nástroj k modelování růstu rostlin, (X F-[[X]+X]+F[+FX]X), (F FF)

14 Hejna, stáda, roje Craig Reynolds: boid Pohyb hejn ptáků se dá popsat 3 jednoduchými pravidly Aplikace v počítačové grafice Aplikace v řešení úloh umělé inteligence Mravenčí algoritmy: nepřímá komunikace

15 Evoluce a adaptace

16 Tierra, svět je operační systém T. S. Ray simulace ekologických vztahů v počítači: Živočich = sebereplikující se software Zdroje = paměť a čas procesoru Evoluce = mutace, vymírání Parazitismus

17 Karl Simms, operační systém je svět Karl Simms: vývoj abstraktních organismů s reálnými fyzikálními zákony Řízení neuronovou sítí Emergence chování pohyb, plavání, V 90.letech superpočítač, dnes PC (3DVCE)

18 Golem, roboti už jdou Spojení evoluce a 3D tiskárny Evoluce robotických živočichů řízených umělou neuronovou sítí v SW simulátoru Realizace a testování v HW prototypu

19 Budoucnost patří bakteriím? Martyn Amos: DNA computing Zákodujme problém do DNA, Nechme přírodu počítat Bio-počítač hraje piškvorky Řešení problému obchodního cestujícího pomocí svítící E.coli

20 Umělá inteligence

21 2 problémy Umělá: člověk s čipem v mozku, geneticky modifikované organismy Inteligence: schopnost individua účelně jednat, rozumně myslet a efektivně se vyrovnávat se svým okolím a. The capacity to acquire and apply knowledge. b. The faculty of thought and reason.

22 Turingův stroj a test Alan Turing základy teorie výpočtů, Turingův stroj Turingův test: Poznat muže/ženu Poznat člověka/stroj Eliza Paradox čínského pokoje

23 Umělá inteligence Inteligentní chování Učení Schopnost adaptace Symbolická Expertní systémy, formální logika Výpočetní Řízení Neuronové sítě Plánování Evoluční algoritmy Rozpoznávání (řeč, písmo, obrázky) Fuzzy logika

24 Evoluční algoritmy

25 Odkazy: Holland: Adaptation in natural and artificial systems, MIT Press, Goldberg: Genetic algorithms in Optimization, Search and Learning, Addison-Wesley, Koza: Genetic Programming, I-III, MIT Press, 1992, 1994, Mitchell: Introduction to GA, MIT Press, Hitch-hiker's guide to EC:

26 Princip Genetických Algoritmů Gen = zakódované řešení problému Fitness Populace genů Selekce: Ruleta Turnaje Mutace Křížení

27 Genetické programování Evoluce programů Reprezentace syntaktickými stromy S-expressions, LISP Křížení, Mutace, Procedury

28 Proč evoluce funguje? Mutace = náhodné změny Selekce = pohyb správným směrem Věta o schématech: GA rekombinují kompaktní parciální řešení při hledání optima. Nadějná řešení se množí exponenciálně. Implicitní paralelismus: GA s n jedinci v populaci pracuje zhruba jako n3 izolovaných hledačů. Křížení: výměna informací Zabraňuje uvíznutí v lokálních minimech.

29 Umělé neuronové sítě

30 Odkazy: Haykin: Neural Networks, Prentice-Hall, Hecht-Nielsen: Neurocomputing, Addison-Wesley, Boston, MA, Šíma, Neruda: Teoretické otázky neuronových sítí, Matfyzpress, orial.html

31 Perceptron 1943: McCulloch, Pitts: formální neuron 1958: Rosenblatt: perceptron Lineárně separabilní Učící algoritmus Důkaz konvergence Hardware

32 XOR 1969: Minsky, Pappert: Perceptrons. Neumí XOR Sítě s více vrstavmi asi nejde učit Konec NS na 15 let Kohonen, Hopfield, Grossberg, Amari, Rusové

33 Back Propagation Učení sítě = nastavení hodnot vah dle tréningové množiny Učení s učitelem Nelineární optimalizace - minimalizace chyby Metoda největšího spádu, apod. Derivaci de/dw lze odvodit

34 Roboti

35 Khepera (2000 př.n.l.)

36 Khepera (2000 n.l.)

37 Khepera HW průměr 7cm, výška 3cm váha 80g, uveze 250g rychlost 0,02 m/s 0,5 m/s procesor Motorola 68331, 25MHz 512KB RAM 2 servo motorky 8 aktivních infra čidel (5cm dosah) moduly (věže) pro komunikaci, zrak, hmat

38 Jak řídit Kheperu pomocí NS

39 Jak učit NS pomocí GA Učitel nehodnotí každý krok (nejde to) Evidují se 'správné' a 'špatné' typy chování To je zakódováno v účelové funkci (fitness) GA Hlavní problém GA v ER: volba fitness obecná vs. konkrétní více kritérií najednou(multiobjective optimization) Softwarová simulace Desítky pokusů, stovky jedinců, tisíce generací

40 Úloha: Prohledávání bludiště Nejprve malé bludiště Dobré chování: Nenaráží do stěn kolečka se točí (stejným směrem) prohledává prostor Vyvine se optimální strategie pohybu v bludišti Není závislá na konkrétním prostředí Robot si nic nepamatuje

41 Úloha: Dělejte to ve skupině Více robotů se má koordinovaně pohybovat ve skupině Nenarážet do sousedů rozeznat jiného robota od stěny není pro krátkozrakou Kheperu jednoduché musí proaktivně zkoumat z různých úhlů Následovat vůdce (má na zádech žárovku) Robustnost - všichni ve skupině mají stejný 'mozek' Důležité: Kdokoliv může být vůdcem

42 Budoucnost?

43 Inteligentní agenti

44 Wearable computing

45 Kyborgové?

46 V rámci umělé inteligence: hybridní metody Soft computing: EA+NS+Fuzzy Soft + tradiční UI (symbolická) Soft + hard computing (numerika, statistika) V IT: inteligentní (adaptivní) agenti Autonomní software, Mobilní, komunikativní, sociální Nálady, emoce, model dle lidské mysli Kolem nás: všudypřítomné počítače Smart devices, ubiquitus, wearable computing V nás: Kyborgové, DNA computing (?)

Přírodou inspirované metody umělé inteligence

Přírodou inspirované metody umělé inteligence Přírodou inspirované metody umělé inteligence Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Nové Hrady, červenec 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělá inteligence 2 přístupy

Více

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

5.5 Evoluční algoritmy

5.5 Evoluční algoritmy 5.5 Evoluční algoritmy Jinou skupinou metod strojového učení, které vycházejí z biologických principů, jsou evoluční algoritmy. Zdrojem inspirace se tentokrát stal mechanismus evoluce, chápaný jako Darwinův

Více

Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)

Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla) Evoluční algoritmy Hollandovy genetické algoritmy (binární řetězce) Fogelovo evoluční programování (automaty) Kozovo genetické programování (stromy) Schwefelovy evoluční strategie (parametry funkcí) Rayův

Více

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14 UITS / ISY Výzkumná skupina inteligentních systémů Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně ISY: Výzkumná skupina inteligentních systémů 1 / 14 Obsah Představení skupiny

Více

Pokročilé operace s obrazem

Pokročilé operace s obrazem Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání

Více

Neuronové sítě Ladislav Horký Karel Břinda

Neuronové sítě Ladislav Horký Karel Břinda Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace

Více

Inteligentní systémy a neuronové sítě

Inteligentní systémy a neuronové sítě Inteligentní systémy a neuronové sítě Arnošt Veselý, Česká zemědělská univerzita, Kamýcká, Praha 6 - Suchdol Summary: In the article two main architectures of inteligent systems: logical-symbolic and connectionist

Více

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function

Více

Genetické algoritmy a jejich praktické využití

Genetické algoritmy a jejich praktické využití Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova

Více

Gramatická evoluce a softwarový projekt AGE

Gramatická evoluce a softwarový projekt AGE Gramatická evoluce a softwarový projekt AGE Adam Nohejl Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://nohejl.name/ 4. 4. 2010 Poznámka: Prezentace založené na variantách těchto slajdů

Více

Genetické programování

Genetické programování Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace

Více

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu Masarykova univerzita Fakulta informatiky Evoluce pohybu IV109 Tomáš Kotula, 265 287 Brno, 2009 Úvod Pohyb je jedním ze základních projevů života. Zdá se tedy logické, že stejně jako ostatní vlastnosti

Více

1. Úvod do genetických algoritmů (GA)

1. Úvod do genetických algoritmů (GA) Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma

Projekční algoritmus. Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění. Jan Klíma Urychlení evolučních algoritmů pomocí regresních stromů a jejich zobecnění Jan Klíma Obsah Motivace & cíle práce Evoluční algoritmy Náhradní modelování Stromové regresní metody Implementace a výsledky

Více

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013

Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013 Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013 Umělé neuronové sítě Proč právě Neuronové sítě? K čemu je to dobré? Používá se to někde v praxi? Úvod Umělé neuronové

Více

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT

ití empirických modelů při i optimalizaci procesu mokré granulace léčivl ková SVK ÚOT Využit ití empirických modelů při i optimalizaci procesu mokré granulace léčivl Jana Kalčíkov ková 5. ročník Školitel: Doc. Ing. Zdeněk k Bělohlav, B CSc. Granulace Prášek Granule Vlhčivo Promíchávání

Více

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_02 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Inovace výuky

Více

Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří

Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří Univerzita J. E. Purkyně, Fakulta životního prostředí Registrační číslo projektu: MMR WD-44-07-1 Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří Závěrečná

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

Znalostní technologie proč a jak?

Znalostní technologie proč a jak? Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Umělá inteligence Umělá inteligence (UI) vlastně

Více

AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU

AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU Luděk Žaloudek Výpočetní technika a informatika, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

Expertní Systémy. Umělá inteligence. 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s.433-460

Expertní Systémy. Umělá inteligence. 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s.433-460 Umělá inteligence Věda, jejímž úkolem je naučit stroje, aby dělaly věci, které vyžadují inteligenci, jsouli prováděny člověkem. Marvin Minsky 1950 Alan Turing: Computing Machinery and Intelligence. Mind

Více

Lesk a bída nestandardních výpočetních systémů

Lesk a bída nestandardních výpočetních systémů Lesk a bída nestandardních výpočetních systémů Jiří Wiedermann Ústav informatiky Akademie věd České republiky, v.v.i. Částečně podporováno grantem 1ET100300419 Proč nás zajímají možnosti a meze počítačů

Více

Neuropočítače. podnět. vnímání (senzory)

Neuropočítače. podnět. vnímání (senzory) Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního

Více

OBSAH 1 Pøedmluva 19 2 Evoluèní algoritmy: nástin 25 2.1 Centrální dogma evoluèních výpoèetních technik... 26 2.2 Chcete vìdìt víc?... 29 3 Historická fakta trochu jinak 31 3.1 Pár zajímavých faktù...

Více

Seznam úloh v rámci Interního grantového systému EPI

Seznam úloh v rámci Interního grantového systému EPI Evropský polytechnický institut, s.r.o. Kunovice Seznam úloh v rámci Interního grantového systému I rok/p ořadí Číslo úlohy Název Obor 2008 B1/2008 Vývojové tendence globalizujícího se podnikatelského

Více

Automatizační a měřicí technika (B-AMT)

Automatizační a měřicí technika (B-AMT) Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence

Více

Základní pojmy I. EVOLUCE

Základní pojmy I. EVOLUCE Základní pojmy I. EVOLUCE Medvěd jeskynní Ursus spelaeus - 5 mil. let? - 10 tis. let - 200 tis. let? Medvěd hnědý Ursus arctos Medvěd lední Ursus maritimus Základní otázky EVOLUCE Jakto, že jsou tu různé

Více

Obecná charakteristika živých soustav

Obecná charakteristika živých soustav Obecná charakteristika živých soustav Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Kategorie živých soustav Existují

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

Historie a vývoj umělé inteligence

Historie a vývoj umělé inteligence Historie a vývoj umělé inteligence 11. února 2015 1-1 Co je to inteligence? Encyklopedie Duden : Intelligenz = Fähigkeit des Menschen abstrakt und vernünftig zu denken und daraus zweckvolles Handeln abzuleiten.

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

Popis zobrazení pomocí fuzzy logiky

Popis zobrazení pomocí fuzzy logiky Popis zobrazení pomocí fuzzy logiky diplomová práce Ján Fröhlich KM, FJFI, ČVUT 23. dubna 2009 Ján Fröhlich ( KM, FJFI, ČVUT ) Popis zobrazení pomocí fuzzy logiky 23. dubna 2009 1 / 25 Obsah 1 Úvod Základy

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ Metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana Kubcová Název

Více

UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Miroslav POKORNÝ Praha 1996, BEN Miroslav Pokorný UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást

Více

SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1

SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika. Ak. rok 2011/2012 vbp 1 SYSTÉMOVÁ METODOLOGIE (VII) Kybernetika Ak. rok 2011/2012 vbp 1 ZÁKLADNÍ SMĚRY A DISCIPLÍNY Teoretická kybernetika (vědecký aparát a metody ke zkoumání kybernetických systémů; používá abstraktní modely

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 5 Komunikace a kooperace Komunikace se jako jeden z principů objevuje v umělé inteligenci až v druhé polovině 80. let. V roce 1986 uveřejňuje M.

Více

Název diplomové práce: Srovnávač životního pojištění. Určení: Bakalářská práce. Vedoucí: Doc. Ing. Petr Sosík, Dr.

Název diplomové práce: Srovnávač životního pojištění. Určení: Bakalářská práce. Vedoucí: Doc. Ing. Petr Sosík, Dr. Název diplomové práce: Srovnávač životního pojištění Určení: Bakalářská práce Konzultant: Ing. Mgr. Barbora Volná, Ph.D. Cíl práce: Naprogramovat srovnávač životního pojištění, který spadá pod obor automatizace

Více

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna

Buněčné automaty a mřížkové buněčné automaty pro plyny. Larysa Ocheretna Buněčné automaty a mřížkové buněčné automaty pro plyny Larysa Ocheretna Obsah Buněčný automat: princip modelu, vymezení pojmů Mřížkový buněčný automat pro plyny Příklady aplikace principů mřížkových buněčných

Více

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi: Neuronové sítě V prezentaci jsou použity podklady z řady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech

Více

Otázky ke státní závěrečné zkoušce

Otázky ke státní závěrečné zkoušce Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního

Více

Simulace a návrh vyvíjejících Nadpis se 1. Nadpis 3. Božetěchova 2, Brno

Simulace a návrh vyvíjejících Nadpis se 1. Nadpis 3. Božetěchova 2, Brno Simulace a návrh vyvíjejících Nadpis se 1 Nadpis systémů 2 Nadpis 3 Vladimír Jméno Janoušek Příjmení Vysoké Brno učení University technické of v Technology, Brně, Fakulta Faculty informačních of Information

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce , strukturální indukce Jiří Velebil: Y01DMA 23. února 2010: Strukturální indukce 1/19 Backusova-Naurova forma Například syntaxe formuĺı výrokové logiky kde a At. Poznámky 1 Relaxace BNF. ϕ ::= a tt (ϕ

Více

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu Neuronové sítě L. Horký*, K. Břinda** Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 *horkyladislav@seznam.cz, **brinda@fjfi.cvut.cz Abstrakt Cílem našeho příspěvku je získat uživatelský

Více

1. Data mining. Strojové učení. Základní úlohy.

1. Data mining. Strojové učení. Základní úlohy. 1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi:

Jsou inspirovány poznatky o neuronech a nervových sítích živých organizmů a jejich schopnostmi: Neuronové sítě V prezentaci jsou použity podklady zřady zdrojů (Marcel Jiřina, Dan Novák, Jean- Christophe Prévotet, Petr Berka, Jana Tučková a další) Neuronové sítě Jsou inspirovány poznatky o neuronech

Více

Fakulta přírodovědně-humanitní a pedagogická. Okruhy otázek pro státní závěrečné zkoušky. Bakalářské studium

Fakulta přírodovědně-humanitní a pedagogická. Okruhy otázek pro státní závěrečné zkoušky. Bakalářské studium Fakulta přírodovědně-humanitní a pedagogická Okruhy otázek pro státní závěrečné zkoušky Bakalářské studium Informatika se zaměřením na vzdělávání Bc. Matematika: Funkce, její průběh a vlastnosti. Popisná

Více

NG C Implementace plně rekurentní

NG C Implementace plně rekurentní NG C Implementace plně rekurentní neuronové sítě v systému Mathematica Zdeněk Buk, Miroslav Šnorek {bukz1 snorek}@fel.cvut.cz Neural Computing Group Department of Computer Science and Engineering, Faculty

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Rozdělení sub-oborů robotiky Učební text jméno a příjmení autora Doc. Ing. Mgr. Václav Záda, CSc. Liberec 2010 Materiál

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Umělá inteligence (1. přednáška)

Umělá inteligence (1. přednáška) Umělá inteligence (1. přednáška) Co je to AI (Artificial Intelligence) systém, který myslí jako lidé myslí racionálně se chová jako lidé se chová racionálně Jednat jako lidé systém, který myslí jako lidé

Více

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1.1 VÝVOJ MECHATRONIKY Ve vývoji mechatroniky lze vysledovat tři období: 1. etapa polovina 70. let, Japonsko, založení nového oboru shrnuje poznatky z mechaniky,

Více

Trocha obrázků na začátek..

Trocha obrázků na začátek.. Trocha obrázků na začátek.. Elementární pojmy LCD panel tower myš klávesnice 3 Desktop vs. Tower tower desktop 4 Desktop nebo Tower? 5 Obraz jako obraz? 6 A něco o vývoji.. Předchůdci počítačů Počítadlo

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

brmiversity: Um lá inteligence a teoretická informatika

brmiversity: Um lá inteligence a teoretická informatika brmiversity: Um lá inteligence a teoretická informatika Úvodní p edná²ka brmlab 2011 Outline 1 Slovo úvodem 2 Um lá inteligence 3 Neuronové sít 4 Adaptivní agenti 5 Evolu ní algoritmy 6 Sloºitost 7 Datové

Více

Algoritmy pro spojitou optimalizaci

Algoritmy pro spojitou optimalizaci Algoritmy pro spojitou optimalizaci Vladimír Bičík Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze 10.6.2010 Vladimír Bičík (ČVUT Praha) Algoritmy pro spojitou optimalizaci

Více

Počátky umělé inteligence

Počátky umělé inteligence Počátky umělé inteligence Pavel Ircing NTIS - UN 562 ircing@kky.zcu.cz KKY/HKUI Založení oboru John McCarthy přesvědčil v roce 1955 Marvina Minskyho, Nathaniela Rochestera and C. Shannona, aby mu v následujícím

Více

Úvod (1) Pojem a rozdělení biologie, biologické vědy, význam biologie. (1/1) Pojem a rozdělení biologie, biologické vědy, význam biologie.

Úvod (1) Pojem a rozdělení biologie, biologické vědy, význam biologie. (1/1) Pojem a rozdělení biologie, biologické vědy, význam biologie. Úvod (1) Pojem a rozdělení biologie, biologické vědy, význam biologie. (1/1) 1 Biologie = přírodní věda řec. Bios = život Řec. logos = nauka studuje vlastnosti a funkce organismů vztahy mezi organismy

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

Grammar-based genetic programming

Grammar-based genetic programming Grammar-based genetic programming Obhajoba diplomové práce Adam Nohejl Vedoucí práce: RNDr. František Mráz, CSc. Katedra software a výuky informatiky, MFF UK Praha 2011 1 Úvod do problematiky: genetické

Více

Vzdělávací obor: Biologie. Jednoletý volitelný předmět pro 4. ročník (všechna zaměření) Předmět: Antropologický seminář

Vzdělávací obor: Biologie. Jednoletý volitelný předmět pro 4. ročník (všechna zaměření) Předmět: Antropologický seminář Vzdělávací oblast: Vzdělávací obor: Člověk a příroda Biologie Vzdělávací obor biologie je realizován v povinném předmětu biologie a ve volitelných předmětech seminář z biologie, seminář z molekulární biologie

Více

11. Tabu prohledávání

11. Tabu prohledávání Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Specializace Kognitivní informatika

Specializace Kognitivní informatika Specializace Kognitivní informatika Otevřené dveře specializace Kognitivní informatika, 10.5.2007 V rámci projektu, financovaného Evropským sociálním fondem pod č. 3206 Multi- a transdisciplinární obor

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Úvod Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií Olomouc, září

Více

ANALYTICKÉ PROGRAMOVÁNÍ

ANALYTICKÉ PROGRAMOVÁNÍ ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ANALYTICKÉ PROGRAMOVÁNÍ Eva Volná Zuzana Komínková Oplatková Roman Šenkeřík OBSAH PRESENTACE

Více

Maturitní témata Biologie MZ 2017

Maturitní témata Biologie MZ 2017 Maturitní témata Biologie MZ 2017 1. Buňka - stavba a funkce buněčných struktur - typy buněk - prokaryotní buňka - eukaryotní buňka - rozdíl mezi rostlinnou a živočišnou buňkou - buněčný cyklus - mitóza

Více

Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky

Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Neuronové sítě Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Motivace pro výzkum umělých neuronových sítí lidský mozek pracuje jiným způsobem než běžné číslicové počítače počítače přesně

Více

Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií

Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Obecná genetika Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Ing. Roman Longauer, CSc. Ústav zakládání a pěstění lesů, LDF MENDELU Brno Tento projekt je spolufinancován Evropským

Více

INFORMATIKA. Charakteristika vyučovacího předmětu:

INFORMATIKA. Charakteristika vyučovacího předmětu: 1 z 6 Čtyřleté gymnázium INFORMATIKA Charakteristika vyučovacího předmětu: Obsahové vymezení: Předmět pokrývá oblast Informační a komunikační technologie podle požadavků uvedených v RVP GV. Časové a organizační

Více

Evoluční algoritmy I - poznámky

Evoluční algoritmy I - poznámky Evoluční algoritmy I - poznámky Martin Všetička Knihy Goldberg: Generic algorithms, 89 John Holland - Adaptation in natural and artifical algorithms, 75 a 91. Holland položil základy genetickým algoritmům,

Více

Selekce v populaci a její důsledky

Selekce v populaci a její důsledky Genetika a šlechtění lesních dřevin Selekce v populaci a její důsledky Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled

Bioinformatika a výpočetní biologie KFC/BIN. I. Přehled Bioinformatika a výpočetní biologie KFC/BIN I. Přehled RNDr. Karel Berka, Ph.D. Univerzita Palackého v Olomouci Definice bioinformatiky (Molecular) bio informatics: bioinformatics is conceptualising biology

Více

AIBO CleanMate 365 ACECAD Enterprises DigiMemo

AIBO CleanMate 365 ACECAD Enterprises DigiMemo ELECTROLUX ESI 6221 K Myčka v novém Alpha 1 designu s Fuzzy logic technologií www.sony.cz CleanMate 365 CleanMate 365 je inteligentní robotický vysavač, který za Vás doma perfektně vysaje a zamete. První

Více

CleanMate 365. ACECAD Enterprises DigiMemo A502. individua vědomě orientovat vlastní. globální schopnost individua účelně

CleanMate 365. ACECAD Enterprises DigiMemo A502. individua vědomě orientovat vlastní. globální schopnost individua účelně ELECTROLUX ESI 6221 K Myčka v novém Alpha 1 designu s Fuzzy logic technologií www.sony.cz Umělá inteligence = = umělá + inteligence CleanMate 365 CleanMate 365 je inteligentní robotický vysavač, který

Více

Principy počítačů I Netradiční stroje

Principy počítačů I Netradiční stroje Principy počítačů I Netradiční stroje snímek 1 Principy počítačů Část X Netradiční stroje VJJ 1 snímek 2 Netradiční procesory architektury a organizace počítačů, které se vymykají struktuře popsané Johnem

Více

Biologie - Oktáva, 4. ročník (přírodovědná větev)

Biologie - Oktáva, 4. ročník (přírodovědná větev) - Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k

Více

Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B

Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Níže uvedené komentáře by měly pomoci soutěžícím z kategorie B ke snazší orientaci

Více

Inteligentní systémy. Informace o bakalářském oboru. Jiří Lažanský. Zdeněk Hanzálek (katedra řídicí techniky) Michal Pěchouček (katedra kybernetiky)

Inteligentní systémy. Informace o bakalářském oboru. Jiří Lažanský. Zdeněk Hanzálek (katedra řídicí techniky) Michal Pěchouček (katedra kybernetiky) Informace o bakalářském oboru Inteligentní systémy studijního programu Softwarové technologie a management Jiří Lažanský (katedra kybernetiky) Zdeněk Hanzálek (katedra řídicí techniky) Michal Pěchouček

Více

Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně

Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Nový bakalářský studijní obor Biomedicínská informatika na Fakultě biomedicínského inženýrství v Kladně Zoltán Szabó Katedra biomedicínské

Více

PROFIL BUDOUCÍHO ABSOLVENTA OBORU INFORMATIKA

PROFIL BUDOUCÍHO ABSOLVENTA OBORU INFORMATIKA PROFIL BUDOUCÍHO ABSOLVENTA OBORU INFORMATIKA Cyril Klimeš Ostravská univerzita, katedra informatiky a počítačů, 30. dubna 22, 701 03 Ostrava, ČR, e-mail: cyril.klimes@osu.cz Abstrakt Tento příspěvek si

Více

Název: Hmoto, jsi živá? I

Název: Hmoto, jsi živá? I Název: Hmoto, jsi živá? I Výukové materiály Téma: Obecné vlastnosti živé hmoty Úroveň: střední škola Tematický celek: Obecné zákonitosti přírodovědných disciplín a principy poznání ve vědě Předmět (obor):

Více

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky

jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky Pokročilé heuristiky jednoduchá heuristika asymetrické stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy pokročilá heuristika symetrické stavový prostor, který vyžaduje řízení 1 2 Paměť pouze

Více