ASYMPTOTICKÁ ANALÝZA STRATEGIÍ OBCHODOVÁNÍ S AKCIÍ PŘI EXISTENCI TRANSAKČNÍCH NÁKLADŮ

Rozměr: px
Začít zobrazení ze stránky:

Download "ASYMPTOTICKÁ ANALÝZA STRATEGIÍ OBCHODOVÁNÍ S AKCIÍ PŘI EXISTENCI TRANSAKČNÍCH NÁKLADŮ"

Transkript

1 ROBUST 24 c JČMF 24 ASYMPTOTICKÁ ANALÝZA STRATEGIÍ OBCHODOVÁNÍ S AKCIÍ PŘI EXISTENCI TRANSAKČNÍCH NÁKLADŮ Petr Dostál Klíčová slova: Obchodní strategie, transakční náklady, asymptotický užitek. Abstrakt: Uvažujeme investora, který obchoduje s jednou akcií, ale na rozdíl od[],[2] nic nespotřebovává. Jeho snaha je maximalizovat asymptotické chování očekávaného užitku měřeného užitkovou funkcí s hyperbolickou absolutníaverzívůčiriziku(hara) vetvaru U γ (x) = x γ /γ pro γ < a U (x)=lnx.předpokládáme,žetržnícenaakciejegeometrickýbrownův pohyb. Tato omezení nám umožňují odvodit optimální intervalové strategie v téměř explicitní podobě. Tyto strategie jsou optimální i mezi všemi rozumnými strategiemi. V případě logaritmické užitkové funkce jsou odvozené strategie optimální i v modelu, který dostaneme rozumnou časovou transformací původního modelu geometrického Brownova pohybu. V ostatních případech jsou odvozené strategie optimální pouze při deterministické změně času. Úvod Předpokládejme,žetržnícenaakcie X t jegeometrickýbrownůvpohyb dx t = µx t dt+σx t dw t, X = x >. () Nejprve budeme předpokládat, že depozitní část portfolia není úročena. Označme Y t tržnícenuportfoliaag t poziciinvestoranatrhuvčase t.dále budemeoznačovat H t početakciívportfoliu.nynímůžemevyjádřittržní cenuakciovéčástiportfoliavnásledujícíchdvoutvarech G t Y t = H t X t.dále budeme předpokládat, že platíme( + b)-násobek tržní ceny akcie, abychom tuto akcii obdrželi. Na druhou stranu obdržíme( c)-násobek tržní ceny akcie, kterou prodáme. Rozdíly v cenách interpretujeme jako transakční náklady. Snadno zjistíme, že následující hodnota Y t (+bg t )=Y t + bh t X t resp. Y t ( cg t )=Y t ch t X t (2) zůstává stejná před a po provedení nákupu resp. prodeje. Tyto vztahy můžeme zapsat v difereneciální podobě dlny t = ϑ + (G t )d + G t ϑ (G t )d G t, (3) kde ϑ + (x)= b +bx a ϑ (x)= c cx akde d+ G t a d G t jsoudiferenciálydvou neklesajících adaptovaných procesů reprezentující nárůst resp. pokles pozice způsobený nákupem či prodejem akcie. Pokud s akcií neobchodujeme, tak se

2 68 Petr Dostál poziceinvestora G t chovájakodifúzníprocessdriftem B(x)adifúzí S 2 (x), kde B(x)=x( x)[µ σ 2 x], S(x)=σx( x). (4) Pokudobchodujeme,je G t semimartingalsestochastickýmdiferenciálem dg t = B(G t )dt+s(g t )dw t + d + G t d G t. (5) Výkyvyvtržníceněportfolia Y t jsoujednakzpůsobenyzměnamitržníhodnotyakcie X t ajednaktržníhodnotaportfoliaklesáozaplacenétransakční náklady, tj. dy t = H t dx t Y t ϑ + (G t )d + G t Y t ϑ (G t )d G t (6) = Y t [G t (µ dt+σ dw t ) ϑ + (G t )d + G t ϑ (G t )d G t ]. (7) Tatorovnostmářešenívetvaru Y t = Y exp{l t },kde L t = G s µ 2 σ2 G 2 s ds+σ G s dw s ϑ + (G s )d + G s ϑ (G s )d G s. Mysedálevícezaměřímenastrategie,kteréneobchodují,pokudsepozice G t nacházívintervalu(α, β)akteréakciinakupujíneboprodávajítak,abytato poziceneopustilainterval[α, β].vtakovýchtopřípadechjediferenciál d + G t resp. d G t soustředěnnamnožině[g t = α]resp.[g t = β].můžemetedypsát ϑ + (G t )d + G t = ϑ α d + G t, resp. ϑ (G t )d G t = ϑ β d G t,kde ϑ α = ϑ + (α)= b +bα a ϑ β = ϑ (β)= c cβ.jakokritériumoptimalitybudemeuvažovat maximalizaci asymptotického vývoje očekávaného užitku při volbě užitkových funkcí U (x)=lnxau γ (x)= xγ γ,kde γ <,tj. max lim t t ElnY t 2 Logaritmická užitková funkce resp. minlim t t lney γ t. (8) Nachvílibudemeuvažovatnulovétransakčnínáklady,tj. b=c=.vtomto případěbychommělimaximalizovatlim t t E G sµ 2 σ2 G 2 s ds.funkce x xµ 2 σ2 x 2 nabývámaximavbodě θ:= µ/σ 2.Neexistujetedylepší strategie než[θ, θ]. Takováto strategie je neobchodující v případě, že θ {,}.Vtěchtodvoupřípadechjestrategie[θ, θ]optimálníivpřípaděnenulovýchtransakčníchnákladů.těmitopřípady θ=,sedáleužtedyzabývat nebudeme. Nyní existují dvě cesty, kterými se dá pokračovat. Mohli bychom použít ergodickou teorii. Místo toho využijeme teorii martingalů. Tato cesta jezaloženanatom,žejsmeschopninalézthladkoufunkci fakonstantu ν takovou, že následující proces je martingal lny t f(g t ) νt. (9)

3 Asymptotická analýza strategií obchodování s akcií 69 Z martingalové konvergence pak dostaneme, že lim t t ElnY t= ν+lim t t Ef(G t)=ν () je tou hodnotou, kterou bychom měli maximalizovat. Hladká funkce f splňuje martingalovou podmínku(9), pokud splňuje následující ODE s okrajovými podmínkami f (x)b(x)+ 2 f (x)s 2 (x)=µx 2 σ2 x 2 ν () f (α)= ϑ α = b +bα a f (β)=ϑ β = c cβ. (2) Označíme-li h:= f,dostanemeobyčejnoudiferenciálnírovniciprvníhořádu h(x)b(x)+ 2 h (x)s 2 (x)=µx 2 σ2 x 2 ν (3) sokrajovýmipodmínkami h(α)= b +bα a h(β)= c cβ.protože(3)je ODE prvního řádu, jsme schopni vyjádřit obecné řešení této rovnice pomocí metody variace konstant a zodpovědět otázku, kdy tato rovnice má řešení vyhovyjícím okrajovým podmínkám(2). Možná volba funkce f (splňující ()a(2))jejakákoliprimitivnífunkcekh.jednatakovámožnávolba fje 2ρ f(x)=2ρ a x + a ln x x +ln x (4) vpřípadě,že ρ:= θ 2, ν= ρσ2 a,kde ξ α = α +b +bα, ξ β= β c ξ β ξ α a = β 2ρ α 2ρ, a = 2ρ ξ β 2ρ β β β β Vpřípadě,že ρ=aν= σ2 2 a,můžemevolit f(x)=a ln x x + a 2 ln2 x x +ln a = ln α α ξ β ln β ln β β ln α α β ξ α α α α α cβ akde 2ρ ξ α 2ρ. (5), kde x (6) ξ β ξ α, a = ln β β ln. α α (7) Protožebychommělimaximalizovathodnotu ν=lim t t ElnY t,jenaším úkolem najít maximum funkce u(α, β)= β β 2ρ 2ρ ξ β [ β 2ρ β α α 2ρ ξ α α α 2ρ] resp. u(α, β)= ξ β ξ α ln β β ln α α

4 7 Petr Dostál podletoho,zda ρ či ρ=,atonajednézmnožin T= {(α, β), < α < β <}resp. T= {(α, β), < α < β </c}resp. T= {(α, β), /d < α < β <}podletoho,zda θ (,)resp. θ (, )resp. θ (,). Věta.Funkce u(α, β)máprávějedenstacionárníbodnamnožině T,který lze charakterizovat následujícími rovnostmi ξ α = θ ω, ξ β = θ+ ω, (8) kde ωje(pokud θ 2 )jedinéřešenírovnice ln +b [ ] c + θln θ+ω ρ θ ω +(θ )ln θ+ω θ ω = (9) na[, θ θ ).Pokud θ= 2,je ωjedinéřešenínásledujícírovnice ln +b c +2ln 2 + ω 2ω 2 ω= 4 (2) ω2 naintervalu[, 2 ).Funkce unabývásvéhomaximana T vtomtostacionárnímbodě.navíc,rozdílmezilevouapravoustranou(9)resp.(2)jena odpovídajícím intervalu ryze monotónní funkce v ω. Poznamenejme, že hodnoty α, β lze následně obdržet ze vzorců α = ξ α /(+b bξ α ), β= ξ β /( c+cξ β ).Nynípředpokládejme,žefunkce unabývá svéhomaximana Tvbodě(α, β).dáledefinujmef(x):= f(x)pro x [α, β], F(x):= C α ln(+bx)pro x ( /b, α),f(x):= C β ln( cx)pro x (β,/c),kde C α, C β jsoukonstantyzvolenétak,abyfunkcefbylaspojitá na intervalu( /b, /c). Věta2.Necht Y t označujetržnícenuportfoliaag t poziciinvestoranatrhu, pak lny t F(G t ) νt (2) je součet supermartingalu a neroustoucího procesu za přepokladu, že zvolenástrategieudržujepozici G t odraženouodextrémníchhodnot /ba/c, a předpokladu, že zvolená strategie nedovolí, aby tržní cena portfolia klesla na nuluvkonečnémčase.navíc,pokudje(2)martingal,paklzeříci,žebyla aplikována strategie[α, β]. Je to zřejmě martingal, pokud je použita strategie[α, β]. Z předchozí věty plyne, že neexistuje rozumná strategie s lepší asymptotikou střední hodnoty logaritmu tržní hodnoty portfolia než má strategie[α, β]. Tatovětanámumožňujedefinovatužitekvčase t nazákladětržníhodnotyportfolia Y t apozice G t pomocí(2).taktodefinovanýsystémužitkůje v čase konzistentní a jako optimální strategii geneuje právě strategii[α, β].

5 Asymptotická analýza strategií obchodování s akcií 7 3 Mocninná užitková funkce Pokudbytransakčnínákladybylynulové,tj. b=c=,pakby γ-nejlepší µ strategieudržovalapozici G t nahodnotě σ 2 ( γ) = θ γ,cožlzenahléhnout znásledujícíhovyjádření Y γ t = Y γ E t exp {γn t },kde N t = µg s 2 σ2 ( γ)g 2 s ds ϑ + (G s )d + G s ϑ (G s )d G s,(22) { t E t =exp γσ G s dw s } 2 γ2 σ 2 G 2 s ds. (23) Vpřípaděnulovýchtransakčníchnákladů ϑ + (G t )=ϑ (G t )=strategie θ [ γ, θ γ ]totiždává { EY γ t = EY γ γ exp µ 2 } { 2 σ 2 ( γ) t = EY γ σ 2 exp γθ 2 } t, (24) 2 γ cožjemenšíneborovnonežstředníhodnota(24)vpřípadě,žebychomuvažovalijakoukolijinouintervalovoustrategii,nebot funkce x µx 2 σ2 ( γ)x 2 µ 2 nabývámaxima 2 σ 2 ( γ) = σ2 θ 2 2 γ vbodě θ γ.tatostrategiejeneobchodující, pokud θ γ =nebo θ γ =,tj.pokud θ =nebo θ = γ. Tyto singulární případy budeme dále vynechávat a zaměříme se na strategie typu[α, β],kde<α<β <,pokud<θ< γ, < α < β </c, pokud γ < θanastrategietypu /d < α < β <,pokud θ <. Nyní máme opět dvě možnosti, jak pokračovat. První cesta vede přes teorie semigrup lineárních operátorů na spojitých funkcích na[α, β] a spočítá ve výpočtu maximální vlastní hodnoty příslušného infinitezimálního generátoru. Jak uvidíme tak i v druhé možnosti se tomuto infinitezimálnímu generátoru nevyhneme a jeho maximální vlastní hodnotu budeme počítat, i když to tak třeba nebude vypadat. Tou druhou možností je nalézt konstantu ν a hladkou funkci f takovou, že Y γ t g(g t )e λt =exp {γ[lny t f(g t ) νt]} (25) jemartingal,kde g(x)=exp{ γf(x)}akde ν= λ/γ.podleitôovyformule stačínajít νa ftak,abyplatilo 2 g (x)s 2 (x)+g (x) B(x)+γg(x) [µx+ 2 ] (γ )σ2 x 2 = λg(x), (26) g +(α)=γ b +bα g(α), c g (β)= γ g(β), (27) cβ kde B(x)=x( x)[µ ( γ)σ 2 x].levástrana(26)uvažovanájakofunkce proměnné x je hodnotou výše uvedeného infinitezimálního generátoru v bodě g semigrupy jejíž maximální vlastní hodnotu hledáme. Podmínka maximality mezi vlastními hodnotami odpovídá požadavku g(x) = exp{ γf(x)}, který zajišt uje, že funkce g nemění znaménko na[α, β].

6 72 Petr Dostál Tento problém je možné řešit více-méně explicitně, nebot máme k dispozici fundamentální systém v explicitním tvaru ρ g,2 (x)= x x γ,pokud λ= σ2 2 ( 2 ρ 2 ) σ2 2 ρ2, resp. g 2 (x)=g (x)ln x x, kde g (x)= x ρ x γ,pokud λ= σ2 2 ρ2. Vtomtopřípadětakjsmeschopniurčitasymptotiku λ=lim t t lney γ t jakoimplicitnífunkci.pokud ρ α = ρ β,kde ρ α := ρ+γξ α a ρ β := ρ+γξ β, platí λ= σ2 ( ρ 2 2 α ρ 2) = σ2 ( ρ 2 2 β ρ 2). (28) Vopačnémpřípadě λ= σ2 2 (D ρ2 ),kde Djejedinéřešenírovnice ln /α /β = ρα ρ β dx x 2 D (29) nar \co {ρ 2 α, ρ2 β },kder =R { }označujejednobodovoukompaktifikacireálnépřímkyaco {ρ 2 α, ρ2 β }označujekonvexníobalmnožiny {ρ2 α, ρ2 β }. Je-li D=,jepravástrana(29)tvaru/ρ β /ρ α.je-li D >,jepravá strana(29) rovna 2 ln +ρ β ρ β ρ α +ρ α, kde 2 = D. (3) Pokud D <,lzepravoustranu(29)zapsatvetvaru [ ( ρα ) ( ρβ )] arctg arctg, kde a 2 = D. (3) a a a Vevšechpřípadechlzepsát 2 = D,kde Rresp. i R.Pokud ρ α = ρ β =:,je g:= g hledanéřešení(26)a(27)kladnéna[α, β].pokud ρ α ρ β a(29)platípro D=,pakmámekladnéřešení(26)a(27)na[α, β] ve tvaru g(x)=g (x) /α +ln ρ α /x = g (x) /β +ln ρ β /x. (32) Pokud ρ α ρ β a(29)platípronějaké D= 2 >,pakjednozkladných řešení(26)a(27)na[α, β]jetvaru g(x)=g (x) ψ+ x 2,kde ψ= α = ρ α β 2 +ρ α 2 +ρ β ρ β. (33)

7 Asymptotická analýza strategií obchodování s akcií 73 Pokud ρ α ρ β a(29)platípronějaké D= a 2 <,mámekdispozici kladnéřešení(26)a(27)na[α, β]vetvaru ρ ( ) g(x)= x x γ 2sin ϕ aln x, kde (34) ϕ=aln α ( +arccotg ρα ) = aln a β ( +arccotg ρβ ). (35) a Věta3.Funkce λ(α, β)jespojitána T anatétomnožiněmáprávějeden stacionární bod, který lze charakterizovat následujícími rovnostmi ξ α = θ ω γ, ξ β= θ+ ω γ, (36) kde ωjejedinéřešenírovnice L(ω)=P(ω)na[, θ θ γ ),kde L(ω):=ln θ+ω θ γ+ ω θ ω θ γ ω +ln+d c, P(ω):= 2 +ω dx 2 ω x 2 D(ω), kde D(ω):= ρ 2 + γ γ (θ2 ω 2 ).Navíc,funkce λ=λ(α, β)nabýváminima v tomto stacionárním bodě. Dále rozdíl L(ω) P(ω) je ryze monotónní funkce na takových intervalech, na kterých je tato funkce spojitá. Pokud D(ω) >,lzefunkci P(ω)počítatpodlevzorce P(ω):= 2 D(ω) ln 2 ω+ D(ω) 2 + ω+ D(ω) P(ω):= D(ω) [arccotg 2 + ω D(ω) 2 ω D(ω), resp. ( 2 ω D(ω) ) arccotg vpřípadě,že D(ω) <,resp. P(ω)= 2ω 4 ω2,pokud D(ω)=. ( 2 + ω )] D(ω) Nynípředpokládejme,žefunkce λnabývásvéhominimana T vbodě (α, β).definujmedálef(x):= f(x)= γlng(x)pro x [α, β],f(x) := D α ln(+bx)pro x ( /b, α),f(x):= D β ln( cx)pro x (β,/c), kdekonstanty D α, D β jsouzvolenytak,abyfunkcefbylaspojitánaintervalu ( /b, /c). Konečně položme G(x):=exp{ γf(x)}. (37) Věta4.Necht Y t jetržnícenaportfoliaag t jepoziceinvestoranatrhu, pak Y γ t G(G t)e λt =exp {γ[lny t F(G t ) νt]}, (38) kde ν = λ/γ, je součet submartingalu a neklesajícího procesu za předpokladu, žestrategieobchodováníudržujepozici G t odraženouodkrajníchhodnot /b

8 74 Petr Dostál a/capokudzaručuje,žetržnícenaportfolia Y t neklesnenanuluvkonečném čase. Pokud je proces(38) martingal, lze říci, že byla aplikována strategie[α, β]. Proces(38) je zřejmě martingal, pokud je použita strategie[α, β]. Podobně jako v případě logaritmické užitkové funkce z této věty plyne, že neexistuje rozumná strategie s lepším asymptotickým chováním středního užitku než je strategie[α, β], měříme-li asymptotický užitek z tržní hodnoty portfoliapomocífunkce U γ (x).opětmůžemedefinovatužitekvčase tna základě Y t a G t pomocí γ (38)zapředpokladu,ženášcíljemaximalizovat asymptotikckéchování EU γ (Y t ).Mohlibychomtakéříci,žeužitekjeroven hodnotě lny t F(G t ) νt, (39) ale ne ve smyslu maximalizace očekávaného užitku, ale ve smyslu minimalizace střední hodnoty exponenciely z γ-násobku takovéhoto druhu užitku. 4 Nenulováúrokovámíraazměnačasu Necht Z t označujetržnícenuakcievčase t.označme X t diskontovanoutržní cenuakcie X t = e rt Z t,kde rjekonstantníúrokovámíra.předpokládejme dále,že dz t = κz t dt+z t σ dw t.pak dx t = µx t dt+σx t dw t, kde µ:= κ r.definujeme-li Y t jakodiskontovanoutržnícenuportfolia,můžemepoužít předchozí výsledky k tomu, abychom odvodili optimální strategie pro tento případ, nebot kritéria optimality jsou invariantní vzhledem k diskontování. Poznámka ke změně času Rozšířená optimalita odvozených strategií je založena na větách, které říkají, že nějaké procesy jsou martingaly, pokud použijeme odvozené strategie, zatímco jsou obecně jen super/sub-martingaly +/ nerostoucí proces, pokudseomezímenastrategieudržujícípoziciinvestora G t odraženouod extrémních hodnot /b a /c. Tento druh optimality je stabilní v případě logaritmické užitkové funkce vzhledem k jakékoli rozumné změně času, tj. vzhledem k takovým transformacím času, které neporuší(sub,super)-martingalovou vlastnost našich (sub,super)-martingalů. Zatímco v případě mocninných užitkových funkcí je tato optimalita stabilní vzhledem k deterministickým změnám času v modelu. Reference [] Janeček K., Shreve S.E.(24). Asymptotic analysis for optimal investment and consumption with transaction costs. Fin.&Stochas. 8, [2] Shreve S., Soner H.M.(994). Optimal investment and consumption with transaction costs. Ann. Applied Probab. 4, Poděkování: Účast na této konferenci byla umožněna na základě podpory z grantu GA ČR 2/3/27 a výzkumného záměru MSM 328. Adresa:P.Dostál,KPMS,MFFUK,Sokolovská83,Praha8-Karlín

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Spojitost funkcí více proměnných

Spojitost funkcí více proměnných Reálné funkce více proměnných Reálnou funkcí n reálných proměnných rozumíme zobrazení, které každé uspořádané n ticireálnýchčíselznějaképodmnožinykartézskéhosoučinur R=R n přiřazuje nějaké reálné číslo.

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

9. Úvod do teorie PDR

9. Úvod do teorie PDR 9. Úvod do teorie PDR A. Základní poznatky o soustavách ODR1 Diferenciální rovnici nazveme parciální, jestliže neznámá funkce závisí na dvou či více proměnných (příslušná rovnice tedy obsahuje parciální

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

M. Hojdarová, J. Krejčová, M. Zámková

M. Hojdarová, J. Krejčová, M. Zámková VŠPJ Matematika II pro studenty oboru Finance a řízení M. Hojdarová, J. Krejčová, M. Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN 978-80-88064-07-7

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy teorie funkcí více proměnných študenti MFF 15. augusta 2008 1 5 Základy teorie funkcí více proměnných Požadavky Parciální derivace a totální

Více

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu.

http://user.mendelu.cz/marik, kde je dostupný ve formě vhodné pro tisk i ve formě vhodné pro prohlížení na obrazovce a z adresy http://is.mendelu. Inženýrská matematika Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Teorie her a ekonomické rozhodování. 11. Aukce

Teorie her a ekonomické rozhodování. 11. Aukce Teorie her a ekonomické rozhodování 11. Aukce 11. Aukce Příklady tržních mechanismů prodej s pevnou cenou cenové vyjednávání aukce Využití aukcí prodej uměleckých předmětů, nemovitostí, prodej květin,

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany

Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 3 Metoda nejmenších čtverců 3 Metoda nejmenších čtverců Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6, strany 73-80. Jedná se o třetí možnou metodu aproximace,

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY

MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY MATEMATICKÁ ANALÝZA A LINEÁRNÍ ALGEBRA PŘÍPRAVA NA ZKOUŠKU PRO SAMOUKY POMNĚNKA prase Pomni, abys nezapomněl na Pomněnku MSc. Catherine Morris POMNĚNKA Verze ze dne: 14. října 01 Materiál je v aktuální

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému

Reference 10. Předpokládejme stavový popis spojitého, respektive diskrétního systému Módy systému Teorie dynamických systémů Obsah Úvod 2 Příklady 2 3 Domácí úlohy 8 Reference Úvod Řešení stavových rovnic Předpokládejme stavový popis spojitého, respektive diskrétního systému ẋ(t)=ax(t)+bu(t)

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál

7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál Písemná část zkoušky z Inženýrské matematiky, 9.2.20(60 minut) Body Jméno:... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..[povinný] Pro mytí autobusů

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Matematika II Aplikace derivací

Matematika II Aplikace derivací Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Derivace a průběh funkce.

Derivace a průběh funkce. Derivace a průběh funkce. Robert Mařík 14. října 2008 Obsah 1 Základní myšlenky. 2 2 Přesné věty a definice 10 3 Okolí nevlastních bodů. 16 4 Sestrojení grafu funkce. 19 1 Základní myšlenky. y x Uvažujme

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Kružnice, kruh, tečny, obsahy, goniometrické funkce, integrace

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Obsah. 1. Komplexní čísla

Obsah. 1. Komplexní čísla KOMPLEXNÍ ANALÝZA - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Komplexní čísla 1 2. Holomorfní funkce 3 3. Elementární funkce komplexní proměnné 4 4. Křivkový integrál 7 5. Index bodu vzhledem ke křivce 9 6.

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

8 Kořeny cyklických kódů, BCH-kódy

8 Kořeny cyklických kódů, BCH-kódy 24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti...

Poznámky k ekonomickému ukazateli IRR. výnos do splatnosti... Poznámky k ekonomickému ukazateli IRR (Remarks on the economic criterion the Internal Rate of Return ) Carmen Simerská IRR... vnitřní míra výnosnosti, vnitřní výnosové procento, výnos do splatnosti...

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada

(Auto)korelační funkce. 2. 11. 2015 Statistické vyhodnocování exp. dat M. Čada www.fzu.cz/ ~ cada (Auto)korelační funkce 1 Náhodné procesy Korelace mezi náhodnými proměnnými má široké uplatnění v elektrotechnické praxi, kde se snažíme o porovnávání dvou signálů, které by měly být stejné. Příkladem

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

Matematika I Reálná funkce jedné promìnné

Matematika I Reálná funkce jedné promìnné Matematika I Reálná funkce jedné promìnné RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Reálná funkce Def. Zobrazení f nazveme

Více

MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD.

MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD. MODELY ROZDĚLENÝCH ZPOŽDĚNÍ. FRIEDMANOVA SPOTŘEBNÍ FUNKCE A PERMANENTNÍ DŮCHOD. V tomto textu bude nejprve vysvětleno, co jsou to modely rozdělených zpoždění a jak se dělí. Pak se zaměříme na Friedmanovu

Více

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE

UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA. KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE UNIVERSITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY školní rok 2009/2010 BAKALÁŘSKÁ PRÁCE Testy dobré shody Vedoucí diplomové práce: RNDr. PhDr. Ivo

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu.

Břetislav Fajmon, UMAT FEKT, VUT Brno. Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Břetislav Fajmon, UMAT FEKT, VUT Brno Poznámka 1.1. A) první část hodiny (cca 50 minut): představení všech tří metod při řešení jednoho příkladu. Na jiných příkladech je téma podrobně zpracováno ve skriptech

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o

Více

Náhodná procházka a její aplikace

Náhodná procházka a její aplikace MASARYKOVA UNIVERZITA Přírodovědecká fakulta Náhodná procházka a její aplikace Bakalářská práce Vedoucí bakalářské práce RNDr. Martin Kolář, Ph. D. Brno 2007 Michaela Bartuňková Poděkování Chtěla bych

Více

. Určete hodnotu neznámé x tak, aby

. Určete hodnotu neznámé x tak, aby Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů

Finanční. matematika pro každého. f inance. 8. rozšířené vydání. věcné a matematické vysvětlení základních finančních pojmů Finanční matematika pro každého 8. rozšířené vydání J. Radová, P. Dvořák, J. Málek věcné a matematické vysvětlení základních finančních pojmů metody pro praktické rozhodování soukromých osob i podnikatelů

Více

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje. Číslo projektu Škola Autor Číslo materiálu Název Téma hodiny Předmět Ročník/y/ Anotace CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Mgr. Renata

Více

Úvod do optimalizace

Úvod do optimalizace Přednáška Ú-Opt, February 19, 2006:1324 Petr Lachout 1 Úvod do optimalizace Prof. RNDr. Jitka Dupačová, DrSc. Doc. RNDr. Petr Lachout, CSc. KPMS MFF UK Verze 19. února 2006 2 Obsah 1 Úvod 5 2 Optimalizace

Více

V. Riemannův(dvojný) integrál

V. Riemannův(dvojný) integrál V. Riemannův(dvojný) integrál Obsah 1 Základní pojmy a definice 2 2 Podmínky existence dvojného integrálu 4 3 Vlastnosti dvojného integrálu 4 4 Výpočet dvojného integrálu; převod na dvojnásobný integrál

Více

Rozptyl. Pozn.: rozptyl je nezávislý na posunu hustoty pravděpodobnosti na ose x, protože Var(X) mi určuje jen šířku rozdělení.

Rozptyl. Pozn.: rozptyl je nezávislý na posunu hustoty pravděpodobnosti na ose x, protože Var(X) mi určuje jen šířku rozdělení. Rozptyl Základní vlastnosti disperze Var(konst) = 0 Var(X+Y) = Var(X) + Var(Y) (nezávislé proměnné) Lineární změna jednotek Y = rx + s, například z C na F. Jak vypočítám střední hodnotu a rozptyl? Pozn.:

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

Matematika I pracovní listy

Matematika I pracovní listy Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Řešené úlohy ze statistické fyziky a termodynamiky

Řešené úlohy ze statistické fyziky a termodynamiky Řešené úlohy ze statistické fyziky a termodynamiky Statistická fyzika. Uvažujme dvouhladinový systém, např. atom s celkovým momentem hybnosti h v magnetickém ) ) poli. Bázové stavy označme = a =, první

Více

Základy vyšší matematiky (nejen) pro arboristy

Základy vyšší matematiky (nejen) pro arboristy Základy vyšší matematiky (nejen) pro arboristy Robert Mařík Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny

Více

MASARYKOVA UNIVERZITA. Elasticita v ekonomii

MASARYKOVA UNIVERZITA. Elasticita v ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Elasticita v ekonomii Bakalářská práce Vedoucí práce: doc. RNDr. Bedřich Půža, CSc. Vypracovala: Kristýna Vozárová Brno, 2010 Děkuji doc. RNDr. Bedřichu Půžovi,

Více

c ÚM FSI VUT v Brně 20. srpna 2007

c ÚM FSI VUT v Brně 20. srpna 2007 20. srpna 2007 1. 3 arctg x 1+x 2 dx 2. (x 2 + 2x + 17)e x dx 3. 1 x 3 x dx Vypočtěte integrál: 3 arctg x 1 + x 2 dx Příklad 1. Řešení: Použijeme substituci: arctg x = t 3 arctg x dx = 1 dx = dt 1+x 2

Více

ROZKLAD MNOHOČLENU NA SOUČIN

ROZKLAD MNOHOČLENU NA SOUČIN ROZKLAD MNOHOČLENU NA SOUČIN Rozkladedem mnohočlenu na součin rozumíme rozklad mnohočlenu na součin jednodušších mnohočlenů, které z pravidla již nejsou dále rozložitelné. Pro rozklad mnohočlenu na součin

Více

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ

MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ MĚŘENÍ STATISTICKÝCH ZÁVISLOSTÍ v praxi u jednoho prvku souboru se často zkoumá více veličin, které mohou na sobě různě záviset jednorozměrný výběrový soubor VSS X vícerozměrným výběrovým souborem VSS

Více

Pracovní materiál pro

Pracovní materiál pro Pracovní materiál pro Úvodní kurz pro FELÁKY Temešvár u Písku, září 01 Úvodem Tento text má sloužit jako přehled středoškolských znalostí a dovedností, které jsou nezbytné při studiu matematiky na vysoké

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená.

naopak více variant odpovědí, bude otázka hodnocena jako nesprávně zodpovězená. Datum:... Jméno:... Přijímací řízení pro akademický rok 28/9 na magisterské studijní obor Finanční informatiky a statistika Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd se získávají

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více