1.1.9 Rovnoměrný pohyb IV

Rozměr: px
Začít zobrazení ze stránky:

Download "1.1.9 Rovnoměrný pohyb IV"

Transkript

1 1.1.9 Rovnoměrný pohyb IV ředpoklady: 118 V jedné z minulých hodin jme odvodili vzah pro dráhu (nebo polohu) rovnoměrného pohybu = v (dráha je přímo úměrná rychloi a čau). ř. 1: Karel a onza e účaní dálkového pochodu, kerý má dva ary. Sar zkrácené verze pochodu je na deáém kilomeru celé ray. Od ohoo mía e obě ray hodují. Karel i onza vyrazí ve ejném okamžiku, onza na zkrácenou rau, Karel na celou. Oba jou rovnoměrně rychloí 5 km/h. a) Jakou vzdáleno ujdou oba urié po dvou hodinách? b) Jak daleko budou pod dvou hodinách od aru komplení ray? c) Najdi vzorce pro vzdáleno obou uriů od aru komplení ray v libovolném čae. a) Jakou vzdáleno ujdou oba urié po dvou hodinách? Doadíme do vzorce: = v = 5 km = 1 km. Karel i onza šli ejnou rychloí, akže oba ušli 1 km. b) Jak daleko budou pod dvou hodinách od aru komplení ray? Karel začínal na aru komplení ray po hodinách je od aru vzdálen 1 km onza začínal na aru zkrácené ray po hodinách ušel 1 km, ale už když arova byl od aru komplení ray 1 km po dvou hodinách chůze je od aru vzdálen km = km c) Najdi vzorce pro vzdáleno obou uriů od aru komplení ray v libovolném čae. Karel: vzdáleno od aru komplení ray e v libovolném okamžiku rovná dráze, kerou ušel K = v = 5 onza: vzdáleno od aru komplení ray e v libovolném okamžiku rovná ouču dráhy, kerou ušel, a 1 km, keré byl od aru vzdálen ve chvíli, kdy začínal pochod ze zkráceného aru = v + 1 = Vzorec, kerý jme napali pro vzdáleno onzy od aru komplení ray je komplením vzorcem pro polohu rovnoměrného pohybu: = + v. olohu rovnoměrného pohybu vyjadřujeme vzorcem = + v, kde předavuje polohu na počáku pohybu. roudujeme i vzorec: - poloha v určiém čae, - poloha na v čae =, v - uražená dráha, změna polohy všechny ři členy, keré ve vzorci číáme a porovnáváme mají význam ejné fyzikální veličiny vzdálenoi 1

2 orovnáva nebo čía (odčía) můžeme ve fyzikálních vzazích pouze členy, keré mají význam ejné fyzikální veličiny (mají ejnou jednoku). obrovký význam při úpravách vzorců. Vzorec může bý právně, pouze když plňuje uo podmínku. Například: v = v + : může bý právný vzorec, členy v a v, jou rychloi, zlomek má aké význam rychloi v = v + : nemůže bý právný vzorec, členy v a mají význam rychloi, nemůžeme je čía e členem v, kerý má význam dráhy ř. : Rozhodni, keré z náledujících vzahů mohou bý právné. Rozhodnuí zdůvodni. m m a) = + b) = ρ + c) V = a d) S = a + a v V V v e) = f) V = π r v + π rv g) + v = v v a) = + - možná právný vzorec, člen v v má ejně jako členy a význam čau m m b) = ρ + - možná právný vzorec: členy m V V V a m mají význam huoy V c) V = a - možná právný vzorec: objem je řeí mocnina délky d) S = a + a - určiě španý vzorec: plocha je druhá mocnina délky, a má význam objemu e) = - určiě španý vzorec: členy na levé raně mají význam čau, ale zlomek na v pravé raně nemá význam čau, jde o bezrozměrný poměr (čílo, keré říká kolikrá je jeden ča delší než druhý, e neudává v hodinách) f) V = π r v + π rv - určiě španý vzorec: člen π rv nemá význam objemu (pouze druhá mocnina délky) v g) + v = v - určiě španý vzorec: v čiaeli zlomku odečíáme rychlo od dráhy edagogická poznámka: ředchozí příklad je dobré necha udenům na delší dobu, ale na náledující čá hodiny je pořeba alepoň minu. odrobnější dikue je nuná u bodu e), kde někeří udeni jen ěžce chápou, že podílem dvou čaů není ča, ale čílo, keré říká, kolikrá je jeden z čau věší než druhý. omáhají konkréní příklady. edagogická poznámka: Náledující příklad vyřeší věšina udenů úvahou amoaně, e eavováním rovnice je nuné pomáha pomalu na abuli. ř. : er ankou šli polečně na výle. V Kuimovicích pokal er vého kamaráda a řekl eře, aby šla dál, že ji dohoní. Kdy a kde ji dohonil, když z Kuimovic vyrazil o půl hodiny později a popíchal rychloí 8 km/h, zaímco era pokračovala

3 pomalou chůzí km/h? říklad řeš: a) úvahou b) eavením rovnice a) úvahou anka vyjde z Kuimovic dříve než její brar. Zíká ak nákok, kerý její brar muí dohoni. Nejdřív i počíáme o kolik ueče ana brarovi, proože e pohybuje půl hodiny rychloí km/h, zíká nákok dva kilomery. Teno nákok bude brar doháně rychloí km/h (je o rozdíl rychloi era a anky). Její nákok edy dožene za půl hodiny. říklad je vyřešen. b) pomocí rovnice = (oba ourozenci ve chvíli ekání urazili z Kuimovic ejnou vzdáleno) v = v (oba ourozenci e pohybovali rovnoměrně) Sále máme dvě neznámé veličiny. er vyrazil z Kuimovic o půl hodiny později než anka, kerá edy šla o půl hodiny déle a ak plaí: = +,5, doadíme: (,5) v + = v (v rovnici známe všechny členy kromě, keré z ní můžeme vyjádři) v +,5v = v,5v = v v,5v = ( v v ) =,5v ( v v ) rovedeme konrolu právnoi našeho řešení. Na levé raně rovnice je ča, výraz na pravé raně rovnice muí mí aké význam čau. A opravdu ho má, na pravé raně je zlomek, v jehož čiaeli je výraz,5v, kerý má význam dráhy (,5 je půlhodina ančina nákoku), jeho čiaeli je rozdíl rychloí, edy zae nějaká rychlo. odíl v má opě význam čau. výledný vzah může bý právně,5v,5 = = h =,5h v v 8 = v = 8,5 km = km er dohnal anku za půl hodiny ve vzdálenoi km od Kuimovic. edagogická poznámka: U předchozího i několika dalších příkladů v několika náledujících hodinách by amozřejmě bylo lepší, kdyby udeni dokázali řeši příklady obecně. Bohužel jejich maemaické chopnoi jou po příchodu ze základní školy v poledním období čím dál horší a ak je nuné považova za úpěch, když budou chopni řeši yo příklady i okamžiým doazením ako: = v = v ( ) +,5 = 8 + = 8 = =,5 odobný způob řešení e používá u ěžších příkladů i v maemaice.

4 Dodaek: Ve kuečnoi jme dvěma různými způoby, zíkali ejné výledky. roože čiael zlomku,5v je vlaně ančin nákok a rozdíl v v je rychlo, kerou er anku doháněl. oznámka: Trochu manuálnějším ypem éo konroly výledného vzahu je rozměrová zkouška. Do výrazu vpravo doadíme za jednolivé veličiny jejich jednoky. o úpravě muí km h v vyjí jednoky veličiny na levé raně. zkouška edy vyšla.,5 = h = h. Ča e měří v hodinách, v km v h oznámka: Důležié je i uvědomi, že pokud rozměrová zkouška vyjde, neznamená o, že výledek je právný. Z rozměrové zkoušky pouze vyplývá, že když nevyjde výledek je španě. Rozměrovou zkoušku nemuíme provádě pouze u konečného výrazu. Můžeme ji použí i pro hledání chyby v kerémkoliv míě výpoču. Například aké v rovnici,5v = v v, muejí mí (a aké mají) všechny členy ejný význam, význam dráhy. Dodaek: Jinak poup obecného řešení není jediný ani jednoznačný. Mohli bychom poupova i ako: = v = (,5) v + = v v +,5 = a nyní vyjádři Řešení předchozího příkladu uvedeme i ve formě, kerá je použia u věšiny příkladů ve bírce fyzikálních úloh: Nejdříve i uděláme výpi známých a neznámých veličin. Doporučuji používa, co nejvíce indexů, keré nám ukazují, koho e veličina ýká. V našem příkladě budeme používa index pro veličiny, keré e ýkají era, index paří ance. Výpi veličin: v = km/h, v = 8 km/h, =,5 h, =?, =?, =?, =? Díky výpiu veličin i můžeme uvědomi, keré veličiny známe a keré pořebujeme počía. Důležié je aké o, že abychom příklad dokázali vyřeši muíme zíka rovnici, ve keré bude pouze jedna neznámá veličina. Ve výpiu pak nadno najdeme veličiny, keré v naší rovnici můžeme necha i y, kerých e muíme zbavi! Druhou věcí, kerá e provádí v rámci výpiu veličin je převádění jednoek. Nejjiější je převé všechny hodnoy veličin na základní jednoky SI. okud o neuděláme (jako v omo případě), muíme používa lučielné jednoky. Například pokud udáváme rychlo v km/h, muíme udáva všechny čay v hodinách a všechny vzdálenoi v km. Fyzikální rozbor iuace: er i anka e pohybují přibližně rovnoměrným pohybem. Vzdáleno, kerou urazí, je edy dána jako dráha rovnoměrného pohybu. Ve chvíli, kdy er anku dohoní ujdou oba z Kuimovic ejnou vzdáleno.

5 V rozboru iuaci i muíme ujani o jaké fyzikální děje e v příkladu jedná (rovnoměrný pohyb). Zároveň byme měli nají nejzákladnější rovnici, ze keré začneme odvozova (er ujde ejnou vzdáleno). Obecné řešení: V éo čái vyjdeme ze základní rovnice a poupně e nažíme nahrazova neznámé veličiny ak, aby nám zbyla rovnice, ve keré je pouze jedna neznámá veličina, kerou pak můžeme z rovnice vyjádři. Vycházíme z rovnice: Sále máme dvě neznámé veličiny. er vyrazil z Kuimovic o půl hodiny později než anka, kerá edy šla o půl hodiny déle a ak plaí: = +,5, doadíme: (,5) v + = v (v rovnici známe všechny členy kromě, keré z ní můžeme vyjádři) v +,5v = v,5v = v v,5v = ( v v ) =,5v ( v v ) Doazení:,5v,5 = = h =,5h v v 8 Do odvozeného vzahu doadíme již převedené hodnoy z výpiu známých veličin. = v = 8,5 km = km Odpověď: er dohonil anku po půlhodině ve vzdálenoi km od Kuimovic. Shrnuí: orovnáva nebo čía (odčía) můžeme ve fyzikálních vzazích pouze členy, keré mají význam ejné fyzikální veličiny (mají ejnou jednoku). 5

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech .. Ronoměrně zrychlený pohyb grfech Předpokldy: 009 Př. : N obrázku jou nkreleny grfy dráhy, rychloi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. Ronoměrně zrychlený pohyb: Zrychlení je

Více

NUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny.

NUMP403 (Pravděpodobnost a Matematická statistika II) 1. Na autě jsou prováděny dvě nezávislé opravy a obě opravy budou hotovy do jedné hodiny. Spojiá rozdělení I.. Na auě jou prováděny dvě nezávilé opravy a obě opravy budou hoovy do jedné hodiny. Předpokládejme, že obě opravy jou v akové fázi, že rozdělení čau do ukončení konkréní opravy je rovnoměrné.

Více

Úloha IV.E... už to bublá!

Úloha IV.E... už to bublá! Úloha IV.E... už o bublá! 8 bodů; průměr 5,55; řešilo 42 udenů Změře účinno rychlovarné konvice. Údaj o příkonu naleznee obvykle na amolepce zepodu konvice. Výkon určíe ak, že zjiíe, o kolik upňů Celia

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Kvadratické rovnice a jejich užití

Kvadratické rovnice a jejich užití Kvadraické rovnice a jejich užií Určeno udenům ředního vzdělávání mauriní zkouškou, první ročník, okruh Rovnice a nerovnice Pracovní li vyvořil: Mgr. Helena Korejková Období vyvoření VM: proinec 2012 Klíčová

Více

1.1.11 Rovnoměrný pohyb VI

1.1.11 Rovnoměrný pohyb VI 1.1.11 onoměrný pohyb VI ředpokldy: 11 edgogická poznámk: Náledující příkld je dokončení z minulé hodiny. Sudeni by měli mí grf polohy nkrelený z minulé hodiny nebo z domo. ř. 1: er yjede edm hodin ráno

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

Rovnice rovnoměrně zrychleného pohybu

Rovnice rovnoměrně zrychleného pohybu ..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů

Více

FUNKCE VE FYZICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Miroslava Jarešová Ivo Volf

FUNKCE VE FYZICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Miroslava Jarešová Ivo Volf FUNKCE VE FYZICE Sudijní ex pro řešiele FO a oaní zájemce o fyziku Mirolava Jarešová Ivo Volf Obah Elemenární funkce na CD ROMu 2 1 Základní pojmy 4 1.1 Pojemfunkce............................ 4 1.2 Graffunkce.............................

Více

Téma: Měření tíhového zrychlení.

Téma: Měření tíhového zrychlení. PRACOVNÍ LIST č. 2 Téma úlohy: Měření íhového zrychlení Pracoval: Třída: Daum: Spolupracovali: Teploa: Tlak: Vlhko vzduchu: Hodnocení: Téma: Měření íhového zrychlení. Míní hodnou íhového zrychlení lze

Více

1.3.4 Rovnoměrně zrychlený pohyb po kružnici

1.3.4 Rovnoměrně zrychlený pohyb po kružnici 34 Rovnoměrně zrychlený pohyb po kružnici Předpoklady: 33 Opakování: K veličinám popisujícím posuvný pohyb exisují analogické veličiny popisující pohyb po kružnici: rovnoměrný pohyb pojíko rovnoměrný pohyb

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

4. KINEMATIKA - ZÁKLADNÍ POJMY

4. KINEMATIKA - ZÁKLADNÍ POJMY 4. KINEMATIKA - ZÁKLADNÍ POJMY. Definuj pojem hmoný bod /HB/. 2. Co o je vzažná ouava? 3. Co je o mechanický pohyb? 4. Podle jakých krierií můžeme mechanický pohyb rozlišova? 5. Vyvělee relaivno klidu

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

Slovní úlohy o pohybu

Slovní úlohy o pohybu 6 Sloní úlohy o ohybu Předoklady: 005 Př : Zaiš zoec, keý oiuje dáhu onoměného ohybu Vyjádři ze zoce i oaní eličiny, keé něm yuují, zoce zkonoluj úahou = : čím delší dobu a čím ěší ychloí jdu, ím ěší zdáleno

Více

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D 1.a) Graf v km h 1 Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kaegorie D 50 Auor úloh: J. Jírů 40 30 0 10 0 0 1 3 4 5 6 7 8 9 10 11 1 13 14 6bodů b) Pomocí obahu plochy pod grafem určíme dráhu

Více

1.1.7 Rovnoměrný pohyb II

1.1.7 Rovnoměrný pohyb II 1.1.7 Rovnoměrný pohyb II Předpoklady: 16 Minulou hodinu jme zakončili předpovídáním dalšího pohybu autíčka. Počítali jme jeho dráhy v dalších okamžicích pomocí tabulky a nakonec i přímé úměrnoti: autíčko

Více

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Chebu

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Chebu METODICKÉ LISTY výup projeku Vzdělávací řediko pro další vzdělávání pedagogických pracovníků v Chebu reg. č. projeku: CZ. 1. 07/1. 3. 11/02. 0007 Sada meodických liů: KABINET FYZIKY Název meodického liu:

Více

KINEMATIKA. 1. Základní kinematické veličiny

KINEMATIKA. 1. Základní kinematické veličiny KINEMATIKA. Základní kinemaické veličiny Tao čá fyziky popiuje pohyb ěle. VZTAŽNÁ SOUSTAVA je ěleo nebo ouava ěle, ke kerým vzahujeme pohyb nebo klid ledovaného ělea. Aboluní klid neexiuje, proože pohyb

Více

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA,

IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, IMPULSNÍ A PŘECHODOVÁ CHARAKTERISTIKA, STABILITA. Jednokový impuls (Diracův impuls, Diracova funkce, funkce dela) někdy éž disribuce dela z maemaického hlediska nejde o pravou funkci (přesný popis eorie

Více

2.2.4 Kalorimetrická rovnice

2.2.4 Kalorimetrická rovnice ..4 Kalorieriká rovnie Předpoklady: 0 Poůky: dvě kádinky, vaříí voda, eploěr Vernier, Síháe eplou a udenou vodu při íhání i vody vyěňují eplo, uí dojí k rovnováze zíkáe vodu o jedné eploě. Pokud žádné

Více

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV

1.1.18 Rovnoměrně zrychlený pohyb v příkladech IV 8 Rovnoměně ychlený pohyb v příkladech IV Předpoklady: 7 Pedagogická ponámka: Česká škola v současné době budí ve sudenech předsavu, že poblémy se řeší ásadně najednou Sudeni ak mají obovské poblémy v

Více

Skupinová obnova. Postup při skupinové obnově

Skupinová obnova. Postup při skupinové obnově Skupinová obnova Při skupinové obnově se obnovují všechny prvky základního souboru nebo určiá skupina akových prvků najednou. Posup při skupinové obnově prvky, jež selžou v určiém období, je nuno obnovi

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

1.2.4 Racionální čísla II

1.2.4 Racionální čísla II .2.4 Racionální číla II Předoklady: 20 Pedagogická oznámka: S říkladem 0 je třeba začít nejozději 0 minut řed koncem hodiny. Př. : Sečti. Znázorni vůj otu graficky. 2 2 = = 2 Sčítáme netejné čáti muíme

Více

MECHANIKA - KINEMATIKA

MECHANIKA - KINEMATIKA Projek Efekivní Učení Reformou oblaí gymnaziálního vzdělávání je polufinancován Evropkým ociálním fondem a áním rozpočem Čeké republiky. Implemenace ŠVP MECHANIKA - KINEMATIKA Učivo - Fyzikální veličiny

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

2.2.2 Měrná tepelná kapacita

2.2.2 Měrná tepelná kapacita .. Měrná epelná kapacia Předpoklady: 0 Pedagogická poznámka: Pokud necháe sudeny počía příklady samosaně, nesihnee hodinu za 45 minu. Můžee využí oho, že následující hodina je aké objemnější a použí pro

Více

Slovní úlohy o pohybu I

Slovní úlohy o pohybu I .2. Slovní úlohy o pohybu I Předpoklady: 0024 Př. : Běžec na lyžích se pohybuje na celodenním výletu průměrnou rychlostí km/h. Jakou vzdálenost ujede za hodinu? Za hodiny? Za hodin? Za t hodin? Najdi vzorec,

Více

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Indexy základní, řeězové a empo přírůsku Aleš Drobník srana 1 7. INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU V kapiole Indexy při časovém srovnání jsme si řekli: Časové srovnání vzniká, srovnáme-li jednu

Více

Rovnoměrný pohyb IV

Rovnoměrný pohyb IV 2.2.4 Rovnoměrný pohyb IV Předpoklady: 02023 Pomůcky: Př. : erka jede na kole za kamarádkou. a) Za jak dlouho ujede potřebných 6 km rychlostí 24 km/h? b) Jak daleko bude po 0 minutách? c) Jak velkou rychlostí

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

7.4.1 Parametrické vyjádření přímky I

7.4.1 Parametrické vyjádření přímky I 741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

NA POMOC FO. Pád vodivého rámečku v magnetickém poli

NA POMOC FO. Pád vodivého rámečku v magnetickém poli NA POMOC FO Pád vodivého rámečku v maneickém poli Karel auner *, Pedaoická akula ZČU v Plzni Příklad: Odélníkový rámeček z vodivého dráu má rozměry a,, hmonos m a odpor. Je zavěšen ve výšce h nad horním

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech ..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení

Více

Rovnoměrný pohyb V

Rovnoměrný pohyb V 1.1.11 Rovnoměrný pohyb V ředpoklady: 11 edagogická poznámka: Následující příklad je dokončení z minulé hodiny. Studenti by měli mít graf polohy nakreslený z minulé hodiny nebo z domova. ř. 1: etr vyjede

Více

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC

SLOVNÍ ÚLOHY VEDOUCÍ K ŘEŠENÍ KVADRATICKÝCH ROVNIC Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ..0/.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol SLOVNÍ ÚLOHY VEDOUCÍ

Více

2.2.9 Jiné pohyby, jiné rychlosti II

2.2.9 Jiné pohyby, jiné rychlosti II 2.2.9 Jiné pohyby, jiné rychlosi II Předpoklady: 020208 Pomůcky: papíry s grafy Př. 1: V abulce je naměřeno prvních řice sekund pohybu konkurenčního šneka. Vypoči: a) jeho průměrnou rychlos, b) okamžié

Více

14. Soustava lineárních rovnic s parametrem

14. Soustava lineárních rovnic s parametrem @66 4. Sousava lineárních rovnic s aramerem Hned úvodem uozorňuji, že je velký rozdíl mezi sousavou rovnic řešenou aramerizováním, roože má nekonečně mnoho řešení zadaná sousava rovnic obsahuje jen číselné

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ BAKALÁŘSKÁ PRÁCE Praha, 0 Ing. Per BUBLA ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE MASARYKŮV ÚSTAV VYŠŠÍCH STUDIÍ Sudijní program: Specializace

Více

Výfučtení: Triky v řešení fyzikálních úkolů

Výfučtení: Triky v řešení fyzikálních úkolů Výfučtení: Triky v řešení fyzikálních úkolů Úvod Ve fyzice obča narazíme na problémy jejichž řešení je mnohdy komplikované a zdlouhavé. Avšak v určitých případech e tyto ložité problémy dají vyřešit velmi

Více

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny

10. Charakteristiky pohonů ve vlastní spotřebě elektrárny 0. Charakeriiky pohonů ve vlaní pořebě elekrárny pořebiče ve V.. ají yo charakeriické vlanoi: Příkon Záběrný oen Doba rvání rozběhu Hlavní okruhy pořebičů klaické konvenční epelné elekrárny jou:. Zauhlování

Více

Rovnoměrný pohyb I

Rovnoměrný pohyb I 2.2. Rovnoměrný pohyb I Předpoklady: 02020 Pomůcky: Shrnutí minulé hodiny: Naměřený reálný rovnoměrný pohyb poznáme takto: Rozdíly mezi hodnotami dráhy v pohybové tabulce jsou při stálém časovém intervalu

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Nakloněná rovina I

Nakloněná rovina I 1.2.14 Nakloněná rovina I Předoklady: 1213 Pomůcky: kulička, sada na měření řecí síly. Až dosud jsme se u všech říkladů uvažovali ouze vodorovné lochy. Př. 1: Vysvěli, roč jsme u všech dosavadních říkladů

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGOIE EF Výledky řešení úlo 45. ročníku FO ka. E F Ivo Volf * ÚV FO Univerzia Hradec Králové Mirolav anda ** ÚV FO Pedagogická fakula ZČU Plzeň Jak je již v naší ouěži obvyklé uvádíme pouze

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Digitální učební materiál

Digitální učební materiál Čílo rojeku Náze rojeku Čílo a náze šablony klíčoé akiiy Digiální učební maeriál CZ..07/..00/4.080 Zkalinění ýuky rořednicím ICT III/ Inoace a zkalinění ýuky rořednicím ICT Příjemce odory Gymnázium, Jeíčko,

Více

Sbírka B - Př. 1.1.5.3

Sbírka B - Př. 1.1.5.3 ..5 Ronoměrný pohyb Příklady sřední obížnosi Sbírka B - Př...5. Křižoakou projel rakor rychlosí 3 km/h. Za dese minu po něm projela ouo křižoakou sejným směrem moorka rychlosí 54 km/h. Za jak dlouho a

Více

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI

OBJÍMKA VÁZANÁ PRUŽINOU NA NEHLADKÉM OTOČNÉM RAMENI OBJÍMKA VÁZANÁ RUŽINOU NA NELAKÉM OTOČNÉM RAMENI SEIFIKAE ROBLÉMU Rameno čvercového průřezu roue konanní úhlovou rychloí ω Na něm e nasazena obímka hmonoi m s koeicienem ření mezi ní a ěnami ramene Obímka

Více

Obr. PB1.1: Schématické zobrazení místa.

Obr. PB1.1: Schématické zobrazení místa. 97 Projekové zadání PB1 Poouzení nehodové udáoi Na zákadě chémau nehody oveďe vyhodnocení nehodové udáoi. Určee: - paramery oai řeu pode chémau na orázku Or. PB1.1 ( x1, x, y1, y, x1, x, y1, y ); - zda

Více

Literatura. Obsah FUNKCE VE FYZICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku

Literatura. Obsah FUNKCE VE FYZICE. Studijní text pro řešitele FO a ostatní zájemce o fyziku Lieraura [1] Košťál, R. a kol: XVII. ročník fyzikální olypiády. SPN, Praha 1978. [] Žapa,K.akol:XXV. ročník fyzikální olypiády. SPN, Praha 1988. [3] Žapa,K.akol:XXVI. ročník fyzikální olypiády. SPN, Praha

Více

6.3.6 Zákon radioaktivních přeměn

6.3.6 Zákon radioaktivních přeměn .3. Zákon radioakivních přeměn Předpoklady: 35 ěkeré nuklidy se rozpadají. Jak můžeme vysvěli, že se čás jádra (například čásice 4 α v jádře uranu 38 U ) oddělí a vyleí ven? lasická fyzika Pokud má čásice

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

1.8.1 Méně než nula I

1.8.1 Méně než nula I 1.8.1 Méně než nula I ředpoklady: Krokování se provádí na krokovacím pásu. Hráči (etr a irk na začátku stojí na prostředním startovním políčku a jsou otočení doprava. etr udělá dva kroky dopředu:. ak krok

Více

Výukový materiál zpracovaný v rámci projektu EU peníze školám

Výukový materiál zpracovaný v rámci projektu EU peníze školám Výukový materiál zpracovaný v rámci projektu EU peníze školám Regitrační čílo projektu: Šablona: Název materiálu: Autor: CZ..07/..00/.56 III/ Inovace a zkvalitnění výuky protřednictvím ICT VY INOVACE_0/07_Úlohy

Více

12. MOCNINY A ODMOCNINY

12. MOCNINY A ODMOCNINY . MOCIY A ODMOCIY.. Vypoči: ( 0 8 8 6 6 0 ( 8 9 7 7 d 8 6 0 ( 0 ( 6 00 ŘEŠEÍ: ( 0 8 ( 0 8+ 6 8 7 6 6 8 ( ( 8 8 6 6 8 96 08 0 8 8 8+ 96+ 08088 6 ( 6 ( ( 6 6 0 ( 0 ( ( ( 6 00 8+ 8+ 87 6 8+ 6+ 6 0 6 ( ( 9

Více

Rovnoměrný pohyb III

Rovnoměrný pohyb III ..13 Rovnoměrný pohyb III Předpoklady: 001 Pomůcky: Př. 1: Maky se na kole vydala na výlet, který bohužel neskončil tak, jak si představovala. a) Jak daleko se dostala, jestliže jela 3 minut rychlostí

Více

Pouť k planetám - úkoly

Pouť k planetám - úkoly Nemůže Slunce náhle ohrozi nečekaným výbuchem Vaši rakeu? záleží, v jaké vzdálenosi se nachází, důležié je uvědomi si akiviu Slunce (skvrny, prouberance, nebezpečné výrysky plazmau a následný proud nabiých

Více

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ

STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ STATICKÉ A DYNAMICKÉ VLASTNOSTI ZAŘÍZENÍ Saické a dnamické vlasnosi paří k základním vlasnosem regulovaných sousav, měřicích přísrojů, měřicích řeězců či jejich čásí. Zaímco saické vlasnosi se projevují

Více

Parciální funkce a parciální derivace

Parciální funkce a parciální derivace Parciální funkce a parciální derivace Pro sudeny FP TUL Marina Šimůnková 19. září 2018 1. Parciální funkce. Příklad: zvolíme-li ve funkci f : (x, y) sin(xy) pevnou hodnou y, například y = 2, dosaneme funkci

Více

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je.

Využijeme znalostí z předchozích kapitol, především z 9. kapitoly, která pojednávala o regresní analýze, a rozšíříme je. Pravděpodobnos a saisika 0. ČASOVÉ ŘADY Průvodce sudiem Využijeme znalosí z předchozích kapiol, především z 9. kapioly, kerá pojednávala o regresní analýze, a rozšíříme je. Předpokládané znalosi Pojmy

Více

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky

Demografické projekce počtu žáků mateřských a základních škol pro malé územní celky Demografické projekce poču žáků maeřských a základních škol pro malé územní celky Tomáš Fiala, Jika Langhamrová Kaedra demografie Fakula informaiky a saisiky Vysoká škola ekonomická v Praze Pořebná daa

Více

Kinematika hmotného bodu

Kinematika hmotného bodu Kinemaika hmoného bodu 1. MECHANICKÝ POHYB Základní pojmy kinemaiky Relaino klidu a pohybu. POLOHA HMOTNÉHO BODU 3. TRAJEKTORIE A DRÁHA HMOTNÉHO BODU 4. RYCHLOST HMOTNÉHO BODU 5. ZRYCHLENÍ HMOTNÉHO BODU

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Úloha V.E... Vypař se!

Úloha V.E... Vypař se! Úloha V.E... Vypař se! 8 bodů; průměr 4,86; řešilo 28 sudenů Určee, jak závisí rychlos vypařování vody na povrchu, kerý ao kapalina zaujímá. Experimen proveďe alespoň pro pě různých vhodných nádob. Zamyslee

Více

Schéma modelu důchodového systému

Schéma modelu důchodového systému Schéma modelu důchodového sysému Cílem následujícího exu je názorně popsa srukuru modelu, kerý slouží pro kvanifikaci příjmové i výdajové srany důchodového sysému v ČR, a o jak ve varianách paramerických,

Více

Nakloněná rovina II

Nakloněná rovina II 3 Nakloněná rovina II Předoklady: Pedagogická oznáka: Obsah hodiny se za norálních okolnosí saozřejě nedá sihnou, záleží na Vás, co si vyberee Pedagogická oznáka: Na začáku hodiny zadá sudenů říklad Nečeká

Více

2.3.7 Lineární rovnice s více neznámými I

2.3.7 Lineární rovnice s více neznámými I ..7 Lineární rovnice s více neznámými I Předpoklady: 01 Pedagogická poznámka: Následující hodinu považuji za velmi důležitou hlavně kvůli pochopení soustav rovnic, které mají více než jedno řešení. Proto

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

4. Gomory-Hu Trees. r(x, z) min(r(x, y), r(y, z)). Důkaz: Buď W minimální xz-řez.

4. Gomory-Hu Trees. r(x, z) min(r(x, y), r(y, z)). Důkaz: Buď W minimální xz-řez. 4. Gomory-Hu Tree Cílem éo kapioly je popa daovou rukuru, kerá velice kompakně popiuje minimální -řezy pro všechny dvojice vrcholů, v daném neorienovaném grafu. Tuo rukuru poprvé popali Gomory a Hu v článku[1].

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Jméno a příjmení holka nebo kluk * Třída Datum Škola

Jméno a příjmení holka nebo kluk * Třída Datum Škola P-1 Jméno a příjmení holka nebo kluk * Třída Daum Škola Zopakuje si (bude se vám o hodi ) 3 důležié pojmy a především o, co popisují Pro jednoduchos se omezíme pouze na 1D (j. jednorozměrný) případ. Pro

Více

II. Kinematika hmotného bodu

II. Kinematika hmotného bodu II Kinematika hmotného bodu Všechny vyřešené úlohy jou vyřešeny nejprve obecně, to znamená bez číel Číelné hodnoty jou doazeny až tehdy, dopějeme-li k vyjádření neznámé pomocí vztahu obahujícího pouze

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

Přibližná linearizace modelu kyvadla

Přibližná linearizace modelu kyvadla Přibližná linearizace model kyvadla 4..08 9:47 - verze 4.0 08 Obsah Oakování kalkl - Taylorův rozvoj fnkce... Nelineární savový model a jeho řibližná linearizace... 4 Nelineární model vs-výs a jeho řibližná

Více

5 GRAFIKON VLAKOVÉ DOPRAVY

5 GRAFIKON VLAKOVÉ DOPRAVY 5 GRAFIKON LAKOÉ DOPRAY Jak známo, konsrukce grafikonu vlakové dopravy i kapaciní výpočy jsou nemyslielné bez znalosi hodno provozních inervalů a následných mezidobí. éo kapiole bude věnována pozornos

Více

Rovnoměrný pohyb II

Rovnoměrný pohyb II 2.2.12 Rovnoměrný pohyb II Předpoklady: 020210 Pomůcky: Př. 1: Jakou vzdálenost urazí za pět minut automobil jedoucí rychlostí 85 km/h? 5 t = 5min = h, v = 85 km/h 5 s = vt = 85 km = 7,1 km Automobil jedoucí

Více

PÁSMOVÉ SIGNÁLY (Bandpass signals) SaSM5

PÁSMOVÉ SIGNÁLY (Bandpass signals) SaSM5 PÁSMOVÉ SIGNÁLY (Bandpa ignal) SaSM5 Deinie: Pámovými ignály nazýváme reálné ignály, keré maí pekrum omezeno do určiého kmiočového páma, neobahuíího nulový kmioče: S() 0, pro S() = 0, pro S() - Kmiočy,

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Unverza Tomáše Ba ve Zlíně ABOATONÍ VIČENÍ EEKTOTEHNIKY A PŮMYSOVÉ EEKTONIKY Název úlohy: Zpracoval: Měření čnného výkonu sřídavého proudu v jednofázové sí wamerem Per uzar, Josef Skupna: IT II/ Moravčík,

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

4.5.8 Elektromagnetická indukce

4.5.8 Elektromagnetická indukce 4.5.8 Elekromagneická indukce Předpoklady: 4502, 4504 důležiý jev sojící v samých základech moderní civilizace všude kolem je spousa elekrických spořebičů, ale zaím jsme neprobrali žádný ekonomicky možný

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVCE_

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGORIE E,F Výledky úloh 46. ročníku FO, ka. E, F Io Volf *, ÚV FO, Unierzia Hradec Králoé Mirola Randa **, ÚV FO, Pedagogická fakula ZČU, Plzeň Jak je již naší ouěži obyklé, uádíe pouze

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

Maxwellovy a vlnová rovnice v obecném prostředí

Maxwellovy a vlnová rovnice v obecném prostředí Maxwellovy a vlnová rovnie v obeném prosředí Ing. B. Mihal Malík, Ing. B. Jiří rimas TCHNICKÁ UNIVRZITA V LIBRCI Fakula meharoniky, informaiky a mezioborovýh sudií Teno maeriál vznikl v rámi proeku SF

Více

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8

Biologické modely. Robert Mařík. 9. listopadu Diferenciální rovnice 3. 2 Autonomní diferenciální rovnice 8 Biologické modely Rober Mařík 9. lisopadu 2008 Obsah 1 Diferenciální rovnice 3 2 Auonomní diferenciální rovnice 8 3 onkréní maemaické modely 11 Dynamická rovnováha poču druhů...................... 12 Logisická

Více

Úloha VI.3... pracovní pohovor

Úloha VI.3... pracovní pohovor Úloha VI.3... pracovní pohovor 4 body; průměr,39; řešilo 36 sudenů Jedna z pracoven lorda Veinariho má kruhový půdorys o poloměru R a je umísěna na ložiscích, díky nimž se může oáče kolem své osy. Pro

Více

2.3.1 Rovnice v součinovém tvaru

2.3.1 Rovnice v součinovém tvaru .. Rovnice v součinovém tvaru Předpoklady: 70, 0 Pedagogická poznámka: Hodina obsahuje poměrně dost příkladů (0). I když je někteří stihli vypočítat, mám trochu obavu, zda postup nebyl příliš rychlý. Pokud

Více

7. Slovní úlohy o pohybu.notebook. May 18, 2015. 1. Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu

7. Slovní úlohy o pohybu.notebook. May 18, 2015. 1. Vzdělávací oblast: Matematika a její aplikace. 3. Učivo: Slovní úlohy o pohybu Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované.

transformace Idea afinního prostoru Definice afinního prostoru velké a stejně orientované. finní ransformace je posunuí plus lineární ransformace má svou maici vzhledem k homogenním souřadnicím využií například v počíačové grafice [] Idea afinního prosoru BI-LIN, afinia, 3, P. Olšák [2] Lineární

Více

Práce a výkon při rekuperaci

Práce a výkon při rekuperaci Karel Hlava 1, Ladislav Mlynařík 2 Práce a výkon při rekuperaci Klíčová slova: jednofázová sousava 25 kv, 5 Hz, rekuperační brzdění, rekuperační výkon, rekuperační energie Úvod Trakční napájecí sousava

Více

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici

Základní pojmy Rovnoměrný přímočarý pohyb Rovnoměrně zrychlený přímočarý pohyb Rovnoměrný pohyb po kružnici Kinemaika Základní pojmy Ronoměný přímočaý pohyb Ronoměně zychlený přímočaý pohyb Ronoměný pohyb po kužnici Základní pojmy Kinemaika - popiuje pohyb ělea, neuduje jeho příčiny Klid (pohyb) - učujeme zhledem

Více