FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Lineární harmonický oscilátor. Pohlovo torzní kyvadlo. Abstrakt

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 10: Lineární harmonický oscilátor. Pohlovo torzní kyvadlo. Abstrakt"

Transkript

1 FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 1: Lineární harmonický oscilátor Datum měření: Pohlovo torzní kyvadlo Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:3 Spolupracovala: Eliška Greplová Hodnocení: Abstrakt Měřili jsme průběhy různých kmitání lineárního harmonického oscilátoru tělesa zavěšeného na pružině. Tuhost pružiny jsme určili k = (12, 7 ±, 4) N/m. Vypočítali jsme vlastní úhlovou frekvenci ω = (15, 4 ±, 2) rad s 1. Dynamickou metodou jsme určili periodu vlastních kmitů T =, 415 s, tomu odpovídá vlastní frekvence ω = 15, 1 rad s 1. Pro tlumení ve vzdálenosti 2 cm jsme změřili δ = 1, 16 s 1 a ω = 14, 93 rad s 1, ω = 14, 98 rad s 1, pro tlumení ve vzdálenosti 3 cm jsme získali δ =, 29 s 1 a ω = 15, 11 rad s 1, ω = 15, 11 rad s 1. Z rezonanční křivky pro amplitudu buzených kmitů jsme obdrželi ω = 14, 87 rad s 1 a δ = 1, 27 s 1, to odpovídá rezonanční frekvenci Ω rez = 14, 81 rad s 1. Z rezonanční křivky pro fázový posun buzených kmitů jsme získali ω = 14, 99 rad s 1 a δ = 1, 249 s 1, to odpovídá Ω rez = 14, 895 rad s 1. Pro Pohlovo kyvadlo jsme změřili: tuhost pružiny D = (, 26 ±, 3) Nm, dynamickou metodou jsme určili vlastní úhlovou frekvenci ω = 3, 55 rad s 1. Moment setrvačnosti kyvadla je I =, 29 kg m 2. Vynesli jsme závislost koeficientu útlumu Pohlova kyvadla na proudu vytvářející tlumení a extrapolací exponenciální funkcí jsme se snažili najít hodnotu proudu pro kritické tlumení. Určili jsme ho jako 1,6 A, při této hodnotě proudu se spíše jedná o slabě tlumené kmitání nicméně velmi blízké kritickému útlumu. 1 Úvod Oscilace jsou jedním z předních objektů zájmů fyziků i např. stavitelů. Příkladů, kdy nechtěná rezonance dokázala i mohutné stavby naprosto zničit a roztrhat, je mnoho. Kmitajícímu kyvadlu se věnovánal už např. Galileo Galilei [1]. My se budeme zabývat kmitáním harmonického oscilátoru, tlumeným i netlumeným, následně i buzeným vnější silou. Pak se budeme snažit změřit oscilace Pohlova kyvadla. 1.1 Pracovní úkoly Lineární harmonický oscilátor 1. Změřte tuhost pružiny statickou metodou a vypočtěte vlastní úhlovou frekvenci (včetně celkové chyby určení), se kterou bude soustava kmitat kolem rovnovážné polohy s vámi zvoleným závažíčkem. Odhadněte, s jakou chybou jste schopni prodloužení pružiny měřit, a vypočtěte minimální hmotnost závaží, které musíte k prodloužení použít, aby jste dosáhli relativní chyby měření tuhosti pružiny 5 %. Chybu měření hmotnosti závaží m považujte za nulovou. 2. Změřte periodu vlastních kmitů dynamickou metodou. Rozhodněte, jestli pro výpočet úhlové frekvence je nutné používat vztah (2) tj. jestli je útlum tak velký, že překonává chybu měření. 3. Změřte koeficienty tlumení δ pro 2 konfigurace tlumících magnetů (vzdálenost magnetů 3, resp. 2 cm). Ověřte při tom platnost vztahu (2). 4. Naměřte závislost amplitudy kmitů A a fázového posunutí θ na úhlové frekvenci budící síly při tlumení magnety ve vzdálenosti 2 cm. Závislosti vyneste do grafů, nafitujte příslušnými matematickými předpisy (4), resp. (6) a následně z obou fitů určete vlastní frekvenci ω a útlum δ. Určete pomocí vztahu (5) hodnotu rezonanční frekvence Ω rez. Proč nelze použít měření rezonanční křivky k určení vlastní frekvence kriticky tlumených systémů? 1

2 5. Srovnejte výsledky měření pro vlastní úhlovou frekvenci z úkolů 1, 2 a 4. Které měření považujete za nejpřesnější a naopak? Pohlovo torzní kyvadlo 1. Změřte tuhost pružiny Pohlova kyvadla. 2. Naměřte časový vývoj výchylky kmitů kyvadla pro netlumené kmity. Za použití výsledků tohoto a minulého úkolu vypočítejte moment setrvačnosti I. 3. Změřte koeficient útlumu pro několik zvolených hodnot tlumícího proudu. Závislost vyneste do grafu. 4. Extrapolací určete hodnotu tlumícího proudu, při kterém dochází ke kritickému tlumení. Nastavte tuto hodnotu změřte průběh při rychlostní a polohové počáteční podmínce a ověřte, že je kyvadlo skutečně kriticky tlumeno. 2 Experimentální uspořádání a metody Pomůcky: Experimentální stojan s pružinou a motorkem; tlumící magnety; lineární USB CCD kamera Leybold se stojanem; PC s OS Windows; CASSY lab VideoCom motions; sada pomocných závaží; zdroj 15V; Pohlovo kyvadlo; zdroj 3V 2.1 Lineární harmonický oscilátor Pohyb lineárního harminického oscilátoru se řídí řešením diferenciální rovnice které je x + 2δ x + ω 2 x = x(t) = e δt (A 1 e Dt + A 2 e Dt ) kde D = δ 2 ω, t čas, x souřadnice, A 1 a A 2 integrační konstanty, δ dekrement útlumu a ω vlastní úhlová frekvence. V případě, že δ = s 1 jedná se o harmonický pohyb a řešením je konkrétně x(t) = A sin(ωt + φ). kde A je amplituda, φ fázové posunutí na začátku pohybu a vlastní frekvenci ω můžeme vypočítat jako ω = Pro případ slabého útlumu (tj. D < ) dostáváme řešení k m (1) kde A je amplituda a ω úhlová frekvence taková x(t) = Ae δt sin(ωt + φ) ω = Právě když nastane δ 2 = ω 2, jedná se o případ kritického útlumu ω 2 δ2 (2) x(t) = (A 1 + A 2 t)e δt kde A 1 a A 2 jsou integrační konstanty. Silným útlumem nazýváme útlum větší než kritický (tj. D>). Pro něj dostáváme x(t) = Ae δt sinh Dt Pokud je ještě systém buzen periodickou vnější silou o úhlové frekvenci Ω a amplitudě F /m, pak diferenciální rovnice vypadá x + 2δ x + ωx 2 = F cos Ωt (3) m a hledáme ustálené řešení po odeznění přechodného jevu tlumených kmitů ve tvaru x(t) = A sin(ωt + θ). Neznámou amplitudu A volíme jako řešení nehomogenní rovnice (3) a dostáváme A(Ω) = F /m (ω 2 Ω 2 ) 2 + 4δΩ. (4) 2

3 Tato závislost funkce Ω má maximum v a hodnota amplitudy je Ω rez = ω 2 2δ2 (5) F /m A rez = 2δ ω 2 δ2 Analogicky platí pro fázový posun ( ω 2 θ = arctan Ω 2 ) (6) 2δΩ Pro statickou metodu měření tuhosti pružiny použijeme různá závaží a proměříme závislost dle Hookova zákona l = mg k kde l je velikost změny délky pružiny, m je hmotnost závaží, g velikost tíhového zrychlení a k tuhost pružiny. Pro měření vlastní frekvence a útlumu použijeme CCD kameru, necháme oscilátor oscilovat a kamerou zaznamenáváme výchylky. Kamera má kolem 4 bodů, naše data pro vyhodnocení zadaných úloh nepotřebujeme přepočítávat na absolutní vzdálenosti v metrických jednotkách, takže je budeme uvádět bezrozměrně. Útlum vytváříme magnety, které jsou umístěny ve vzdálenosti 2 nebo 3 cm. Měření amplitudy a fázového posunu při buzení systému vnější silou se provádí aparaturou na obr. 1. Magnety jsou ve vzdálenosti 2 cm. Obr. 1: Aparatura na měření amplitudy A a fázového posunu θ pohybu lineárního harmonického oscilátoru v závislosti na úhlové frekvenci budící síly Ω 2.2 Pohlovo torzní kyvadlo Pohybová rovnice pro úhel φ je analogická k (2.1) φ + 2δ φ + ω 2 φ =. Řešení jsou tak podobně analogická. Pro případ malého útlumu φ(t) = φ max e δt sin(ωt + φ ) kde ω = ω 2 δ2 3

4 Pro případ kritického útlumu dostáváme buď při podmínce polohové φ() = φ > a φ() = nebo při podmínce rychlostní φ() = a φ() = Ω φ(t) = φ()(1 + δt)e δt (7) φ(t) = Ω te δt. (8) Výchylka Pohlova kyvadla se odečítá buď pomocí měřítka na kyvadle (v případě statické metody) nebo pomocí počítače. Tlumící pole je vytvářeno v cívkách jimiž prochází proud I. Tímto proudem můžeme tlumení zesilovat nebo zeslabovat. Ještě určíme tuhost pružiny D a moment setrvačnosti I kyvadla. Nejdříve si uvědomíme, že platí pro koeficient D D = mgr2 l kde m je hmotnost závaží, r poloměr kotouče kyvadla, l je délka obluku kružnice, o kterou se posune bod na kraji kotouče kyvadla při zatížení závažím o hmotnosti m, a D je tuhost pružiny. Moment setrvačnosti I pak obdržíme za použití vzorce I = D ω 2. (9) 3 Výsledky 3.1 Lineární harmonický oscilátor Nejdříve jsme zvážili hmotnost zavěšené měrky a úchytu na závaží m m = (53, 46 ±, 5) g i jednotlivých závaží. Poté jsme statickou metodou měřili prodloužení v závislosti na hmotnosti, která pružinu prodlužuje. Data jsou uvedena v tab. 1. Z toho dostáváme tuhost pružiny k = (12, 7 ±, 4) N/m. Odhadneme chybu jednotlivých měření k. Vzhledem k tomu, že k = mg l kde m je hmotnost, jejíž tíhová síla prodloužuje pružinu, a l prodloužení pružiny, obdržíme pro chybu ( k ) 2 ( k ) 2 σ k = l σ l + m σ k m = l σ l = mg l σ l l z čehož vyplývá vzorec pro relativní chybu určení k σ k k = σ l l. Vidíme tak, že chyba nezávisí explicitně (!) na hmotnosti. m [g] l [mm] k [N/m] 49, ,84 66, ,33 76, ,7 86, , Tab. 1: Měření tuhosti pružiny m hmotnost závaží, l změna délky, k tuhost Můžeme už tedy určit vlastní frekvenci oscilátoru (pro nás se jedná pouze o na pružince zavěšenou stupnici a držáček na závažíčka) podle (1) ω = (15, 4 ±, 2) rad s 1 Dále jsme měřili periodu vlastních kmitů dynamickou metodou. Průběh můžeme vidět na obr. 2. Nafitováním jsme určili T =, 415 s tj. ω = 15, 1 rad s 1. Pokud použijeme vzorec (2) dostaneme po dosazení δ =, 42 s 1 odlišnost ω od ω až na sedmé platné číslici, což je rozhodně za přesností našich přístrojů. Pro dvě nastavení tlumících magnetů jsme naměřili průběh kmitů lineárního harmonického oscilátoru (pro 2 cm na obr. 3, pro 3 cm obr. 4) a pomocí nafitování jsme určili koeficienty tlumení δ. Pro vzdálenost 2 cm jsme získali δ = 1, 16 s 1 a ω = 14, 93 rad s 1. Z čehož můžeme vypočítat podle (2) vlastní frekvenci 4

5 e,4 t sin(15, 11 t + 5) x [ ] Obr. 2: Oscilace lineárního harmonického oscilátoru bez přídavného tlumení x [ ] e 1,16 t sin(14, 93 t + 6) Obr. 3: Oscilace lineárního harmonického oscilátoru s tlumením ve vzdálenosti 2 cm ω = 14, 98 rad s 1. Pro vzdálenost 3 cm jsme získali δ =, 29 s 1 a ω = 15, 11 rad s 1. Z čehož můžeme vypočítat podle (2) vlastní frekvenci ω = 15, 11 rad s 1 Změna oproti ω je na páté platné číslici. U buzených kmitů jsme zaznamenávali jak průběh budící síly, tak průběh kmitů oscilátoru. Z nich jsme fitem určili hodnoty amplitudy oscilátoru A 1, úhlové frekvenci oscilátoru Ω 1, počáteční fáze φ 1 a podobně s indexem 2 pro budící mechanizmus. Fázové posunutí označíme θ = φ 1 φ 2. Vynesli jsme závislost amplitudy A 1 na úhlové frekvenci budící síly Ω 2 viz obr. 5. Nafitovali jsme funkci dle (4) a získali jsme A 1 (Ω 2 ) = 1661 ((14, 872 Ω 2 2 )2 ) + 4(1, 3 2 )(Ω 2 2 ). Vezmeme-li tedy ω = 14, 87 rad s 1 a δ = 1, 27 s 1 a získáme Ω rez = 14, 81 rad s 1. Podobně jsme vynesli obr. 6 závislost fázového posunutí θ na úhlové frekvenci budící síly Ω 2. Data jsme nafitovali funkcí dle (6) a získali jsme θ = arctan 14, 992 Ω , Ω 2. Vezmeme ω = 14, 99 rad s 1 a δ = 1, 249 s 1 získáme Ω rez = 14, 895 rad s 1. 5

6 x [ ] e,29 t sin(15, 11 t + 2) Obr. 4: Oscilace lineárního harmonického oscilátoru s tlumením ve vzdálenosti 3 cm U [V] Ω 1 [rad s 1 ] A 1 [ ] φ 1 [rad] Ω 2 [rad s 1 ] A 2 [ ] φ 2 [rad] θ [rad] 2, 2,22 48,6 -,28 2,22 46,8-1,83 1,54 5, 5,98 57,3 1,66 5,97 47,8,16 1,5 8, 1,24 9,4 1,77 1,24 49,,36 1,41 1, 13,5 185,,57 13,5 51,2 -,59 1,16 1,5 13,97 232,6-1,7 13,6 51,9-2,11 1,5 11, 14,4 324,8 -,84 14,39 5,5 -,74 -,1 11,3 14,81 352,4 3,6 14,81 46,4 2,69,36 11,5 15,8 335, -1,31 15,8 42,8-1,41,1 12, 15,82 244,,57 15,82 38, 1,14 -,57 12,5 16,54 171,5 -,77 16,54 39,8,14 -,9 13, 17,34 123,3-3,29 17,34 41, -2,2-1,9 13,3 17,98 98,5 -,3 17,99 41,7,88-1,18 Tab. 2: Závislost amplitudy A a fázového rozdílu θ při buzení oscilátoru vnější silou 3.2 Pohlovo torzní kyvadlo Nejdříve jsme měřili tuhost pružiny Pohlova kyvadla. Poloměr kotouče Pohlova kyvadla je r = (9, 39 ±, 1) cm. Data jsou uvedena v tab. 3. Dopočítal jsme tuhost pružiny Pohlova kyvadla D = (, 26 ±, 3) Nm. m [g] l [m] D [N m] 51,78,18,25 18,98,7,221 11,81,3,319 Tab. 3: Měření tuhosti Pohlova kyvadla m hmotnost závaží, l protažení pružiny, D tuhost Pohlova kyvadla Naměřili jsme průběh výchylky kmitů kyvadla pro Pohlovo kyvadlo viz obr. 7. Z fitování jsme určili vlastní úhlovou frekvenci jako ω = 3, 55 rad s 1. Podle vzorce (9) jsme vypočetli hodnotu momentu setrvačnosti kyvadla I I =, 29 kg m 2 Pro několik hodnot tlumícího proudu I v rozmezí až 1,35 A jsme naměřili časový vývoj výchylky kyvadla a nafitovali příslušnými funkcemi. Extrapolovat prvotně naměřené hodnoty (tj. až 1,35 A) jsme nejdříve zkusili přímkou, ale jak je vidět na obr. 8 hodnota proudu I by byla daleko větší než dovolená hodnota pro cívku vytvářející tlumící pole, což je cca 2 A. Závislost celkově vypadala tak trochu exponenciální, a tak jsme ručním proložením odhadli hodnotu proudu při kritickém útlumu na zhruba 1,6 A. Naměřili jsme závislost při 6

7 A1 [ ] / (( Ω )2 ) + 4(1.3 2 )(Ω 2 2 ) Ω 2 [rad s 1 ] Obr. 5: Závislost amplitudy A 1 na úhlové frekvenci budící síly Ω 2 při buzení lineárního harmonického oscilátoru vnější silou θ [rad] Ω 2 [rad s 1 ] arctan Ω Ω 2 Obr. 6: Závislost θ na úhlové frekvenci budící síly Ω 2 při buzení lineárního harmonického oscilátoru vnější silou polohové a při rychlostní podmínce. Jejich průběhy naleznete na obr. 9 a 1. Nejdříve jsme je nafitovali funkcí pro kritický útlum (7) a (8). Fitovali jsme je samozřejmě s ohledem na to, že jsme nemuseli naměřit hodnoty přesně od začátku průběhu, tj. dovolili jsme posunout časový průběh o konstantu doprava či doleva. Parametry pro dekrement útlumu jsou pro polohovou podmínku δ = 8, 37 s 1 a pro rychlostní podmínku δ = 3, 65 s 1. Protože nevíme, zda je nastaven správný kritický útlum, nafitovali jsme dané křivky i funkcí pro slabý útlum. Dekrement útlumu pro polohovou podmínku je δ = 2, 56 s 1 a pro rychlostní podmínku δ = 1, 75 s 1. Zkusili jsme ještě naměřit křivku pro 1,7 A a ta už vypadala jako kriticky tlumená a potvrdila možnost exponenciální závislosti dekrementu útlumu na proudu a naší extrapolaci. 4 Diskuze 4.1 Lineární harmonický oscilátor Měřili jsme tuhost pružiny statickou metodou a vyšla nám k = (12, 7 ±, 4) N/m. Z toho jsme pro námi zvolené závaží tj. jen pro stupnici s držáčkem spočítali vlastní frekvenci ω = (15, 4 ±, 2) rad s 1. Při počítání chyby jsme zjistili, že pokud předpokládáme, že měříme hmotnost přesně, relativní chyba nezávisí explicitně na hmotnosti je rovna relativní přesnosti měření prodloužení. Pokud bychom ale měli danou přesnost měření délky 7

8 l [cm].2.13 e.2 t sin(3.55 t ) Obr. 7: Průběh výchylky l Pohlova kyvadla bez vnějšího tlumení δ [1/s] e 2.78 I I.19 kritický útlum slabý útlum δ = ω. = I [A] Obr. 8: Extrapolace závislosti útlumu δ na proudu I vytvářejícím tlumící pole směrem ke kritickému útlumu při kmitání Pohlového kyvadla (např. 1 mm), pak už bychom museli použít takovou hmotnost, aby jím vyvolané prodloužení bylo dostatečně velké. Při měření periody dynamickou metodou jsme určovali průběh netlumených kmitů. Dekrement útlumu byl sice nenulový ale velmi blízký nule, a tak můžeme měření opravdu považovat za netlumené, tj. nemusíme provádět korekci na slabé tlumení. Určili jsme vlastní úhlovou frekvenci jako ω = 15, 1 rad s 1, tzn. hodnota sice neležící v intervalu ze statické metody avšak blízká a v intervalu dvakrát větším už by ležela. Pro dvě nastavení tlumících magnetů jsme měřili průběhy a fitovali je příslušnými funkcemi. Pro tlumení ve vzdálenosti 2 cm jsme určili δ = 1, 16 s 1 a ω = 14, 93 rad s 1 z čehož vyplynulo ω = 14, 98 rad s 1. Je vidět, že jsme opět mírně mimo nejužší interval. Pro tlumení ve vzdálenosti 3 cm jsme získali δ =, 29 s 1 a ω = 15, 11 rad s 1, pak dostáváme vlastní úhlovou frekvenci ω = 15, 11 rad s 1. Tady už se hodnoty ω a ω liší až na páté platné číslici. Pro buzený harmonický oscilátor s tlumením jsme určili závislosti amplitudy A 1 a fázového posunutí θ na úhlové frekvenci budící síly Ω 2. Z fitování závislosti amplitudy A 1 jsme dostali ω = 14, 87 rad s 1 a δ = 1, 27 s 1. Pak získáváme Ω rez = 14, 81 rad s 1. Z fitování závislosti fázového posunutí θ obdržíme ω = 14, 99 rad s 1 a δ = 1, 249 s 1. Dosazením získáme Ω rez = 14, 895 rad s 1. Vidíme, že obě hodnoty se téměř shodují, vzájemná odchylka je pod 1 %. 8

9 e 8.36 (t.1) ( (t.1).22 e 2.56(t+.14) sin(2.78 (t +.14) + 1.1) l [cm] Obr. 9: Časový průběh výchylek l Pohlova kyvadla při domnělém kritickém útlumu a polohové počáteční podmínce Co se týče výsledků jednotlivých určení vlastní frekvence, tak můžeme říct, že většina výsledků je sobě velmi blízká. Statickou metodou jsme zjistili frekvenci nejnižší, dynamickou metodou jsme určili hodnotu o něco nižší ale stejnou jako v případě slabšího z dvou tlumení, které jsme měli k dispozici. Při silném tlumení jsme dostali hodnotu nejnižší, ale jednalo se o odychylku v řádu procent, což je na úrovni přesnosti našeho měření. Podobnou hodnotu jsme získali i z měření průběhu výchylek kyvadla buzeného vnější silou. Pokud nás zajímá přesnost jednotlivých metod, můžeme nejprve o metodě statické říci, že by šla provést daleko přesněji při použití jiného vybavení, jmenovitě přesnějšího odečítání délky. Dynamická metoda mi přijde poměrně přesná, fit prakticky sedí na naměřená data a je ve shodě s teorií. Z měření slabého útlumu jsme dostali dvě hodnoty trochu odlišné, zvláště při silnějším tlumení funkce při detailním pohledu zcela nesedí v datech, takže zde je rozhodně nejméně přesné měření. V případě, kdy jsme určovali vlastní frekvenci z rezonančních křivek pro amplitudu a fázové posunutí, si myslím, že měření bylo velmi přesné. Je vidět, že rezonanční křivka zvláště v prvním případě velmi dobře koresponduje s naměřenými daty a řekl bych, že toto určení je nejpřesnější není totiž důvodu, aby bylo měření nepřesné z nějakých systematických důvodů. 4.2 Pohlovo torzní kyvadlo Nejdříve jsme změřili staticky tuhost pružiny D = (, 26 ±, 3) Nm. Relativní odchylka je poměrně velká, takže kyvadlo se moc lineárně vzhledem k působící protahující síle nechovalo. Z časového vývoje kmitů jsme fitováním určili vlastní úhlovou frekvenci ω = 3, 55 rad s 1 a následně pomocí předchozího výsledku jsme vypočetli moment setrvačnosti kyvadla I =, 29 kg m 2. Při měření koeficientů útlumu a zvláště pak při extrapolaci hodnot jsme se potýkali s problémem, jakou funkcí vlastně máme extrapolovat. Lineární funkce by nás zavedla úplně jinam, ačkoliv se na počátku zdálo, že by mohlo jít právě o takovou závislost. Po orientačním změření hodnot nad 1 A se ale ukázalo, že křivka povede úplně jinak a exponenciální závislost poměrně rozumně sedí do naměřených hodnot. Pro hodnotu proudu 1,6 A jsme se pokusili potvrdit kritický útlum. Z detailního pohledu obr. 9 a 1 můžeme ale vidět, že lépe sedí na naměřená data funkce pro slabý útlum. Nicméně pouze pohled na obrazovku bez nafitování nám tuto odlišnost neprozradí, navíc regulace proudu nebyla tak jemná, abychom tuto nepřesnost nějak korigovali. Ale celkově bych řekl, že kyvadlo bylo téměř kriticky tlumeno. 5 Závěr Změřili jsme tuhost pružiny k = (12, 7±, 4) N/m statickou metodou a následně určili vlastní úhlovou frekvenci ω = (15, 4 ±, 2) rad s 1 lineárního harmonického oscilátoru s touto pružinou. Relativní chyba měření k za předpokladu přesného určení hmotnosti nezávisí explicitně na hmotnosti. Dynamickou metodou jsme určili periodu vlastních kmitů T =, 415 s, což odpovídá vlastní frekvenci ω = 15, 1 rad s 1. Vzhledem k velmi slabému tlumení a přesnosti měření není potřeba používat přesného vztahu pro vlastní frekvenci ω = ω 2 δ2. 9

10 e 3.64(t.2) (t.2).15 e 1.74(t.37) sin(2.68 (t.37) +.97).1 l [cm] Obr. 1: Časový průběh výchylek l Pohlova kyvadla při domnělém kritickém útlumu a rychlostní počáteční podmínce Pro tlumení ve vzdálenosti 2 cm jsme určili dekrement útlumu jako δ = 1, 16 s 1 a úhlovou frekvenci ω = 14, 93 rad s 1 z čehož vyplynulo pro vlastní frekvenci ω = 14, 98 rad s 1. Pro tlumení ve vzdálenosti 3 cm jsme získali δ =, 29 s 1 a ω = 15, 11 rad s 1, z čehož tedy vyplývá vlastní úhlová frekvence ω = 15, 11 rad s 1. Z rezonanční křivky pro amplitudu buzených kmitů jsme obdrželi ω = 14, 87 rad s 1 a δ = 1, 27 s 1, což nám poskytlo rezonanční frekvenci Ω rez = 14, 81 rad s 1. Z rezonanční křivky pro fázový posun buzených kmitů jsme získali ω = 14, 99 rad s 1 a δ = 1, 249 s 1. Hodnota rezonanční frekvence je takto určená Ω rez = 14, 895 rad s 1. Pro Pohlovo kyvadlo jsme změřili tuhost pružiny jako D = (, 26 ±, 3) Nm. Pak jsme naměřili časový vývoj výchylek kyvadla a určili vlastní úhlovou frekvenci ω = 3, 55 rad s 1. Moment setrvačnosti kyvadla je tak I =, 29 kg m 2. Vytvořili jsme graf závislosti koeficientu útlumu na tlumícím proudu a extrapolací exponenciální funkcí jsme se snažili najít hodnotu proudu pro kritické tlumení Pohlova kyvadla. Určili jsme ho jako 1,6 A, což se ale při následné detailní analýze ukázalo jako spíše slabě tlumené kmitání nicméně velmi blízké kritickému útlumu. 6 Literatura [1] ŠTOLL, I., Dějiny fyziky, 1.vyd., Praha, 584 s, Prometheus, 29 [2] Kolektiv katedry fyziky, Úlohy fyzikálních praktik LINEÁRNÍ HARMONICKÝ OSCILÁTOR, [cit ], URL: [3] Kolektiv katedry fyziky, Úlohy fyzikálních praktik POHLOVO TORZNÍ KYVADLO, [cit ], URL: 1

Harmonické oscilátory

Harmonické oscilátory Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou

Více

Mechanické kmitání a vlnění, Pohlovo kyvadlo

Mechanické kmitání a vlnění, Pohlovo kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Mechanické kmitání a vlnění, Pohlovo kyvadlo Číslo úlohy: 10 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 26. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 9.11.2012 Klasifikace: Část I Lineární

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

Laboratorní úloha č. 4 - Kmity II

Laboratorní úloha č. 4 - Kmity II Laboratorní úloha č. 4 - Kmity II Úkoly měření: 1. Seznámení s měřením na přenosném dataloggeru LabQuest 2 základní specifikace přístroje, způsob zapojení přístroje, záznam dat a práce se senzory, vyhodnocování

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení 1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš

Mechanické kmitání Kinematika mechanického kmitání Vojtěch Beneš Mechanické kmitání Vojtěch Beneš Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech mechanické kmitání, kinematika, harmonický oscilátor Sexta Příprava

Více

Téma: Dynamiky - Základní vztahy kmitání

Téma: Dynamiky - Základní vztahy kmitání Počítačová podpora statických výpočtů Téma: Dynamiky - Základní vztahy kmitání 1) Vlastnosti materiálů při dynamickém namáháni ) Základní vztahy teorie kmitání s jedním stupněm volnosti Katedra konstrukcí

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Základní experimenty akustiky. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 9: Základní experimenty akustiky Datum měření: 27. 11. 29 Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:3 Spolupracovala:

Více

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova

Více

2. Ve spolupráci s asistentem zkontrolujte, zda je torzní kyvadlo horizontálně vyrovnané.

2. Ve spolupráci s asistentem zkontrolujte, zda je torzní kyvadlo horizontálně vyrovnané. FYZIKÁLNÍ PRAKTIKUM I FJFI ČVUT v Praze Úloha #1 Cavendishův experiment Datum měření: 15.11.013 Skupina: 7 Jméno: David Roesel Kroužek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasifikace: 1 Pracovní

Více

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo.

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo. Mechanické kmitání (SŠ) Pracovní list vzdáleně ovládaný experiment Určení tíhového zrychlení z doby kmitu matematického kyvadla Fyzikální princip Matematickým kyvadlem rozumíme abstraktní model mechanického

Více

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona. 1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum 1 Úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jan Kotek stud.sk.: 17 dne: 2.3.2012 Odevzdal dne:... možný počet bodů

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem 30. Fyzikální kyvadlo 1. Klíčová slova Fyzikální kyvadlo, matematické kyvadlo, kmitavý pohyb, perioda, doba kyvu, tíhové zrychlení, redukovaná délka fyzikálního kyvadla, moment setrvačnosti tělesa, frekvence,

Více

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8. 3. 2010 Úloha 6: Geometrická optika Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala: Eliška

Více

Elektromechanický oscilátor

Elektromechanický oscilátor - 1 - Elektromechanický oscilátor Ing. Ladislav Kopecký, 2002 V tomto článku si ukážeme jeden ze způsobů, jak využít silové účinky cívky s feromagnetickým jádrem v rezonanci. I člověk, který neoplývá technickou

Více

Lineární harmonický oscilátor

Lineární harmonický oscilátor FYZIKÁLNÍ PRAKTIKUM I FJFI ƒvut v Praze Úloha #1 Harmonické oscilace, Pohlovo torzní kyvadlo Datum m ení: 25.1.213 Skupina: 7 Jméno: David Roesel Krouºek: ZS 5 Spolupracovala: Tereza Schönfeldová Klasikace:

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země). Projekt: Cíl projektu: Určení hmotnosti Země Místo konání: Černá věž - Klatovy, Datum: 28.10.2008, 12.15-13.00 hod. Motto: Krása středoškolské fyziky je především v její hravosti, stejně tak jako je krása

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Závislost odporu termistoru na teplotě

Závislost odporu termistoru na teplotě Fyzikální praktikum pro JCH, Bc Jméno a příjmení: Zuzana Dočekalová Datum: 21.4.2010 Spolupracovník: Aneta Sajdová Obor: Jaderně chemické inženýrství Číslo studenta: 5 (středa 9:30) Ročník: II. Číslo úlohy:

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IXX Název: Měření s torzním magnetometrem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 31.10.2008

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

PRAKTIKUM I Mechanika a molekulová fyzika

PRAKTIKUM I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č. XXI Název: Měření tíhového zrychlení Pracoval: Jiří Vackář stud. skup. 11 dne 10..

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVI Název: Studium Brownova pohybu Pracoval: Pavel Brožek stud. skup. 1 dne 4.4.008

Více

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L.

2. Stanovte hodnoty aperiodizačních odporů pro dané kapacity (0,5; 1,0; 2,0; 5,0 µf). I v tomto případě stanovte velikost indukčnosti L. 1 Pracovní úkoly 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,1; 0,3; 0,5; 1,0; 3,0; 5,0 µf, R = 20 Ω). Výsledky měření

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 4 Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky Pracoval: Jakub Michálek

Více

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS

MODIFIKOVANÝ KLIKOVÝ MECHANISMUS MODIFIKOVANÝ KLIKOVÝ MECHANISMUS Michal HAJŽMAN Tento materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vyšetřování pohybu vybraných mechanismů v systému ADAMS

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Goniometrické funkce Mirek Kubera žák načrtne grafy elementárních funkcí a určí jejich vlastnosti, při konstrukci grafů aplikuje znalosti o zobrazeních,

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+:

Relativní chybu veličiny τ lze určit pomocí relativní chyby τ 1. Zanedbáme-li chybu jmenovatele ve vzorci (2), platí *1+: Pracovní úkol 1. Změřte charakteristiku Geigerova-Müllerova detektoru pro záření gamma a u jednotlivých měření stanovte chybu a vyznačte ji do grafu. Určete délku a sklon plata v charakteristice detektoru

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

PRAKTIKUM IV Jaderná a subjaderná fyzika

PRAKTIKUM IV Jaderná a subjaderná fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A15 Název: Studium atomových emisních spekter Pracoval: Radim Pechal dne 19. listopadu

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN

SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN SERIOVÉ A PARALELNÍ ZAPOJENÍ PRUŽIN ANNA MOTYČKOVÁ 2015/2016, 8. Y Obsah Teoretický rozbor... 3 Zjištění tuhosti pružiny... 3 Sériové zapojení pružin... 3 Paralelní zapojení pružin... 3 Praktická část...

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

KMS cvičení 5. Ondřej Marek

KMS cvičení 5. Ondřej Marek KMS cvičení 5 Ondřej Marek Ondřej Marek KMS 5 KINEMAICKÉ BUZENÍ ABSOLUNÍ SOUŘADNICE Pohybová rovnice: mx + b x x + k x x = mx + bx + kx = bx + kx Partikulární řešení: x = X e iωt x = iωx e iωt k m b x(t)

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin. Číslo projektu CZ.107/1.5.00/34.0425 Název školy INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov Předmět Elektrická měření Tematický okruh Měření elektrických veličin Téma Měření

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

Laboratorní úloha č. 3 - Kmity I

Laboratorní úloha č. 3 - Kmity I Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).

Více

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

SCLPX 07 2R Ověření vztahu pro periodu kyvadla Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí

Více

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru:

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru: Pracovní úkol 1. Pomocí fotometrického luxmetru okalibrujte normální žárovku (stanovte její svítivost). Pro určení svítivosti normální žárovky (a její chyby) vyneste do grafu závislost osvětlení na převrácené

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 19 Název úlohy: Měření s torzním magnetometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 12.10.2015 Datum odevzdání:... Připomínky

Více

Dynamika rotačního pohybu

Dynamika rotačního pohybu Číslo úlohy: 11 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum : 2. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Dynamika rotačního

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Měření tíhového zrychlení reverzním kyvadlem

Měření tíhového zrychlení reverzním kyvadlem 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n

Více

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce

Více

Praktická úloha celostátního kola 48.ročníku FO

Praktická úloha celostátního kola 48.ročníku FO 1 Praktická úloha celostátního kola 48.ročníku FO Pomůcky: dvě různé pružiny o neznámých tuhostech k 1 a k 2, k 1 < k 2,dvě závaží o hmotnostech m 1 = 0,050 kg a m 2 = 0,100 kg, kladka o známé hmotnosti

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VII Název: Měření indukčnosti a kapacity metodou přímou Pracoval: Pavel Brožek stud.

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

Přechodné děje 2. řádu v časové oblasti

Přechodné děje 2. řádu v časové oblasti Přechodné děje 2. řádu v časové oblasti EO2 Přednáška 8 Pavel Máša - Přechodné děje 2. řádu ÚVODEM Na předchozích přednáškách jsme se seznámili s obecným postupem řešení přechodných dějů, jmenovitě pak

Více

galvanometrem a její zobrazení na osciloskopu

galvanometrem a její zobrazení na osciloskopu Úloha 2: Měření hysterézní smyčky alistickým galvanometrem a její zorazení na osciloskopu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 26.4.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník

Více

Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem

Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem FJFI ČVUT v Praze Fyzikální praktikum I Úloha 9 Verze 161010 Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem Abstrakt: V úloze si osvojíte práci s jednoduchými elektrickými obvody.

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013 Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí

Více

Tabulka I Měření tloušťky tenké vrstvy

Tabulka I Měření tloušťky tenké vrstvy Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A] Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Úloha: F-VI-1 Izotermický děj Spolupracovník: Hodnocení: Datum měření: Úkol: Experimentálně ověřte platnost Boyle-Mariottova zákona. Pomůcky: Teorie:

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek 1 Pracovní úkoly 1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek (a) v zapojení s nesouhlasným směrem proudu při vzdálenostech 1, 16, 0 cm (b) v zapojení se

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12

Více

plynu, Měření Poissonovy konstanty vzduchu

plynu, Měření Poissonovy konstanty vzduchu Úloha 4: Měření dutých objemů vážením a kompresí plynu, Měření Poissonovy konstanty vzduchu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 2.11.2009 Jméno: František Batysta Pracovní skupina: 11 Ročník

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP

Fyzika 6. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. témata / učivo. očekávané výstupy RVP. očekávané výstupy ŠVP očekávané výstupy RVP témata / učivo 1. Časový vývoj mechanických soustav Studium konkrétních příkladů 1.1 Pohyby družic a planet Keplerovy zákony Newtonův gravitační zákon (vektorový zápis) pohyb satelitů

Více

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici

Více