KVANTITATIVNÍ VÝVOJ SNĚHOVÉ POKRÝVKY NA EXPERIMENTÁLNÍM POVODÍ MODRAVA 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "KVANTITATIVNÍ VÝVOJ SNĚHOVÉ POKRÝVKY NA EXPERIMENTÁLNÍM POVODÍ MODRAVA 2"

Transkript

1 ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ ENVIRONMENTÁLNÍ MODELOVÁNÍ KVANTITATIVNÍ VÝVOJ SNĚHOVÉ POKRÝVKY NA EXPERIMENTÁLNÍM POVODÍ MODRAVA 2 Diplomová práce Autor: Zbyněk Klose Vedoucí: Ing. Jiří Pavlásek Ph.D. 28

2 Prohlašuji, že jsem celou diplomovou práci na téma Kvantitativní vývoj sněhové pokrývky na experimentálním povodí Modrava 2 vypracoval samostatně za použití uvedené literatury a podle pokynů vedoucího diplomové práce. V Praze dne 15. května 28. Zbyněk Klose

3 Na tomto místě bych rád poděkoval Mladíkovi za trpělivost a cenné rady, dále pak rodině, která mne při studiích podporovala a v neposlední řadě všem, kteří mi pomáhali při měření v terénu a nenechali se odradit ničivou vichřicí, deštěm či vánicí, silným mrazem, ani mnou.

4 Diploma thesis: Quantitative development of snow cover on experimental catchment Modrava 2 Abstract Snow presents almost one half of the year precipitation amount in the Bohemian Forest. Detailed monitoring of the snow cover development on experimental catchment Mokrůvka (Modrava 2) in the central part of Bohemian Forest, one of the rainiest regions in the Czech Republic, began in November 27. The developement of snow area distribution and its parameters (density, snow water equivalent) were studied. Parameters of the snow cover were investigated at the level of individual layers as well. Other part of this paper deals with the snowmelt processes. The highest snow water equivalent (77 mm) was measured at the end of the winter, on 23rd March 28. The average snow depth varied between.9 and 1.8 meters during the winter, until the beginning of a spring snowmelt. The slope orientation has the biggest influence on the snow distribution, the difference in average snow depth between northeast and northwest oriented banks reached 3 %. Snowmelt simulations were calculated by Degree-Day model and Degree-Day model adapted for one hour step. The comparison of both models with measured outflows showed that the daily step was more accurate.

5 OBSAH 1 ÚVOD GLOBÁLNÍ VÝZNAM SNĚHU SNÍH JAKO EKOLOGICKÝ FAKTOR VLIV ZMĚN SNĚHOVÉ POKRÝVKY NA EKOSYSTÉMY VLIV SNĚHU NA VODNÍ ZDROJE VLIV SNĚHU NA ROSTLINNOU PRODUKCI ROZOB LITERATURY FYZIKÁLNÍ VLASTNOSTI SNĚHU Objem sněhu Pórovitost Vlhkost Hustota, vodní hodnota a zásoba vody ve sněhové pokrývce (SWE) TEPELNÉ VLASTNOSTI Měrné teplo Latentní teplo Tepelná kvalita Tepelná vodivost Cold content Albedo MĚŘENÍ SNĚHU VÝVOJ SNĚHOVÉ POKRÝVKY Vývoj sněhu Energetická bilance MODELOVÁNÍ TÁNÍ SNĚHU Energy Balance model Degree-Day model MĚŘENÍ NA EXPERIMENTÁLNÍM POVODÍ MODRAVA POPIS OBLASTI POPIS EXPERIMENTÁLNÍHO POVODÍ METODIKA SBĚR DAT Zima 5/ Zima 6/ Zima 7/ ZPRACOVÁNÍ A VYHODNOCENÍ DAT Degree-Day model VÝSLEDKY VÝSLEDKY KVANTITATIVNÍHO VÝVOJE SNĚHU NA POVODÍ M Celkový vývoj sněhové pokrývky Vliv elevace Rozdíl ve vývoji sněhu na pravém a levém břehu Mokrůvky VÝVOJ HUSTOTY VRSTEV POROVNÁNÍ TEPLOTY, SWE A PRŮTOKU NA POVODÍ M VÝVOJ TEPLOT PŘED PRVNÍM TÁNÍM Jaro

6 6.4.2 Jaro DEGREE-DAY MODEL Denní krok výpočtu Hodinový krok výpočtu DISKUZE DISTRIBUCE SNĚHU NA POVODÍ MODRAVA VÝVOJ HUSTOTY VÝVOJ VRSTEV TEPLOTNÍ NÁROKY PŘED POČÁTKEM TÁNÍ TÁNÍ SNĚHOVÉ POKRÝVKY MODELOVÁNÍ ODTOKU ZÁVĚR SEZNAM POUŽITÉ LITERATURY PŘÍLOHY... 59

7 1 ÚVOD Sezónní sněhová pokrývka představuje v zemích mírného pásu důležitý hydrologický prvek, jehož vliv zasahuje do mnoha sfér. Význam sněhové pokrývky samozřejmě roste přímo úměrně se vzdáleností od rovníku, nadmořskou výškou a podílem sněhových srážek, tedy s dobou jejího trvání a objemem vody v ní zadržené. Z hydrologického hlediska může být sněhová pokrývka považována za rezervoár vody, jehož vlastnosti, kvalitativní i kvantitativní, jsou velmi proměnlivé a úzce závisejí na klimatických poměrech prostředí. Na druhou stranu má v určitém měřítku vliv na klimatické poměry sama sněhová pokrývka. V české kotlině je však role sněhu jednodušší. Jako zdroj vody zde figuruje coby významný faktor při jarních povodních a do jisté míry i jako indikátor v dnešní době tolik diskutovaných klimatických změn. Pro kvalitní analýzu, popřípadě modelování vývoje a tání je nezbytná znalost parametrů sněhové pokrývky, vývoj těchto parametrů a popis jejich závislostí na klimatických poměrech. Skutečně podrobný výzkum vývoje sněhu v Čechách dosud chybí. Z toho důvodu započal v listopadu 27 monitoring kvantitativního i kvalitativního vývoje sněhové pokrývky na šumavském povodí Mokrůvky (značeno též jako Modrava 2). Během zimy byla prováděná měření v týdenním intervalu. Parametry sněhu nebyly pozorovány pouze plošně, ale i na úrovni vrstev. Cílem této práce je shrnutí a vyhodnocení dosud získaných výsledků týkající se kvantitativního vývoje sněhové pokrývky a popis pozorovaných závislostí

8 2 GLOBÁLNÍ VÝZNAM SNĚHU Následující kapitoly, týkající se globálního významu sněhu, jsou převzaty a upraveny ze zprávy UNEP, Global outlook for ice & snow, 27. Sníh se vyskytuje převážně na kontinentech severní polokoule, na zamrzlé hladině Severního ledového oceánu a na Antarktidě. Největší rozlohy na severní polokouli, vyjma Arktidy, dosahuje sněhová pokrývka v lednu a to 45 2 km 2. Oproti tomu v srpnu je to pouhých 1 9 km 2, přičemž zůstává zejména v Grónsku, kde ledovec pokrývá asi 85 % celkové rozlohy, tj. 1 8 km 2, a v oblastech horských ledovců (obr.1). Díky takto markantním rozdílům v rozloze během roku je právě sníh zodpovědný za roční i meziroční rozdíly albeda severní polokoule Na jižní polokouli, vyjma 15 5 km 2 rozlohy Antarktidy, zaujímá sněhová pokrývka mnohem menší území, většinou v Andách či Patagonii a na globální klima zde nemá výraznější vliv. Obr.1: Průměrná rozloha sněhové pokrývky (tmavě modrá) a mořského zalednění (světle modrá) na severní polokouli mezi lety 1966 a 25 pro únor a srpen. Tyto rozdíly způsobují významné změny albeda. (Zdroj: Armstrong a Brodzik, 25) Díky vysokému albedu zvyšuje sněhová pokrývka množství slunečního záření odraženého od zemského povrchu. Nízká tepelná vodivost sněhu izoluje zemi a jeho chladný, vlhký povrch ovlivňuje přenos tepla a vlhkosti mezi zemí a atmosférou. Vedle toho má sníh vliv i na pohyb vzduchových mas. Anomálie týkající se sněhové pokrývky - 2 -

9 na severní polokouli během počátku sezóny vedou ke změnám v atmosférické cirkulaci. Podzimní sníh může také ovlivnit klima v sezónním měřítku s dopadem zasahujícím až do následující zimy. Zřejmá je rovněž role sněhu coby citlivého indikátoru regionálních klimatických změn. Realistická simulace sněhové pokrývky v modelech je základem pro kvalitní popis povrchové energetické bilance, pro předpověď zimní akumulace vody a (někdy i celoročního) odtoku. Sníh musí mít samozřejmě vliv i na lidské aktivity. Sezónní sněhová pokrývka je v mnoha horských regionech hlavním zdrojem vody. Na sněhu, jako zdroji vody je závislá více než jedna miliarda lidí (Roger G. Barry et al. in Global outlook for ice & snow, 27). 2.1 SNÍH JAKO EKOLOGICKÝ FAKTOR Během poslední dekády byl díky mnohým experimentům prozkoumán vliv hloubky sněhu a doby jeho trvání na rostlinná společenstva a procesy ekosystémů. Sníh hraje v rámci tepelné regulace dvojí roli. Vysoké albedo redukuje přijaté sluneční záření, sníh navíc funguje jako chladič snižující tepelnou energii atmosféry. To znamená, že přítomnost sněhové pokrývky předchází půdnímu ohřívání a zabraňuje tak biologickým procesům vyžadující teplotu vyšší než o C. Na druhé straně jako účinná izolace drží teplotu půdy blízko bodu mrazu a chrání tak vegetaci před extrémními mrazy. Na podzim však může izolační efekt sněhu na nezmrzlé půdě způsobit dokonce houbovou hnilobu rostlinstva, která může být například pro soba při pozření smrtelná. Tenkou vrstvou sněhu proniká na jaře světlo a umožňuje tak lišejníkům a jehličnatým keřům tundry fotosyntetizovat V oblastech s krátkým vegetačním obdobím to je důležitá adaptace. Rostliny v dutině pod sněhem tak mohou začít růst týdny před zmizením sněhu. Vegetace krytá sněhem je také chráněna před vysycháním a před rozřezáním tkání ledovými krystaly. Z tohoto důvodu je výška rostlin často shodná nebo korelující s výškou sněhu. V obou typech sněhové pokrývky, sezónní i stálé na ledovcích se může vyskytovat relativně bohaté a různorodé zastoupení mikroorganismů, včetně řas, které mohou sníh zabarvit do červena, modra nebo zelena, bakterií, hub, rozsivek, virů, vířníků či želvušek. Na malém subantarktickém ostrově Signy bylo zjištěno kolem 5 mikroorganismů v 1 mm 3 barevného sněhu a 1 až 2 jedinci ve - 3 -

10 stejném objemu čistého sněhu. Přítomnost organického materiálu snižuje albedo, lokálně zvyšuje rychlost tání a způsobuje tak hromadění živin. Jarní tání sněhu jako zdroje dusíku může mít za následek zvýšený růst mechů, nicméně hromadění chemikálií ve sněhu má na rostlinstvo i negativní účinky. Ačkoliv nahromaděné dusičnanů do jisté míry asimilují mechy a podobné rostliny pod vrstvou sněhu, ve vysokých koncentracích způsobují dusičnany a sírany fyziologické poškození rostlin. Stejně jako má sníh vliv na vegetaci, je vegetace jedním z hlavních faktorů ovlivňující dynamiku sněhu. Vítr může přesunout až 7 % sněhu v alpínském pásmu, stejně jako v polárních oblastech či stepích. Stromy a vysoké keře redukují rychlost větru a tím ovlivňují distribuci sněhu na zemi. Hustý jehličnatý les může zachytit až 6 % sněhu, přičemž se sníh díky odpaření a větru vůbec nemusí dostat na zem. Vegetace ovlivňuje i množství srážek a poměr tání. Stromy a keře působí na albedo například smrk černý pohlcuje až 95 % příchozího záření. Přítomnost lesního krytu zpravidla zpomaluje rychlost tání, až trojnásobně, protože snižuje přísun radiace a rychlost větru, zatímco keřový pokryv rychlost tání mírně zvětšuje. Sníh pod keřovitým krytem je totiž hlubší s menší hustotou, což redukuje přenos tepla přes vrstvu sněhu a zvyšuje teplotu půdy vzhledem k volné ploše o 2 o C. Na jaře, když začne sníh tát, mizí díky rozdílnému albedu vegetace a sněhu nejdříve kolem rostlin. 2.2 VLIV ZMĚN SNĚHOVÉ POKRÝVKY NA EKOSYSTÉMY Vliv na vegetaci má zejména délka trvání a hloubka sněhu. Doba výskytu ovlivňuje produktivitu ekosystémů. Pro oblasti sezónní sněhové pokrývky určuje doba bez sněhu vegetační období rostlin. V alpínském pásmu klesá produktivita ekosystému o 3 % každý den, o který se tání zpozdilo. Oproti tomu je vliv podzimních dnů bez sněhu, o které se teoreticky prodlužuje vegetační doba, na produkci ekosystému menší, zejména díky nižšímu úhlu dopadajícího světla a nižší potenciální produktivitě rostlin. Vliv zvýšené sněhové pokrývky na ekosystémy zkoumal na Aljašce Wahren a kol. (25 in Global outlook for ice & snow, 27). Zjistil, že silnější sněhová pokrývka má na vegetaci větší vliv než experimentálně zvýšené letní teploty, částečně proto, že dobře izolující pokrývka způsobuje větší ohřívání půdy než to, které způsobuje zvýšená teplota vzduchu. V subarktickém pásmu způsobila experimentálně zdvojnásobená - 4 -

11 vrstva sněhu zvýšení teploty půdy a velmi se potom zvýšil růst rašeliníku. Vliv na ekosystémy má i četnost zimního tání, které dramaticky ovlivňuje strukturu sněhu a snižuje tak jeho izolační schopnost, čímž dochází k ohrožení některých druhů. Opětovným zmrznutím sněhu vznikají ledové vrstvy, které mohou fungovat jako bariéry před býložravci jako je pižmoň východní, snažícími se dostat k lišejníkům a další potravě, což v případě sobů značně ovlivňuje jejich zdraví a může rozhodovat o jejich přežití. Ledové vrstvy možná také zabraňují difůzi organických sloučenin, díky nimž sobi pátrají po potravě. 2.3 VLIV SNĚHU NA VODNÍ ZDROJE Sněhová pokrývka je v horských regionech rozhodujícím zdrojem vody, sloužící téměř jedné šestině obyvatel Země pro potřeby domácího, zemědělského a průmyslového užití. Velká část měst a zemědělské produkce aridního amerického západu a centrální Asie velmi závisí (75 8 %) na vodě z tání sněhu. Voda z tajícího sněhu je hnací silou pro hydroelektrárny, zejména na západě USA, v Kanadě a Evropě. Dřívější tání sněhu na západě Spojených států například posunulo o jeden až čtyři týdny odtok z horských řek a období nízkých letních stavů. 2.4 VLIV SNĚHU NA ROSTLINNOU PRODUKCI Vliv sněhu na vegetaci se samozřejmě vztahuje i na zemědělské rostliny. Postupné změny ve sněhové pokrývce a extrémní sněhové události mohou mít silné dopady na začátek i konec vegetačního období. Obvykle mizí sníh na jaře ještě před jejím začátkem, pokud se ale objeví během vegetačního období, může izolovat plodiny od chladného vzduchu, nebo rostliny polámat. Brzký podzimní sníh zase komplikuje sklizeň. V dlouhodobých změnách distribuce sněhu a jeho vlivu na vodní bilanci není vyloučena změna vegetačního typu a tím pádem ekonomická výhodnost pěstování určitých plodin

12 3 ROZOB LITERATURY 3.1 FYZIKÁLNÍ VLASTNOSTI SNĚHU Dingman (22) popisuje sníh jako zrnité porézní prostřední, sestávající se z ledu a pórů a dále uvádí fyzikální charakteristiky, viz níže. Pokud je teplota sněhu pod bodem tání ledu (tj. o C), obsahují póry pouze vzduch (s vodní párou). Při teplotě tání jsou póry vyplněny mimo vzduchu i kapalnou vodou. Pro charakteristiku základních fyzikálních parametrů stanovíme reprezentativní vzorek sněhu o výšce h s a ploše A (obr.2). V je objem s indexy i, w, a, s označujícími ve stejném pořadí led, vodu, vzduch a sníh. Obr. 2: Reprezentativní vzorek sněhu Objem sněhu V s = V i + V w + V a = h s A (1) Pórovitost Pórovitost φ, neboli poměr objemu vzduchu a vody k celkovému objemu sněhu se vypočte podle vztahu: φ = V + V a V s w V = ( 1 φ ) V (2) i s Vlhkost Vlhkost sněhu je definovaná jako obsah kapalné vody v určitém objemu. V = V w θ (3) s Ve sněhu se vyskytuje ve třech formách hygroskopická, gravitační a kapilární. Hygroskopická voda je držena povrchem zrn proti gravitační síle a nepřispívá do odtoku - 6 -

13 z tání, dokud kompletně neroztají krystaly. Kapilární voda je držena povrchovým napětím v kapilárních prostorech kolem ledových krystalů. Tato složka se mění pod vlivem kapilárních sil, ale do odtoku začne přispívat až při tání. Obsah volné vody zahrnuje pouze vodu drženou ve sněhu adsorpcí a vzlínáním. Nezahrnuje vodu pronikající pokrývkou ani vodu vzniklou z tajícího sněhu (Singh a Singh, 21). Další, pro odtok z tajícího sněhu důležitou složkou, je gravitační voda. Tato voda vytéká ze sněhu pod vlivem gravitační síly. Kapalná voda se ve sněhu začne pohybovat poté, co podíl neredukované vody dosáhne asi 3-4 % (Singh a Singh, 21). Vlhkost sněhu je jednou z důležitých informací pro lyžování. Se zvyšující se vlhkostí se zvyšuje odpor sněhu pro skluz. Rozdělení sněhu dle vlhkosti je uvedeno v tabulce 1. Tab. 1: Základní rozdělení vlhkosti sněhu dle Singha a Singha (21). Typ Popis θ Suchý T < o C, malá přilnavost % Vlhký T = o C, voda při 1x zvětšení není patrná, přilnavý < 3 % Mokrý T = o C, voda při 1x zvětšení patrná, při stlačení neodtéká 3 8 % Velmi mokrý T = o C, voda při stlačení odtéká, v pórech převažuje vzduch 8 15 % Rozbředlý T = o C, sníh téměř nasycený vodou, malý podíl vzduchu > 15 % Vodní kapacita sněhu je definovaná jako maximální množství vody, které může sníh v daném stavu udržet proti gravitačním silám. Závisí na výšce, hustotě, množství ledových vrstev. Obvykle má sníh o teplotě o C kapacitu 2 5 % své váhy. Ta závisí také na sklonu svahu. V rovných oblastech může být vyšší než v hornatých, neboť volné odvodňování je na svazích větší (Singh a Singh, 21)

14 3.1.4 Hustota, vodní hodnota a zásoba vody ve sněhové pokrývce (SWE) Hustota, definovaná jako hmotnost na jednotku objemu, je základním parametrem sněhu a ledu, takže: M + M ρ V + ρ V i w i i w w ρ s = = (4) Vs Vs Kombinací rovnic (2) (4) získáme vztah hustoty, obsahu kapalné vody a pórovitost (Dingman, 22): ρ = ( 1 φ) ρ + θ ρ (5) s kde ρ i = 917 kg/m 3 a ρ w = 1 kg/m 3. Vodní hodnota sněhu je bezrozměrné číslo, udávající poměr objemu vody, která by vznikla roztáním sněhu k jeho původnímu objemu (Hrádek a Kuřík, 24). Pro hydrologii je nejdůležitějším údajem o sněhové pokrývce celkový objem vody v ní držené, jako množství, které nakonec vstupuje do hydrologického cyklu. Ten je charakterizován jako zásoba vody ve sněhové pokrývce (Snow Water Equivalent) a lze ho vyjádřit jako výšku vodní hladiny, která by vznikla roztáním veškerého sněhu (Dingman, 22): V h = m m A (6) kde V m je objem vody vzniklý z kompletního tání. Vztah zásoby vody ve sněhu a hustoty lze popsat jako: i w h m ρs = ρ w h s (7) Z rovnice (7) je zřejmé, že pro stanovení SWE je nutné znát hustotu sněhu. V praxi se měří odebráním a následným zvážením vzorku sněhu známého objemu. Dle Singha a Singha (21) se chyby, vzniklé tímto způsobem měření, pohybují od méně než 1 % u vzorků s objemem v řádech 1-3 m 3 do 1 % u vzorků, jejichž objem se pohybuje v řádech 1-4 m 3. Dingman (22) zase uvádí, že na základě studie Goodisona et al. (1981) o 1 % nadhodnocuje hodnotu hustoty většina válců. Vzhledem k tomu, že se v čase mikrostruktura sněhu mění, mění se i jeho hustota. Průměrná hustota různých typů sněhu je uvedena v tabulce

15 Tab. 2: Průměrná hustota různých typů sněhu. Upraveno z Singh a Singh (21). Popis sněhu Hustota (kg/m 3 ) Nový sníh (nízké teploty, bezvětří): 1 3 Nový sníh (po spadnutí v bezvětří): 5 7 Vlhký nový sníh: 1 2 Usedlý sníh: 2 3 Hluboký starý sníh: 2 3 Větrem stlačený sníh: 35 4 Firn: 4 65 Velmi vlhký sníh a firn: 7 8 Ledovec: Proces růstu hustoty v čase může být urychlen silným větrem, vysokými teplotami a střídavým táním. Nicméně dominantním faktorem je čas, takže je možné vyjádřit vztah mezi časem a hustotou (Martinec, 1977 in Singh a Singh, 21): ρ n = ρ (n+1).3 (8) kde je ρ průměrná hustota nového sněhu (obvykle,1 kg/m 3 ) a ρ n je hustota sněhu po n dnech. sněhu. V tabulce 3 je uveden krátký přehled hustoty a pórovitosti u vybraných typů Tab. 3: Vztah hustoty a pórovitosti (WMO, 1992 in Singh a Singh, 21) Nový sníh,1 -, % Starý sníh,2 -, % Firn,4 -, % Ledovec,84 -,917-8 % Následuje výčet a stručný popis fyzikálních parametrů sněhu uvedených Singhem a Singhem (21), jejichž význam je z hlediska hydrologie a modelování menší

16 Tvar zrn Nově formované krystaly sněhu mají hexagonální tvar. Když dopadnou ve větším množství na zem, mění díky metamorfóze svůj tvar a roste hustota. Proto může sněhová pokrývka obsahovat zrna různých tvarů. Velikost zrn Velikost zrn je velmi proměnlivá. Pohybuje se od cca.,2 mm po 5 mm. Minima jsou měřená u čerstvého sněhu, maxima pak u firnu. Tvrdost Tvrdost je základním parametrem mechanických vlastností sněhu. Popisuje odolnost vůči penetraci. Primárně závisí na hustotě a teplotě sněhu. Kvalita sněhu Kvalita sněhu je obdobou obsahu ledu ve sněhu a popisuje se jako podíl váhy ledu ve sněhu a celkové váhy sněhové pokrývky. Hodnoty se pohybují od,95 po,7 a méně při tání. 3.2 TEPELNÉ VLASTNOSTI Teplota sněhu je jedna ze základních a snadno měřitelných vlastností. Je výsledkem celkové energetické bilance. Teplota profilu sněhu se měří v několika výškách a na povrchu je oproti hlubším vrstvám více proměnlivá a mění se v krátkých intervalech Měrné teplo Měrné teplo sněhu je teplo, kterého je zapotřebí ke zvýšení teploty jednotkové hmotnosti sněhu o jeden stupeň. V malém měřítku dochází k výchylkám v závislosti na čistotě a teplotě, ale pro většinu praktických účelů se tyto variace zanedbávají a počítá se s hodnotou 2,934 kj kg -1 o C -1. Měrné teplo suchého sněhu můžeme považovat za stejné jako u ledu stejné hmotnosti, neboť příspěvek vzduchu v pórech je nevýznamný (Singh a Singh, 21)

17 3.2.2 Latentní teplo Latentní teplo tání je definováno jako množství tepla potřebného k přeměně určité váhy sněhu z pevného skupenství do kapalného, beze změny teploty. Latentní teplota sněhu je rovna nebo nižší než latentní teplo ledu, v závislosti na úhrnu kapalné vody ve sněhu. Obvykle se pro sníh při o C stanovuje 333,5 kj/kg při standardním tlaku (Singh a Singh, 21) Tepelná kvalita Tepelnou kvalitu sněhu lze popsat jako poměr tepla potřebného k produkci určitého objemu vody ze sněhu a tepla potřebného k uvolnění téhož objemu vody z čistého ledu při o C. Tento vztah lze vyjádřit jako: L C pt β = s + (9) L L kde L je latentní teplo tání ledu, L s latentní teplo sněhu, T teplota sněhu, C p je měrné teplo sněhu. Tepelná kvalita sněhu se pohybuje mezi,8 1,1 (U.S. Army Corps of Engineers, 1956 in Singh a Singh, 21). Sníh o nižší teplotě bude mít tepelnou kvalitu (kvůli potřebnému množství tepla pro zvýšení teploty na bod tání ) vyšší Tepelná vodivost Tepelná vodivost k c (cal cm -1 sec -1 Singha a Singha (21) ji lze popsat jako: o C -1 ) je míra rychlosti přenosu tepla a dle dt q = kc (1) dz kde q je tepelný tok a dt/dz je tepelný gradient. Tepelná vodivost velmi závisí na hustotě a zrnitostní struktuře sněhové pokrývky. U vlhkého sněhu rovněž závisí na obsahu volné vody. Tepelná vodivost se přímo mění s druhou mocninou hustoty sněhu. Pro sníh o malé hustotě (< 35 kg/m 3 ) stanovil aproximovanou hodnotu k c Abels (1892 in Singh a Singh, 21) jako: k c =,68 ρ s 2 (11)

18 Pro sníh o vyšší hustotě (Kondraťeva, 1945 in Singh a Singh, 21): k c =,85 ρ s 2 (12) Tepelná vodivost čistého ledu je při o C k i =,535 cal cm -1 sec -1 o C -1 a klesá přibližně lineárně s rostoucí teplotou. Tento vztah lze vyjádřit jako: k i =,535 (1,48 T) (13) kde T je teplota ledu v o C. Tepelná vodivost skutečného ledu je kvůli přítomnosti vzduchových bublin trochu nižší Cold content Do češtiny těžko přeložitelný parametr sněhu, je definován jako množství tepla potřebného na jednotku plochy k zvýšení teploty na o C. Obvyklými jednotkami jsou kj/m 2. Pokud dosáhne sníh izotermického stavu o C, nabývá cold content nulové hodnoty (Dingman, 22) Albedo Množství odraženého záření (z celkového dopadajícího) se nazývá albedo. Je jedním z nejdůležitějších parametrů pro modelování tání sněhu. Záleží na výšce Slunce, délce vln, teplotě, výšce sněhové pokrývky a jejím stáří. Přehled hodnot albeda u vybraných povrchů je uveden v tabulce 4. Lze ho definovat jako podíl přicházejícího a odrážejícího záření, což můžeme vyjádřit jako (Singh a Singh, 21): S S r α = (14) Dozier (1981 in Singh a Singh, 21) uvádí, že znečištěný nebo zaprášený sníh má albedo nižší a absorbuje tak více energie než normální sníh. Povrchové znečištění sněhu má větší vliv na spektrum viditelného světla než na infračervenou oblast záření. Dále uvádí, že v závislosti na stavu sněhové pokrývky a výšce Slunce, se může hodnota albeda pohybovat od,29 u velmi porézního, špinavého, vodou nasyceného sněhu do,86 u čistého, kompaktního a suchého, což je výrazně větší interval, než ten, který uvádí Müller (1985, in Singh a Singh, 21) (viz tab. 5). i

19 Tab. 4: Hodnota albeda u vybraných povrchů dle Singha a Singha (21) Povrch albedo Nový sníh,75,95 Starý sníh,4,8 Ledovec,3,4 Poušť,28,35 Louka,16,28 Les,12,25 Půda,8,19 Voda,4,13 Tab. 5: Průměrné albedo jednotlivých typů sněhu dle Müllera (1985 in Singh a Singh, 21). Typ sněhu albedo Nový sníh, suchý,85 Nový sníh, vlhký,8 Starý sníh, suchý, čistý,7 Starý sníh, vlhký, čistý,6 Starý sníh, vlhký, středně znečištěný,5 Starý sníh, vlhký, velmi znečištěný,4 Firn vlhký, velmi znečištěný (bílý),4 Firn vlhký, velmi silně znečištěný (šedý),3-13 -

20 3.3 MĚŘENÍ SNĚHU Vývoj sněhové pokrývky z hydrologického hlediska je monitorován v mnoha zemích světa. Přístup k problematice závisí zejména na rozloze zkoumané oblasti. Základem veškerého modelování jsou kvalitní vstupní údaje. Dingman (22) uvádí mezi způsoby měření sněhu, popřípadě hustoty například sněhoměrné tratě - sněhoměrný válec, sněhoměrné polštáře, akustická měřidla (ultrazvuk), využití Gamma záření, mikrovln, radaru, nebo satelitů. Němec (26) uvádí, že v Čechách měří vodní hodnotu sněhu všechny klimatické i srážkoměrné stanice ČHMÚ jednou týdně (v pondělí) je-li výška sněhu alespoň 4 cm a nepravidelná expediční měření provádějí rovněž pracovníci poboček před předpokládaným táním nebo v době největší sněhové pokrývky. Na základě těchto dat je odhadován celkový objem vody zadržované ve sněhové pokrývce. Tato měření však nemusejí dostatečně reprezentovat celá území, která pod jednotlivé MS patří. Navíc v horských, sněhově nejbohatších oblastech, stanice většinou chybí. Měření z konce zimy 28 ( ) ukázalo na značné rozdíly mezi hodnotami z meteorologické stanice Churáňov (měřeno= m) a experimentálním povodí Mokrůvka (měřeno více než 1,5 m), které reprezentuje vrcholové partie Šumavy. SWE je zřejmě nejdůležitějším hydrologickým parametrem sněhu. Němec (26) odvodil jednoduchou metodu, umožňující spočítat SWE na základě veličin, které jsou k dispozici na srážkoměrné a nejbližší klimatologické stanici. Jako vstupní údaje používá denní úhrn srážek, výšku nového sněhu, celkovou výšku sněhu a průměrný denní tlak vodní páry. Pomocnými proměnnými jsou hustota sněhu, funkce hustoty, přírůstek ze sněhových, vodních srážek a přírůstek z vlhkosti vzduchu. Ke stanovení maximální vodní zásoby ve sněhu se často používají záznamy z totalizátorů. Míra podhodnocení zachycených srážek je částečně kompenzována vyššími ztrátami vlivem sublimace z okolního povrchu. Bohužel v bezlesích oblastech jsou existující měření často nepřesná. Vlivem větru nemusí nahromaděný sníh ve sběrném válci odpovídat skutečným poměrům území a snižuje se tak reprezentativnost. Berezovskaya a Kane (27) se věnovali problematice realistického měření a stanovení SWE. K určení maximální SWE byla tedy použita gravimetrická metoda. Míst pro odběr vzorků bylo stanoveno 115, z každého se odebralo po čtyřech vzorcích

21 pro stanovení hustoty a 5 měření výšky sněhu. To se provádělo zhruba po metru sněhoměrnou latí. Výsledky se porovnávaly s měřením, při kterém se měřila výška stokrát v rostoucí vzdálenosti po,1 m, 1 m, 1 m a 1 km. Výsledná variabilita je znázorněna na obr. 3. Čerchovaná čára značí směrodatnou odchylku, celá čára průměr. Jednotlivé vzdálenosti jsou od sebe barevně odlišeny. Sugiura et al. (26) se věnoval závislosti zásoby vody ve sněhové pokrývce na nadmořské výšce. SWE byla měřena každý únor od 22 do 26 v povodí řeky Tuul v Mongolsku. Výsledný nárůst SWE byl stanoven na,42,14 mm/m, což by na povodí Modrava 2 (M2) při zachování ostatních parametrů znamenalo při největším výškovém rozdílu 13 m maximálně 5,46 13,52 mm. Obr. 3: Variabilita výšky sněhu v závislosti na vzdálenosti měření (upraveno z Berezovskaya a Kane, 26). Další problematikou se zabýval George D. Clyde (1929). Zkoumal změnu hustoty a stratifikace sněhu během tání. V době akumulace sněhu zjistil zřetelné rozdíly hustot v jednotlivých výškách profilu sněhové pokrývky, způsobené i přítomností různě silných ledových vrstev, které zůstali i při teplotách kolem 7,5 o C. Během tání sněhu při teplotách 27 o C pozoroval, jak voda z horní vrstvy teče po jednotlivých vrstvách. Povrch sněhu tál a voda postupně prokapávala do nižších vrstev. Pokud narazila voda

22 na nepropustnou ledovou vrstvu, začala téci laterálně. Během týdne pak vrstvy zmizely a hustota sněhu se napříč celým profilem vyrovnala. Podobnou problematiku řešil J. E. Kay (26). Zabýval se vývojem hustoty sněhu během zimy. Nejnižší hodnota byla zjištěna u hodinu starého prachového sněhu, a to 54 kg/m 3. Během následujících 24 hodin hustota této vrstvy vlivem váhy sněhu hromadícího se nad ní rychle rostla. Během zimy, před táním, vykazovala hustota jednotlivých vrstev sněhu značnou proměnlivost. Největší rozdíl byl měřen mezi čerstvým sněhem na povrchu a spodními vrstvami. Pokud ovšem teploty vzduchu překročily o C, hustota vrchní vrstvy sněhu velmi rychle rostla. Při průměrné denní teplotě 2 o C měřil Kay rychlost změny hustoty až 35 kg/m 3 /den. Dalším závěrem je zjištění shodné s výsledky G. Clyde, že rozdíly v hustotě jednotlivých vrstev sněhu během doby tání mizí. Sníh na úrovni vrstev zkoumali také Singh, Spitzbart a H. Huebl (in Hardy, Albert, Marsh, 1998). Zabývali se časem vzestupu toků v závislosti na procesech které ovlivňují tání sněhu. Ve studii byl vyšetřován vliv existence ledových vrstev ve sněhu na uvolňování vody. Výsledky ukazují, že storativita sněhu se kvůli přítomnosti ledových vrstev může více než zdvojnásobit. V souvislosti s energetickými poměry v regionu (experiment proveden v květnu v oblasti Grossglockneru) se odhaduje, že ledové vrstvy mohou pozdržet vznik odtoku o několik dnů. Dalším faktorem ovlivňující zásobu vody ve sněhu je sublimace. Názory na vliv sublimace se různí. Například West a Knoerr (1959 in Hood a Williams 1999) uvádějí, že sublimací zmizí asi 2 3 % SWE. Jako extrémní kontrast lze uvést hodnoty sublimace v alpínském pásmu, kde Beaty (1975 in Hood a Williams, 1999), dochází k závěru, že se odpařilo 8 % nového sněhu a 6 % sněhu starého během jara ve White Mountains v Kalifornii. Kattelmann a Elder (1991 in Hood a Williams, 1999) stanovili na základě dvouletého měření sublimaci 18 %, což je výsledek blízký i závěru výzkumu Hooda a Williamse

23 3.4 VÝVOJ SNĚHOVÉ POKRÝVKY Vývoj sněhu Dingman (22) shrnuje popis vývoje sněhové pokrývky do několika fází. Doba předcházející době tání, během níž roste SWE, se nazývá období akumulace. Během této periody je celkový energetický vstup záporný a průměrná teplota sněhu klesá. Doba tání sezónní sněhové pokrývky začíná, když je vstup celkové energie kontinuálně kladný a lze jí rozdělit do třech fází. - fáze ohřívání, během níž roste průměrná teplota sněhu na isotermální hodnotu o C Q cc = c ρ h ( T T ) m (15) i w m s Tato rovnice popisuje množství energie, potřebné pro zvýšení teploty sněhu na bod tání, tedy cold content. c i je tepelná kapacita ledu (212 J/kg.K), T s je průměrná teplota sněhu, T m je teplota tání ( o C), h m je SWE a ρ w je hustota vody. - fáze zrání, během které začíná tání, ale voda je zadržována samotným sněhem Q= h ρ L (16) wret Rovnice popisuje energetický vstup nutný pro dokončení fáze zrání. h wret je kapacita sněhu pro zadržení kapalné vody a L je latentní teplo tání. - fáze odtoku, při níž každý další energetický vstup vyvolává odtok ze sněhu w Q m = ( h h ) ρ L (17) m wret w Q m je celkové množství energie potřebné k roztátí sněhu zbývajícího na konci fáze zrání. Množství tepla, které je k dispozici pro tání a změny sněhové pokrývky je vyjádřeno energetickou bilancí popsanou v následující kapitole Energetická bilance Energetickou bilancí sněhu se řídí produkce vody při tání. Celková energie je potom popisovaná jako množství tepla dostupného pro tání. Tato metoda zahrnuje znalosti všech energetických vstupů a výstupů a proto je v modelech často zjednodušována. Na energetickou bilanci má vliv mnoho faktorů, jako je změna oblačnosti či přítomnost vegetace. Singh a Singh (21) vyjadřují celkovou energii ovlivňující sníh jako:

PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/

PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/ gr.j.mareš Podnebí EU-OP VK VY_32_INOVACE_656 PODNEBÍ ČR - PROMĚNLIVÉ, STŘÍDAVÉ- /ČR JE NA ROZHRANÍ 2 HLAV.VLIVŮ/ POČASÍ-AKTUÁLNÍ STAV OVZDUŠÍ NA URČITÉM MÍSTĚ PODNEBÍ-PRŮMĚR.STAV OVZDUŠÍ NA URČITÉM MÍSTĚ

Více

Vliv změn využití pozemků na povodně a sucha. Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i.

Vliv změn využití pozemků na povodně a sucha. Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i. Vliv změn využití pozemků na povodně a sucha Sestavili: L.Kašpárek a A.Vizina VÚV T.G.Masaryka, v.v.i. Jak se měnily rozlohy využití pozemků Příklad pro povodí Labe v Děčíně Data byla převzata ze zdroje:

Více

Vodohospodářské důsledky změny klimatu Voda v krajině. Ing. Martin Dočkal Ph.D. B-613, tel:224 354 640, dockal@fsv.cvut.cz

Vodohospodářské důsledky změny klimatu Voda v krajině. Ing. Martin Dočkal Ph.D. B-613, tel:224 354 640, dockal@fsv.cvut.cz Vodohospodářské důsledky změny klimatu Voda v krajině Ing. Martin Dočkal Ph.D. B-613, tel:224 354 640, dockal@fsv.cvut.cz Jevy ovlivňující klima viz Úvod Příjem sluneční energie a další cykly Sopečná činnost

Více

Voda v krajině. Funkce vody v biosféře: Voda jako přírodní zdroj je předpokladem veškerého organického života na Zemi. Evropská vodní charta

Voda v krajině. Funkce vody v biosféře: Voda jako přírodní zdroj je předpokladem veškerého organického života na Zemi. Evropská vodní charta Voda v krajině Voda jako přírodní zdroj je předpokladem veškerého organického života na Zemi. Eva Boucníková, 2005 Funkce vody v biosféře: Biologická Zdravotní Kulturní Estetická Hospodářská Politická

Více

Kořenový systém plodin jako adaptační opatření na sucho

Kořenový systém plodin jako adaptační opatření na sucho Sucho a degradace půd v České republice - 2014 Brno 7. 10. 2014 Kořenový systém plodin jako adaptační opatření na sucho Vodní provoz polních plodin Ing. Jana Klimešová Ing. Tomáš Středa, Ph.D. Mendelova

Více

ATMOSFÉRA. Plynný obal Země

ATMOSFÉRA. Plynný obal Země ATMOSFÉRA Plynný obal Země NEJDŮLEŽITĚJŠÍ PLYNY V ZEMSKÉ ATMOSFÉŘE PLYN MOLEKULA OBJEM V % Dusík N2 78,08 Kyslík O2 20,95 Argon Ar 0,93 Oxid uhličitý CO2 0,034 Neón Hélium Metan Vodík Oxid dusný Ozon Ne

Více

Mokřady aneb zadržování vody v krajině

Mokřady aneb zadržování vody v krajině Mokřady aneb zadržování vody v krajině Jan Dvořák Říjen 2012 Obsah: 1. Úloha vody v krajině 2. Mokřady základní fakta 3. Obnova a péče o mokřady 4. Mokřady - ochrana a management o. s. Proč zadržovat vodu

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

2. Použitá data, metoda nedostatkových objemů

2. Použitá data, metoda nedostatkových objemů Největší hydrologická sucha 20. století The largest hydrological droughts in 20th century Příspěvek vymezuje a porovnává největší hydrologická sucha 20. století. Pro jejich vymezení byla použita metoda

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

23.6.2009. Zpracována na podkladě seminární práce Ing. Markéty Hanzlové

23.6.2009. Zpracována na podkladě seminární práce Ing. Markéty Hanzlové Petr Rapant Institut geoinformatiky VŠB TU Ostrava Zpracována na podkladě seminární práce Ing. Markéty Hanzlové 23.3.2009 Rapant, P.: DMR XIII (2009) 2 stékání vody po terénu není triviální proces je součástí

Více

Témata k nostrifikační zkoušce ze zeměpisu střední škola

Témata k nostrifikační zkoušce ze zeměpisu střední škola Témata k nostrifikační zkoušce ze zeměpisu střední škola 1. Geografická charakteristika Afriky 2. Geografická charakteristika Austrálie a Oceánie 3. Geografická charakteristika Severní Ameriky 4. Geografická

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

Hodnocení lokálních změn kvality ovzduší v průběhu napouštění jezera Most

Hodnocení lokálních změn kvality ovzduší v průběhu napouštění jezera Most Hodnocení lokálních změn kvality ovzduší v průběhu napouštění jezera Most Ing. Jan Brejcha, Výzkumný ústav pro hnědé uhlí a.s., brejcha@vuhu.cz Voda a krajina 2014 1 Projekt č. TA01020592 je řešen s finanční

Více

Kořenový systém plodin a využití zásoby vody v půdním profilu - význam pro zemědělskou praxi

Kořenový systém plodin a využití zásoby vody v půdním profilu - význam pro zemědělskou praxi Sucho a degradace půd v České republice - 214 Brno 7. 1. 214 Kořenový systém plodin a využití zásoby vody v půdním profilu - význam pro zemědělskou praxi J. Haberle 1, P. Svoboda 1, V. Vlček 2, G. Kurešová

Více

Hydrometeorologický a klimatický souhrn měsíce Meteoaktuality2014 LISTOPAD 2014

Hydrometeorologický a klimatický souhrn měsíce Meteoaktuality2014 LISTOPAD 2014 Hydrometeorologický a klimatický souhrn měsíce Meteoaktuality2014 LISTOPAD 2014 Autorství: Meteo Aktuality 1 Přehled dokumentu: Obsah Obecné shrnutí... 3 1. dekáda:...3 2. dekáda:...3 3. dekáda:...3 Podrobnější

Více

HYDROSFÉRA. Opakování

HYDROSFÉRA. Opakování HYDROSFÉRA Opakování Co je HYDROSFÉRA? = VODNÍ obal Země Modrá planeta Proč bývá planeta Země takto označována? O čem to vypovídá? Funkce vody Vyjmenujte co nejvíce způsobů, jak člověk využíval vodu v

Více

Zeměpis - 6. ročník (Standard)

Zeměpis - 6. ročník (Standard) Zeměpis - 6. ročník (Standard) Školní výstupy Učivo Vztahy má základní představu o vesmíru a sluneční soustavě získává základní poznatky o Slunci jako hvězdě, o jeho vlivu na planetu Zemi objasní mechanismus

Více

Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země

Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země Třída: Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země 1) Zemské těleso je tvořeno vyber správnou variantu: a) kůrou, zrnem a jádrem b) kůrou, slupkou a pláštěm c) kůrou, pláštěm a jádrem

Více

ZKUŠENOSTI ZÍSKANÉ PŘI SLEDOVÁNÍ KLIMATU NA VÝSYPKÁCH NA MOSTECKU

ZKUŠENOSTI ZÍSKANÉ PŘI SLEDOVÁNÍ KLIMATU NA VÝSYPKÁCH NA MOSTECKU ZKUŠENOSTI ZÍSKANÉ PŘI SLEDOVÁNÍ KLIMATU NA VÝSYPKÁCH NA MOSTECKU Jakub Jeništa, Josef Švec 1.ÚVOD: Mostecko je pro někoho jen synonymem měsíční krajiny, pro jiného je čarovným koutem země s přírodními

Více

Téma roku - PEDOLOGIE

Téma roku - PEDOLOGIE Téma roku - PEDOLOGIE Březen Kolik vody dokáže zadržet půda? Zadrží více vody půda písčitá nebo jílovitá? Jak lépe předpovědět povodně nebo velká sucha? Proveďte měření půdní vlhkosti v blízkosti vaší

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Vliv svahu na energetické a exploatační parametry zemědělské dopravy

Vliv svahu na energetické a exploatační parametry zemědělské dopravy Vliv svahu na energetické a exploatační parametry zemědělské dopravy Shrnutí Článek se zabývá vyhodnocením provozních měření traktorových dopravních souprav s cílem stanovit vliv svahu na energetické a

Více

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy

Více

Český hydrometeorologický ústav

Český hydrometeorologický ústav Český hydrometeorologický ústav Průvodce operativními hydrologickými informacemi na webu ČHMÚ Vaše vstupní brána do sítě webových stránek Českého hydrometeorologického ústavu, které mají za úkol informovat

Více

VYHODNOCENÍ PŘEDPOKLÁDANÝCH DŮSLEDKŮ ŘEŠENÍ ZMĚNY NA ZPF A POZEMKY URČENÉ K PLNĚNÍ FUKCE LESA. Úvod

VYHODNOCENÍ PŘEDPOKLÁDANÝCH DŮSLEDKŮ ŘEŠENÍ ZMĚNY NA ZPF A POZEMKY URČENÉ K PLNĚNÍ FUKCE LESA. Úvod VYHODNOCENÍ PŘEDPOKLÁDANÝCH DŮSLEDKŮ ŘEŠENÍ ZMĚNY NA ZPF A POZEMKY URČENÉ K PLNĚNÍ FUKCE LESA Úvod Celkové vyhodnocení předpokládaných důsledků změny č.4 ÚPnSÚ Nové Hutě na zemědělský půdní fond je zpracováno

Více

Hydrometeorologická zpráva o povodňové situaci v Moravskoslezském a Olomouckém kraji ve dnech 26. - 29. 5. 2014

Hydrometeorologická zpráva o povodňové situaci v Moravskoslezském a Olomouckém kraji ve dnech 26. - 29. 5. 2014 V Ostravě, dne 24. 6. 2014 Hydrometeorologická zpráva o povodňové situaci v Moravskoslezském a Olomouckém kraji ve dnech 26. - 29. 5. 2014 1. Zhodnocení meteorologických příčin povodňové situace V závěru

Více

4 ZHODNOCENÍ SPOLEHLIVOSTI A ÚČINNOSTI SYSTÉMU MĚŘENÍ VÝŠKY SNĚHOVÉ POKRÝVKY A JEJÍ VODNÍ HODNOTY

4 ZHODNOCENÍ SPOLEHLIVOSTI A ÚČINNOSTI SYSTÉMU MĚŘENÍ VÝŠKY SNĚHOVÉ POKRÝVKY A JEJÍ VODNÍ HODNOTY 4 ZHODNOCENÍ SPOLEHLIVOSTI A ÚČINNOSTI SYSTÉMU MĚŘENÍ VÝŠKY SNĚHOVÉ POKRÝVKY A JEJÍ VODNÍ HODNOTY 4.1 Měření výšky sněhové pokrývky Měření výšky sněhové pokrývky je méně náročné než měření vodní hodnoty.

Více

DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ

DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ Marcela Mašková, Jaroslav Rožnovský Ústav krajinné ekologie, Vysoká škola zemědělská Brno ÚVOD Základem existence a produkční aktivity rostlin

Více

Posudek k určení vzniku kondenzátu na izolačním zasklení oken

Posudek k určení vzniku kondenzátu na izolačním zasklení oken Posudek k určení vzniku kondenzátu na izolačním zasklení oken Firma StaniOn s.r.o. Kamenec 1685 Bystřice pod Hostýnem Zkušební technik: Stanislav Ondroušek Telefon: 773690977 EMail: stanion@stanion.cz

Více

DUM označení: VY_32_INOVACE_D-2_ObecnyZ_16_Šířkové pásy Země

DUM označení: VY_32_INOVACE_D-2_ObecnyZ_16_Šířkové pásy Země DUM označení: VY_32_INOVACE_D-2_ObecnyZ_16_Šířkové pásy Země Jméno autora výukového materiálu: Mgr. Lenka Bělohlávková Škola: ZŠ a MŠ Josefa Kubálka Všenory Datum (období) vytvoření: únor 2014 Ročník,

Více

Přírodní rizika. Výzkum možných rizik v blízkém okolí Adamova. Autoři: Soňa Flachsová Anna Kobylková. Škola: ZŠ a MŠ Adamov, Komenského 4, 679 04

Přírodní rizika. Výzkum možných rizik v blízkém okolí Adamova. Autoři: Soňa Flachsová Anna Kobylková. Škola: ZŠ a MŠ Adamov, Komenského 4, 679 04 Přírodní rizika Výzkum možných rizik v blízkém okolí Adamova Autoři: Soňa Flachsová Anna Kobylková Škola: ZŠ a MŠ Adamov, Komenského 4, 679 04 1) OBSAH 1) Obsah 2) Úvod 3) Cíl 4) Realizační část 5) Závěr

Více

4 Klimatické podmínky

4 Klimatické podmínky 1 4 Klimatické podmínky Následující tabulka uvádí průměrné měsíční teploty vzduchu ve srovnání s dlouhodobým normálem 1961 1990 v Moravskoslezském kraji. Tabulka 1: Průměrné teploty vzduchu [ C] naměřené

Více

VY_32_INOVACE_04.13 1/8 3.2.04.13 Činnost ledovce, větru Činnost ledovců

VY_32_INOVACE_04.13 1/8 3.2.04.13 Činnost ledovce, větru Činnost ledovců 1/8 3.2.04.13 Činnost ledovců cíl analyzovat činnost ledovců - rozlišit typy ledovců a rozdíl v jejich činnosti - důležitým modelačním prvkem - ve vysokých horách horské ledovec, pevninské ledovce (ledové

Více

Umělá infiltrace na lokalitě Káraný jako nástroj řešení nedostatku podzemní vody pro vodárenské využití

Umělá infiltrace na lokalitě Káraný jako nástroj řešení nedostatku podzemní vody pro vodárenské využití Umělá infiltrace na lokalitě Káraný jako nástroj řešení nedostatku podzemní vody pro vodárenské využití Marek Skalický Národní dialog o vodě 2015: Retence vody v krajině Medlov, 9. 10. června 2015 Časté

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:

Více

Projekt Brána do vesmíru. Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline

Projekt Brána do vesmíru. Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Projekt Brána do vesmíru Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Český hydrometeorologický ústav pobočka Ostrava Hlavní obory činnosti ČHMÚ Meteorologie a klimatologie Ochrana

Více

Techniky detekce a určení velikosti souvislých trhlin

Techniky detekce a určení velikosti souvislých trhlin Techniky detekce a určení velikosti souvislých trhlin Přehled Byl-li podle obecných norem nebo regulačních směrnic detekovány souvislé trhliny na vnitřním povrchu, musí být následně přesně stanoven rozměr.

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_Z678HO_13_02_07

Více

Globální změny klimatu v kostce a jejich vliv na hydrologický režim

Globální změny klimatu v kostce a jejich vliv na hydrologický režim Globální změny klimatu v kostce a jejich vliv na hydrologický režim Člověk působí na své okolí již od pradávna svou schopností přetvářet přírodu ke svému prospěchu nejen usnadnil svou existenci na Zemi

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Infračervená termografie ve stavebnictví

Infračervená termografie ve stavebnictví Infračervená termografie ve stavebnictví Autor: Ing. Marcela POČINKOVÁ, Ph.D., Ing. Olga RUBINOVÁ, Ph.D. Termografické měření a následná diagnostika je metodou pro bezkontaktní a poměrně rychlý průzkum

Více

Globální oteplování máme věřit předpovědím?

Globální oteplování máme věřit předpovědím? Globální oteplování máme věřit předpovědím? prof. Ing. Emil Pelikán,CSc. Ústav informatiky AV ČR, v.v.i. Fakulta dopravní ČVUT v Praze pelikan@cs.cas.cz Obsah Úvod Klimatický systém Skleníkové plyny Změny

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

SOUČASNÉ PROBLÉMY OBNOVY LESŮ A STAV KOŘENOVÉHO SYSTÉMU LESNÍCH DŘEVIN V ZÁVISLOSTI NA MĚNÍCÍM SE PODNEBÍ

SOUČASNÉ PROBLÉMY OBNOVY LESŮ A STAV KOŘENOVÉHO SYSTÉMU LESNÍCH DŘEVIN V ZÁVISLOSTI NA MĚNÍCÍM SE PODNEBÍ SOUČASNÉ PROBLÉMY OBNOVY LESŮ A STAV KOŘENOVÉHO SYSTÉMU LESNÍCH DŘEVIN V ZÁVISLOSTI NA MĚNÍCÍM SE PODNEBÍ VÝCHODISKA Propracované a odzkoušené postupy jsou neúspěšné, ztráty po obnově až 6 %, snižuje se

Více

REPORT - Testy Ashford Formula TÜV / M 01 / 1247 Strana 1

REPORT - Testy Ashford Formula TÜV / M 01 / 1247 Strana 1 REPORT - Testy Ashford Formula TÜV / M 01 / 1247 Strana 1 REPORT - Testy Ashford Formula TÜV / M 01 / 1247 Strana 2 REPORT - Testy Ashford Formula TÜV / M 01 / 1247 Strana 3 Obsah: 1. Cíl, záměr testů

Více

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost

Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Výukový materiál zpracovaný v rámci operačního programu Vzdělávání pro konkurenceschopnost Registrační číslo: CZ.1.07/1. 5.00/34.0084 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada:

Více

PROJEVY GLOBÁLNÍCH ZMĚN V BIOSFÉRICKÉ REZERVACI TŘEBOŇSKO

PROJEVY GLOBÁLNÍCH ZMĚN V BIOSFÉRICKÉ REZERVACI TŘEBOŇSKO ROBUST 2004 c JČMF 2004 PROJEVY GLOBÁLNÍCH ZMĚN V BIOSFÉRICKÉ REZERVACI TŘEBOŇSKO Milena Kovářová Klíčová slova: Mokré Louky, klimatologie, stanice meteorologická, ekosystém mokřadní, teplota vzduchu,

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

MATURITNÍ OTÁZKY ZE ZEMĚPISU

MATURITNÍ OTÁZKY ZE ZEMĚPISU MATURITNÍ OTÁZKY ZE ZEMĚPISU 1) Země jako vesmírné těleso. Země jako součást vesmíru - Sluneční soustava, základní pojmy. Tvar, velikost a složení zemského tělesa, srovnání Země s ostatními tělesy Sluneční

Více

SAMOSTATNÁ PRÁCE. 3) Vysvětli vznik Himalájí?

SAMOSTATNÁ PRÁCE. 3) Vysvětli vznik Himalájí? SAMOSTATNÁ PRÁCE 1) Z uvedených místopisných pojmů sestav hranici mezi Evropou a Asií a to tak, že začneš od nejsevernějšího místa. Marmarské moře, východní úpatí pohoří Ural, Egejské moře, průliv Bospor,

Více

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. 26.2.2010 Mgr.

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. 26.2.2010 Mgr. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 26.2.2010 Mgr. Petra Siřínková ABIOTICKÉ PODMÍNKY ŽIVOTA SLUNEČNÍ ZÁŘENÍ TEPLO VZDUCH VODA PŮDA SLUNEČNÍ

Více

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu Šablona č. 01. 09 ZEMĚPIS Výstupní test ze zeměpisu Anotace: Výstupní test je vhodný pro závěrečné zhodnocení celoroční práce v zeměpise. Autor: Ing. Ivana Přikrylová Očekávaný výstup: Žáci píší formou

Více

V+K stavební sdružení. Dodavatel solárních kolektorů

V+K stavební sdružení. Dodavatel solárních kolektorů V+K stavební sdružení Dodavatel solárních kolektorů Představení společnosti dodavatelem solárních kolektorů Belgicko-slovenského výrobce Teamidustries a Ultraplast. V roce 2002 firmy Teamindustries a Ultraplast

Více

Rožnovský, J., Litschmann, T., (eds): Závlahy a jejich perspektiva. Mikulov, 18. 19. 3. 2015, ISBN 978-80-87577-47-9

Rožnovský, J., Litschmann, T., (eds): Závlahy a jejich perspektiva. Mikulov, 18. 19. 3. 2015, ISBN 978-80-87577-47-9 Rožnovský, J., Litschmann, T., (eds): Závlahy a jejich perspektiva. Mikulov, 18. 19. 3. 2015, ISBN 978-80-87577-47-9 Agroklimatické mapy pro vymezení oblastí se zvýšeným rizikem nedostatku vody v kořenové

Více

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz

Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE. Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Cvičení: APLIKOVANÁ BIOKLIMATOLOGIE Ing. Petr Hlavinka, Ph.D. Dveře č. N5068 (tel.: 3090) phlavinka@centrum.cz Zápočet: -Docházka na cvičení (max. 2 absence) -Vyřešit 3 samostatné úkoly Meteorologická

Více

Slide 1. 2001 By Default! A Free sample background from www.pptbackgrounds.fsnet.co.uk

Slide 1. 2001 By Default! A Free sample background from www.pptbackgrounds.fsnet.co.uk Slide 1 HYDROLOGIE Historický vývoj 1800 1900 období pozorování, měření, experimentů, modernizace a matematizace. 1900 1930 hydrologie začíná existovat jako samostatná věda. 1930 1950 výrazný rozvoj především

Více

Příprava pro lektora

Příprava pro lektora Příprava pro lektora stanoviště aktivita pomůcky 1 typy oblačnosti podle manuálu Globe stanov typy mraků na obrázcích pokryvnost oblohy vytvoř model oblohy s 25% oblačností, použij modrý papír (obloha)

Více

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ

PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ PRŮVZDUŠNOST STAVEBNÍCH VÝROBKŮ Ing. Jindřich Mrlík O netěsnosti a průvzdušnosti stavebních výrobků ze zkušební laboratoře; klasifikační kriteria průvzdušnosti oken a dveří, vrat a lehkých obvodových plášťů;

Více

Matematické modelování proudění podzemních vod a jeho využití ve vodárenské praxi

Matematické modelování proudění podzemních vod a jeho využití ve vodárenské praxi Matematické modelování proudění podzemních vod a jeho využití ve vodárenské prai Naďa Rapantová VŠB-Technická univerzita Ostrava APLIKACE MATEMATICKÉHO MODELOVÁNÍ V HYDROGEOLOGII řešení environmentálních

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Tematický celek: Asie úvod do studia regionální geografie, vodstvo Asie

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Tematický celek: Asie úvod do studia regionální geografie, vodstvo Asie Název: Vodstvo Asie Autor: Mgr. Martina Matasová Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: geografie, ekologie Ročník: 4. (2. ročník vyššího gymnázia) Tematický

Více

Fakulta životního prostředí Katedra biotechnických úprav krajiny

Fakulta životního prostředí Katedra biotechnických úprav krajiny Fakulta životního prostředí Katedra biotechnických úprav krajiny Soubor účelových map k Metodice hospodářského využití pozemků s agrárními valy pro vytváření vhodného vodního režimu a pro snižování povodňového

Více

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018

č.. 6: Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Pedologické praktikum - téma č.. 6: Práce v pedologické laboratoři - půdní fyzika Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Půdní

Více

Hydrogeologie a právo k 1.1. 2012. část 5.

Hydrogeologie a právo k 1.1. 2012. část 5. Hydrogeologie a právo k 1.1. 2012 část 5. Zasakování srážkových vod do půdní vrstvy Právní začlenění: 5, odstavec 3 zákona č. 254/2001 Sb. říká, že: Při provádění staveb nebo jejich změn nebo změn jejich

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.6.2013

Více

Téma: Investice do akcií společnosti ČEZ

Téma: Investice do akcií společnosti ČEZ Matematika a byznys Téma: Investice do akcií společnosti ČEZ Alena Švédová A07146 Investice do akcií společnosti ČEZ ÚVOD Tímto tématem, které jsem si pro tuto práci zvolila, bych chtěla poukázat na to,

Více

Vodní hospodářství krajiny 2 2. cvičení. 143VHK2 V8, LS 2013 2 + 1; z,zk

Vodní hospodářství krajiny 2 2. cvičení. 143VHK2 V8, LS 2013 2 + 1; z,zk Vodní hospodářství krajiny 2 2. cvičení 143VHK2 V8, LS 2013 2 + 1; z,zk Kvantifikace erozních jevů metoda USLE (Universal Soil Loss Equation ) odvozena W.H.Wischmeierem a D.D.Smithem v r. 1965 - používá

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

Dopad klimatických změn na hydrologický režim v ČR

Dopad klimatických změn na hydrologický režim v ČR ČESKÝ HYDROMETEOROLOGICKÝ ÚSTAV Dopad klimatických změn na hydrologický režim v ČR Jan Kubát Český hydrometeorologický ústav kubat@chmi.cz Podklady Climate Change 2001 Impacts, Adaptation and Vulnerability

Více

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby Předmět: ZEMĚPIS Ročník: 6. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo Přesahy a vazby organizuje a přiměřeně hodnotí geografické informace a zdroje dat z dostupných kartografických

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28.

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Plán pokusných prací Agrovýzkumu pro rok 2015-2020 v CHKO Jeseníky

Plán pokusných prací Agrovýzkumu pro rok 2015-2020 v CHKO Jeseníky Plán pokusných prací Agrovýzkumu pro rok 2015-2020 v CHKO Jeseníky A. Činnosti vztahující se k výzkumnému řešení problematiky Obnovené pastvy skotu na lokalitě Švýcárna (plán od 2015 2020) Správa CHKO

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Martin Hanel DOPADY ZMĚN KLIMATU NA NEDOSTATKOVÉ OBJEMY A MOŽNOST JEJICH KOMPENZACE POMOCÍ TECHNICKÝCH OPATŘENÍ

Martin Hanel DOPADY ZMĚN KLIMATU NA NEDOSTATKOVÉ OBJEMY A MOŽNOST JEJICH KOMPENZACE POMOCÍ TECHNICKÝCH OPATŘENÍ Martin Hanel DOPADY ZMĚN KLIMATU NA NEDOSTATKOVÉ OBJEMY A MOŽNOST JEJICH KOMPENZACE POMOCÍ TECHNICKÝCH OPATŘENÍ OSNOVA (1) Probíhající změny klimatu a jejich vliv na hydrologickou bilanci (2) Aktualizace

Více

Der Einfluss von Überkonzentrationen bodennahen Ozons auf die Gesundheit der Waldbaumarten im Osterzgebirge sowie Möglichkeiten der Vorhersage.

Der Einfluss von Überkonzentrationen bodennahen Ozons auf die Gesundheit der Waldbaumarten im Osterzgebirge sowie Möglichkeiten der Vorhersage. Vliv nadlimitních koncentrací přízemního ozónu na zdravotní stav asimilačního aparátu lesních dřevin ve východním Krušnohoří a možnosti jeho prognózování. Der Einfluss von Überkonzentrationen bodennahen

Více

ÚVOD... 4 OBNOVITELNÉ ZDROJE ENERGIE... 5 ENERGIE ZE SLUNCE...

ÚVOD... 4 OBNOVITELNÉ ZDROJE ENERGIE... 5 ENERGIE ZE SLUNCE... 1. ÚVOD... 4 2. OBNOVITELNÉ ZDROJE ENERGIE... 5 3. ENERGIE ZE SLUNCE... 6 PROJEVY SLUNEČNÍ ENERGIE... 6 4. HISTORIE SLUNEČNÍ ENERGIE... 7 5. TYPY VYUŽITÍ SLUNEČNÍ ENERGIE... 8 PŘÍMÉ... 8 NEPŘÍMÉ... 8 VYUŽITÍ

Více

Univerzita Karlova v Praze Přírodovědecká fakulta katedra fyzické geografie a geoekologie Půdní profil

Univerzita Karlova v Praze Přírodovědecká fakulta katedra fyzické geografie a geoekologie Půdní profil Univerzita Karlova v Praze Přírodovědecká fakulta katedra fyzické geografie a geoekologie Půdní profil Pedogeografie a biogeografie Václav ČERNÍK 2. UBZM ZS 2012/2013 1. Základní údaje o lokalitě Název

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje.

1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje. 1. Jak probíhá FOTOSYNTÉZA? Do šipek doplň látky, které rostlina při fotosyntéze přijímá a které uvolňuje. I. 2. Doplň: HOUBY Nepatří mezi ani tvoří samostatnou skupinu živých. Živiny čerpají z. Houby

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009 Význam vody pro globální chlazení Globe Processes Model Verze pro účastníky semináře Cloud 3.12.2009 Jaromír Horák, jaromir.horak@equica.cz, 2009 Role vody v globálních (klimatických) změnách Dík vodě

Více

HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1

HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1 HODNOCENÍ JIHOČESKÉHO KRAJE Z HLEDISKA CEN NEMOVITOSTÍ URČENÝCH PRO BYDLENÍ V NÁVAZNOSTI NA EKONOMICKÝ RŮST REGIONU 1 Ivana Staňková, Tomáš Volek Jihočeská univerzita v Českých Budějovicích, Zemědělská

Více

Vitalita půdy a škody způsobené suchem. Jan Vopravil, Jan Srbek, Jaroslav Rožnovský, Marek Batysta, Jiří Hladík

Vitalita půdy a škody způsobené suchem. Jan Vopravil, Jan Srbek, Jaroslav Rožnovský, Marek Batysta, Jiří Hladík Vitalita půdy a škody způsobené suchem Jan Vopravil, Jan Srbek, Jaroslav Rožnovský, Marek Batysta, Jiří Hladík Výzkumy v oblasti sucha na VÚMOP, v.v.i. Cílený výzkum sucha na VÚMOP, v.v.i. cca od roku

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů

Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů Termodynamika (td.) se obecně zabývá vzájemnými vztahy a přeměnami různých druhů energií (mechanické, tepelné, elektrické, magnetické, chemické a jaderné) při td. dějích. Na rozdíl od td. cyklických dějů

Více

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu

Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU. Definice laktátového prahu Kapitola 7 TESTOVÁNÍ LAKTÁTOVÉHO PRAHU Definice laktátového prahu Laktátový práh je definován jako maximální setrvalý stav. Je to bod, od kterého se bude s rostoucí intenzitou laktát nepřetržitě zvyšovat.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí. Protokol ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní, Ústav techniky prostředí Protokol o zkoušce tepelného výkonu solárního kolektoru při ustálených podmínkách podle ČSN EN 12975-2 Ing. Tomáš Matuška,

Více

Výkonový poměr. Obsah. Faktor kvality FV systému

Výkonový poměr. Obsah. Faktor kvality FV systému Výkonový poměr Faktor kvality FV systému Obsah Výkonový poměr (Performance Ratio) je jedna z nejdůležitějších veličin pro hodnocení účinnosti FV systému. Konkrétně výkonový poměr představuje poměr skutečného

Více

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech.

přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých tendencích a souvislostech. 3 Grafické zpracování dat Grafické znázorňování je velmi účinný způsob, jak prezentovat statistické údaje. Grafy nejsou tak přesné jako tabulky, ale rychle a lépe mohou poskytnou názornou představu o důležitých

Více

Význam vody pro chlazení povrchu Země a minimalizaci klimatických extrémů Globe Processes Model Verze 14

Význam vody pro chlazení povrchu Země a minimalizaci klimatických extrémů Globe Processes Model Verze 14 Význam vody pro chlazení povrchu Země a minimalizaci klimatických extrémů Globe Processes Model Verze 14 Ing. Jaromír Horák, jaromir.horak@equica.cz Prof. Ing. Petr Grau, DrSc, grau08@aquanova.cz léto

Více

RELIÉF A MORFOLOGICKÉ POMĚRY

RELIÉF A MORFOLOGICKÉ POMĚRY RELIÉF A MORFOLOGICKÉ POMĚRY Anna Švejdarová Veronika Špačková ALPY nejvyšší pásmové pohoří v Evropě táhnou se přes Slovinsko, Rakousko, Německo, Francii, Švýcarsko, Lichtenštejnsko, Itálii (Monaco) Rozloha

Více

Martin Svoboda, IV. B

Martin Svoboda, IV. B Martin Svoboda, IV. B Obecné vymezení Regiony v blízkosti zeměpisného pólu Místa za polárním kruhem (vymezen rovnoběžkami 66 33 severní a jižní zeměpisné šířky) Severní polární oblast = Arktida Jižní polární

Více