Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Příloha č. 7 Dodatku ke Smlouvě o službách Systém měření kvality Služeb"

Transkript

1 Příloha č. 7 Dodatku ke Smlouvě o službách Systém měřeí kvality Služeb Dodavatel a Objedatel se dohodli a ahrazeí Přílohy C - Systém měřeí kvality Služeb Obchodích podmíek Smlouvy o službách touto Přílohou č. 7 Systém měřeí kvality Služeb. 1 Obecá ustaoveí 1.1 Nezávislý zalec Nezávislým zalcem podle čláku 5.7 Obchodích podmíek bude osoba, kterou Objedatel ozámí Dodavateli před započetím Zkušebího provozu kterékoliv části Systému výkoového zpoplatěí (dále je Zalec ). Zalec bude poskytovat své služby podle této Přílohy č. 7 a základě smluvího vztahu s Objedatelem ebo Provozovatelem. Náklady a Zalce epoese Dodavatel. Objedatel má kdykoliv právo Zalce odvolat a jmeovat Zalce ového. 1.2 Předmět hodoceí Předmětem hodoceí Zalce bude úspěšosti předepsáí (vyměřeí) mýtých trasakcí. Teto parametr zameá, že systém idetifikuje staoveé proceto ze všech mýtých událostí. 100 % mýtých trasakcí tak odpovídá všem průjezdům vozidel, která podléhají mýté poviosti, mýtým bodem. Při tomto hodoceí bude Zalec posupovat podle metodiky staoveé v této Příloze č Všeobecé podmíky prováděí měřeí kvality Služeb 1) Vozidla s mýtou poviostí mohou hradit mýté za užití zpoplatěých pozemích komuikací v České republice: a) přímo prostředictvím Elektroického systému výkoového zpoplatěí (ESVZ), ebo b) prostředictvím Poskytovatelů EETS a základě údajů zjištěých ESVZ. 2) Měřeí se bude uskutečňovat v určitých kotrolích bodech, tyto kotrolí body mohou být místa koliv a zpoplatěých úsecích pozemích komuikací. 3) Měřeí esmí být závislé a techologiích provozovaých Dodavatelem a Poskytovateli EETS. 4) Měřeí esmí být uskutečňováo v jedom bodě po dobu delší ež 28 kaledářích dí. 5) Měřeí musí zajistit takový počet vzorků, aby vyhodoceí dat o provozu vozidel za účelem kotroly účiosti systému výkoového zpoplatěí pozemích komuikací (ESVZ), bylo založeo ejméě a 100 tis. průjezdech vozidel 6) Pod pojmem i-té měřeí se rozumí měřeí a vybraém (libovolém) bodě zpoplatěé komuikace a ve zvoleém časovém období utém pro sběr (P 100) i vzorků. 7) Vzorek i-tého měřeí (P 100) i musí zahrovat alespoň x hodot (optických zázamů), x 100 8) Vzorek i-tého měřeí (P 100) i se před vyhodoceím dat rozdělí a dílčí podmožiy: a) vozidla evidovaá v ESVZ (P 100) Ki 1

2 b) vozidla evidovaá u ěkterého (-tého) Poskytovatele EETS (P 100) E()i, pro která byl v ESVZ prostředictvím OBE řádě zaevidová alespoň jede případ použití zpoplatěého úseku pozemích komuikací v ČR c) vozidla evidovaá v ESVZ jako vozidla osvobozeá od zpoplatěí 1 (P 100) Xi d) ostatí vozidla (eevidovaá v ESVZ ai u Poskytovatele EETS) (P 100) Zi přitom platí, že: N (P 100 ) i = (P 100 ) Ki + (P 100 ) E()i + (P 100 ) Xi + (P 100 ) Zi (7.1) =1 9) V případě, že totéž vozidlo je současě evidováo v systému ESVZ, vybaveo aktiví OBU a současě též aktiví OBE Poskytovatele EETS, započítá se do příslušé možiy pouze jedou, a to do možiy (P 100) Ki 3 Vyhodocováí dat o provozu vozidel za účelem kotroly účiosti ESVZ Vyhodocováí získaých dat o provozu vozidel za účelem kotroly účiosti ESVZ bude prováděo podle těchto metodických zásad: 1) Předpokládá se stejá účiost celého mýtého systému ESVZ při idetifikováí mýtých trasakcí a všech mýtých bodech, 2) Požadovaá účiost předepsáí mýtých trasakcí esmí být ovlivěa čiostí jiých subjektů ež Dodavatele ai vlivem extrémích klimatických podmíek, 3) Vyhodoceí určí počty vozidel s poviostí platit mýté, která projela i-tým bodem měřeí v daém časovém úseku (P 100) i, a to bez ohledu a další parametry jako jsou emisí třídy ebo kategorie vozidla 4) Hodoceým obdobím je kaledáří měsíc (Měsíc). 3.1 Staoveí účiosti systému výkoového zpoplatěí pozemích komuikací ESVZ Počet předepsaých mýtých trasakcí ESVZ Ze systému ESVZ se zjistí, kolik mýtých trasakcí bylo předepsáo pro i-tý bod měřeí v daém časovém úseku. Počet předepsaých mýtých trasakcí v zjištěých rámci i-tého měřeí (P 100) Ki bude staove podle vzorce: P i = P 1i + P 2i + k P 3i (7.2) 1 20 zákoa č. 13/1997 Sb., o pozemích komuikacích 2

3 P 1i P 2i P 3i k je počet automaticky předepsaých mýtých trasakcí vozidel vybaveých fukčí OBU jedotkou pro i-tý bod měřeí, je počet mýtých trasakcí evidovaých a základě uskutečěých doplatků mýtého v průběhu daého období, vztahujících se k i-tému bodu měřeí je počet vozidel s idetifikovaou registračí začkou a kategorií vozidla ahlášeých mobilímu dohledu (eforcemetu) a prověřeí plěí mýté poviosti v i-tém bodě měřeí, je koeficiet pravdivosti hlášeí mobilímu dohledu (eforcemetu) a je staove jako k = N K (7.3) K N je počet všech vozidel kotrolovaých v hodoceém období mobilím dohledem (eforcemetem) a základě ahlášeí podezřeí z eplěí mýté poviosti, je počet vozidel kotrolovaých v hodoceém období mobilím dohledem (eforcemetem) a základě ahlášeí podezřeí z eplěí mýté poviosti, u kterých bylo takové podezřeí potvrzeo. Výpočet účiosti systému ESVZ Účiost systému za daé období bude staovea jako P i E = 1 (P 100 ) i (7.4) je počet jedotlivých i-tých měřeí v daém období, a (P 100) i je referečí počet vozidel zjištěý při i-tém měřeí Staoveí bousu ebo malusu pro Kosorcium Kapsch Celkové předepsaé mýté v ESVZ Skutečost předpisu mýta za vyhodocovací období je M = M i (7.5) M i je celkový počet mýtých úseků je celkový výběr mýtého a i-tém úseku 3

4 Výpočet výše 95% předpisu mýta v ESVZ Výpočet výše 95% předpisu mýta M 95 pro určeí bousu/malusu Dodavatele se staoví podle vzorce: M 95 = 0,95 M E (7.6) Výpočet bousu pro Kosorcium Kapsch Bous B pro Kosorcium Kapsch vziká při splěí podmíky M > M 95 a rová se B = M M 95 2 (7.7) Výpočet malusu pro Kosorcium Kapsch Poviost doplatit (malus) vziká při splěí podmíky M < M 95 a rová se D = M 95 M (7.8) 3.2 Závěrečé (opravé) hodoceí účiosti ESVZ Předpoklady pro zpracováí Závěrečého opravého hodoceí účiosti ESVZ: 1) Předpokládá se, že ve lhůtě 12 měsíců od koce hodoceého období mohou být uskutečěy doplatky dlužého mýtého 2) Po uplyutí lhůty 12 měsíců od koce hodoceého období bude zovu vyhodocea účiost ESVZ se zřetelem a doplatky dlužého mýtého uskutečěé v této lhůtě. Opraveý počet předepsaých mýtých trasakcí Ze systému ESVZ se zjistí, kolik mýtých trasakcí bylo předepsáo pro daý bod měřeí v daém časovém úseku. Počet předepsaých mýtých trasakcí v zjištěých rámci i-tého měřeí (P 100) i bude staove podle vzorce: P i = P 1i + P 2i + P 2i + k P 3i (7.9) P 1i P 2i je počet automaticky předepsaých mýtých trasakcí vozidel vybaveých fukčí OBU jedotkou pro i-tý bod měřeí, je počet mýtých trasakcí evidovaých a základě uskutečěých doplatků mýtého v průběhu daého období, vztahujících se k i-tému bodu měřeí P 2i je počet mýtých trasakcí evidovaých a základě uskutečěých doplatků mýtého ve lhůtě do 12 měsíců od koce hodoceého období, vztahujících se k i-tému bodu měřeí P 3i k je počet vozidel s idetifikovaou registračí začkou a kategorií vozidla ahlášeých mobilímu dohledu (eforcemetu) a prověřeí plěí mýté poviosti v i-tém bodě měřeí, je koeficiet pravdivosti hlášeí mobilímu dohledu (eforcemetu) 4

5 Opravý výpočet účiosti systému ESVZ Opraveá hodota účiosti systému za daé období bude staovea jako E = 1 P i (P 100 ) i (7.10) je počet jedotlivých i-tých měřeí v daém období. (P 100) i je referečí počet vozidel, staoveý podle vztahu (7.1) Výpočet bousu a malusu Pro výpočet bousu a malusu a základě výsledku opravého výpočtu hodoty účiosti systému ESVZ za daé období se aalogicky použijí ustaoveí odst výše. -Koec dokumetu- 5

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. 2 Obsah abulka hodot vstupujících do výpočtu...4 2 Staoveí možství

Více

523/2006 Sb. VYHLÁŠKA

523/2006 Sb. VYHLÁŠKA 523/2006 Sb. VYHLÁŠKA ze de 21. listopadu 2006, kterou se staoví mezí hodoty hlukových ukazatelů, jejich výpočet, základí požadavky a obsah strategických hlukových map a akčích pláů a podmíky účasti veřejosti

Více

Stanovisko SVJ Vazovova 3228 k dopisu paní Šedivé ze dne

Stanovisko SVJ Vazovova 3228 k dopisu paní Šedivé ze dne V Praze de 27.3 2009 Staovisko SVJ Vazovova 3228 k dopisu paí Šedivé ze de 17.3 2009. V průběhu měsíce úora bylo a ástěce SVJ vyvěšeo ozámeí o pláovaém shromážděí spolu s ávrhem programu a výzvou k vlastíkům

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013

PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013 PŘIJÍMACÍ ŘÍZENÍ PRO ŠKOLNÍ ROK 2012/2013 OSNOVA 1. Práví předpisy 2. Přijímací řízeí 3. Termíy 4. Hodoceí uchazečů 5. Rozhodutí 6. Další kola přijímacího řízeí 7. Zápisový lístek 8. Jedoté přijímací zkoušky

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB

METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB 6 VĚSTNÍK MZ ČR ČÁSTKA 4 METODICKÝ NÁVOD PRO MĚŘENÍ A HODNOCENÍ HLUKU A VIBRACÍ NA PRACOVIŠTI A VIBRACÍ V CHRÁNĚNÝCH VNITŘNÍCH PROSTORECH STAVEB Miisterstvo zdravotictví vydává podle 80 odst., písm. a)

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Code of Conduct Kodex chováni pro společnosti skupiny Ringier. China Czech Republic Germany Hungary Romania Serbia Slovakia Switzerland Vietnam

Code of Conduct Kodex chováni pro společnosti skupiny Ringier. China Czech Republic Germany Hungary Romania Serbia Slovakia Switzerland Vietnam Code of Coduct Kodex chovái pro společosti skupiy Rigier Chia Czech Republic Germay Hugary Romaia Serbia Slovakia Switzerlad Vietam Milí zaměstaci. Etické chováí ašich zaměstaců jiými slovy, vás dává aší

Více

Zhodnocení přesnosti měření

Zhodnocení přesnosti měření Zhodoceí přesosti měřeí 1. Chyby měřeí Měřeím emůžeme ikdy zjistit skutečou (pravou) hodotu s měřeé veličiy. To je způsobeo edokoalostí metod měřeí, měřicích přístrojů, lidských smyslů i proměých podmíek

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Příloha č. 9 PPŽP Metodika projektů generujících příjmy

Příloha č. 9 PPŽP Metodika projektů generujících příjmy Příloha č. 9 PPŽP Metodika projektů geerujících příjmy Účiost: 1. 4. 2010 Verze č. 11.0 ~ 1 ~ 1. Výchozí podmíky - Obecá pravidla Postup u projektů geerujících příjmy vychází z čláku 55 Obecého ařízeí

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Chyby přímých měření. Úvod

Chyby přímých měření. Úvod Chyby přímých měřeí Úvod Př zjšťováí velkost sledovaé velčy dochází k růzým chybám, které ovlvňují celkový výsledek. V pra eestuje žádá metoda měřeí a měřcí zařízeí, které by bylo absolutě přesé, což zameá,

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou 4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,

Více

1. Měření ve fyzice, soustava jednotek SI

1. Měření ve fyzice, soustava jednotek SI 1. Měřeí ve fyzice, soustava jedotek SI Fyzika je vědí obor, který zkoumá zákoitosti přírodích jevů. Pozámka: Získáváí pozatků ve fyzice: 1. pozorováí - sledováí určitého jevu v jeho přirozeých podmíkách,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základy měřeí eelektrických veliči.. Měřicí řetězec Měřicí řetězec (měřicí soustava) je soubor měřicích čleů (jedotek) účelě uspořádaých tak, aby bylo ožě split požadovaý úkol měřeí, tj. získat iformaci

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

13 Popisná statistika

13 Popisná statistika 13 Popisá statistika 13.1 Jedorozměrý statistický soubor Statistický soubor je možia všech prvků, které jsou předmětem statistického zkoumáí. Každý z prvků je statistickou jedotkou. Prvky tvořící statistický

Více

OBSAH. Rozklad... 16 Žaloba... 17

OBSAH. Rozklad... 16 Žaloba... 17 OBSAH Persoálí bezpečost Jak požádat o ozámeí a Vyhrazeé... 4 Jak požádat o osvědčeí fyzické osoby (D, T, PT)... 5 Jak a kdy požádat o vydáí osvědčeí fyzické osoby pro cizí moc NATO, WEU... 7 Osvědčeí

Více

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ

MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová

PE 301 Podniková ekonomika 2. Garant: Eva KISLINGEROVÁ. Téma Metody mezipodnikového srovnávání. Téma 12. Eva Kislingerová PE 30 Podiková ekoomika Garat: Eva KISLINGEROVÁ Téma Metody mezipodikového srováváí Eva Kisligerová Téma Eva Kisligerová Vysoká škola ekoomická v Praze 003 - Mezipodikové srováváí Poprvé 956- koferece

Více

3. Decibelové veličiny v akustice, kmitočtová pásma

3. Decibelové veličiny v akustice, kmitočtová pásma 3. Decibelové veličiy v akustice, kmitočtová ásma V ředchozí kaitole byly defiováy základí akustické veličiy, jako ař. akustický výko, akustický tlak a itezita zvuku. Tyto veličiy ve v raxi měí o moho

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Teorie kompenzace jalového induktivního výkonu

Teorie kompenzace jalového induktivního výkonu Teorie kompezace jalového iduktivího výkou. Úvod Prvky rozvodé soustavy (zdroje, vedeí, trasformátory, spotřebiče, spíací a jistící kompoety) jsou obecě vzato impedace a jejich áhradí schéma můžeme sestavit

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

Finanční řízení podniku. Téma: Časová hodnota peněz

Finanční řízení podniku. Téma: Časová hodnota peněz Fiačí řízeí podiku Téma: Časová hodota peěz Faktor času se ve fiačím řízeí uplatňuje a) při rozhodováí o ivesticích b) při staoveí trží cey majetku podiku c) při ukládáí volých peěžích prostředků d) při

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT

INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT INFLUENCE OF THE ENVIRONMENTAL LEGISLATION ON THE VALUE OF THE ENTERPRISE TECHNICAL EQUIPMENT VLIV ENVIRONMENTÁLNÍ LEGISLATIVY NA HODNOTU TECHNICKÝCH ZAŘÍZENÍ PODNIKU Paseka P., Mareček J. Departmet of

Více

PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ

PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 2 METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ Zpracovatel: PROVOZOVATELÉ DISTRIBUČNÍCH SOUSTAV prosiec

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

U klasifikace podle minimální vzdálenosti je nutno zvolit:

U klasifikace podle minimální vzdálenosti je nutno zvolit: .3. Klasifikace podle miimálí vzdáleosti Tato podkapitola je věováa popisu podstaty klasifikace podle miimálí vzdáleosti, jež úzce souvisí s klasifikací pomocí etaloů klasifikačích tříd. Představíme si

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP

II. METODICKÉ PŘÍKLADY SESTAVENÍ VÝKAZU PAP Istituce i zazameaé operace jsou fiktiví. Ukázkové případy - sezam Případ Vykazující účetí Vykázaé Části I až XIII Straa jedotka (zkráceě až 3) A Půjčka od baky Město, v roce +1, T2 v roce +1, T7, T8,

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů: Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV VÝROBNÍCH STROJŮ, SYSTÉMŮ A ROBOTIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PRODUCTION MACHINES,

Více

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1.

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1. DIM PaS. Připomeutí pozatků ze středí školy Faktoriály a kombiačí čísla základí vzorce: ( )( 2 )...2.! =. 0! = =! ( k)! k! ( )...( k ). + = k! = k + + = k + k + 2 2 ( a + b) = a + a b+ a b +... + a b +...

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Metodika projektů generujících příjmy

Metodika projektů generujících příjmy Příloha: 9 Metodka projektů geerujících příjmy Účost: 23. 1. 2009 Verze č. 6.0 1. Výchozí podmíky - Obecá pravdla Postup u projektů geerujících příjmy vychází z čláku 55 Obecého ařízeí č. 1083/2006 a vyplývá

Více

1 Úvod { }.[ ] A= A A, (1.1)

1 Úvod { }.[ ] A= A A, (1.1) Obsah Obsah... Úvod... 3 Základí pojmy počtu pravděpodobosti... 7. Základí statistické pojmy... 7. Fukce áhodých veliči... 8.3 Charakteristiky áhodých veliči... 0.4 Některá rozděleí pravděpodobosti....5

Více

2. Náhodná veličina. je konečná nebo spočetná množina;

2. Náhodná veličina. je konečná nebo spočetná množina; . Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Teorie chyb a vyrovnávací počet. Obsah:

Teorie chyb a vyrovnávací počet. Obsah: Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí

Více

NAŘÍZENÍ VLÁDY ze dne 15. června 2016, kterým se mění nařízení vlády č. 272/2011 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací. Čl.

NAŘÍZENÍ VLÁDY ze dne 15. června 2016, kterým se mění nařízení vlády č. 272/2011 Sb., o ochraně zdraví před nepříznivými účinky hluku a vibrací. Čl. NAŘÍZENÍ VÁDY ze de 5. červa 206, kterým se měí ařízeí vlády č. 272/20 Sb., o ochraě zdraví před epřízivými účiky hluku a vibrací Vláda ařizuje podle 08 odst. 3 zákoa č. 258/2000 Sb., o ochraě veřejého

Více

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny.

3689/101/13-1 - Ing. Vítězslav Suchý, U stadionu 1355/16, 434 01 Most tel.: 476 709 704 mobil: 605 947 813 E-mail: vit.suchy@volny. 3689/101/13-1 - o ceě : Bytu č. 2654/16 v č. p. 2654 v bloku č. 10 složeém z domů č.p. 2651, 2652, 2653, 2654 a 2655 a pozemcích p. č. 2450, 2449, 2448, 2447 a 2446. včetě příslušeství v katastrálím území

Více

[ jednotky ] Chyby měření

[ jednotky ] Chyby měření Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ

STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Prof. Ig. Albert Bradáč, DrSc. STUDIE METODIKY ZNALECKÉHO VÝPOČTU EKONOMICKÉHO NÁJEMNÉHO Z BYTU A NĚKTERÝCH PRINCIPŮ PŘI STANOVENÍ OBVYKLÉHO NÁJEMNÉHO Z BYTU. ČÁST 2 OBVYKLÉ NÁJEMNÉ Příspěvek vazuje publikovaý

Více

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia

Více

Československá obchodní banka, a. s. EMISNÍ DODATEK - KONEČNÉ PODMÍNKY EMISE DLUHOPISŮ

Československá obchodní banka, a. s. EMISNÍ DODATEK - KONEČNÉ PODMÍNKY EMISE DLUHOPISŮ Českosloveská obchodí baka, a. s. dluhopisový program v maximálím objemu esplaceých dluhopisů 30.000.000.000 Kč s dobou trváí programu 10 let a splatostí kterékoli emise dluhopisů vydaé v rámci programu

Více

9. Měření závislostí ve statistice Pevná a volná závislost

9. Měření závislostí ve statistice Pevná a volná závislost Dráha [m] 9. Měřeí závislostí ve statistice Měřeí závislostí ve statistice se zabývá především zkoumáím vzájemé závislosti statistických zaků vícerozměrých souborů. Závislosti přitom mohou být apříklad

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Obsah: 1 INFORMACE O ZADAVATELI 3 2 PŘEDMĚT PLNĚNÍ VEŘEJNÉ ZAKÁZKY, PŘEDPOKLÁDANÁ HODNOTA VEŘEJNÉ ZAKÁZKY 3 3 DOBA A MÍSTO PLNĚNÍ VEŘEJNÉ ZAKÁZKY 4 4

Obsah: 1 INFORMACE O ZADAVATELI 3 2 PŘEDMĚT PLNĚNÍ VEŘEJNÉ ZAKÁZKY, PŘEDPOKLÁDANÁ HODNOTA VEŘEJNÉ ZAKÁZKY 3 3 DOBA A MÍSTO PLNĚNÍ VEŘEJNÉ ZAKÁZKY 4 4 I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í ZADÁVACÍ DOKUMENTACE ve smyslu 44 zákoa č 137/2006 Sb, o veřejých zakázkách, v platém zěí (dále je ZVZ ) Název veřejé zakázky Tisk a kompletace zkušebí

Více

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Náhodné jevy a pravděpodobnost

Náhodné jevy a pravděpodobnost Lekce Náhodé jevy a pravděpodobost Výklad pravděpodobosti musí začít evyhutelě od základích pojmů Pravděpodobost, velmi zjedodušeě řečeo, pojedává o áhodých jevech (slově vyjádřeých výsledcích áhodých

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí

Více

Programování v Matlabu

Programování v Matlabu Programováí v Matlabu Obsah: m-fukce a skripty; Krokováí laděí) fukcí/skriptů; Podmíěý příkaz; Cyklus s předem zámým počtem opakováí iteračí cyklus); Cyklus řízeý podmíkou Zoltá Szabó FBMI 2007 http://webzam.fbmi.cvut.cz/szabo/matlab/

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

POSUZOVÁNÍ KVALITY SYSTÉMU MHD A JEJÍ KVANTIFIKACE A QUALITY REVIEW IN URBAN PUBLIC TRANSPORT SYSTEM AND ITS QUANTIFICATION

POSUZOVÁNÍ KVALITY SYSTÉMU MHD A JEJÍ KVANTIFIKACE A QUALITY REVIEW IN URBAN PUBLIC TRANSPORT SYSTEM AND ITS QUANTIFICATION POSUZOVÁNÍ KVALITY SYSTÉMU MHD A EÍ KVANTIFIKACE A QUALITY REVIEW IN URBAN PUBLIC TRANSPORT SYSTEM AND ITS QUANTIFICATION Pavel Drdla 1 Aotace: Příspěvek se zabývá problematikou kvality systému MHD, především

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více