Tomáš Karel LS 2013/2014

Rozměr: px
Začít zobrazení ze stránky:

Download "Tomáš Karel LS 2013/2014"

Transkript

1 Tomáš Karel LS 2013/2014

2 Vypočítejte: ?? Tomáš Karel - 4ST201 2

3 n n! 8! k (n k)! k! (8 3)! 3! (5 4321) n n! 10! k (n k)! k! (10 9)! 9! (1) ( ) Tomáš Karel - 4ST

4 Statistické znaky kvantitativní kvalitativní ordinální (pořadové) měřitelné alternativní (binomické) množné Tomáš Karel - 4ST201

5 Pomocí metody dotazování získáme údaje o 10 studentech v této třídě: pohlaví studenta (x 1 ) věk studenta (x 2 ) studovaná fakulta (x 3 ) semestr (x 4 ) založení facebook účtu (x 5 ) počet přátel na facebooku (x 6 ) Tomáš Karel - 4ST201

6 Získaná data uspořádáme do přehledné tabulky tzv. datové matice (viz soubor cviceni_1.xlsx) číslo pohlaví věk fakulta semestr facebook Fb přátelé x 1 x 2 x 3 x 4 x 5 x Tomáš Karel - 4ST201

7 1) Určete typy proměnných x 1 x 6 dle výše uvedeného schématu na jednom z předchozích slidů x 1 pohlaví studenta x 2 věk studenta x 3 studovaná fakulta x 4 semestr ve kterém jste si zapsali tento předmět x 5 založení facebooku x 6 počet přátel na Vašem facebooku 2) Pro proměnnou x 2 věk studenta sestrojte tabulku rozdělení četností (absolutních, relativních, kumulativních absolutních a kumulativních relativních) Tomáš Karel - 4ST201

8 absolutní četnosti n i, i 1,2,..., k relativní četnosti p i ni n kumulativní absolutní četnosti platí: k i1 n i kumulativní relativní četnosti n n p 1n2 1 p platí: k i1 p i Tomáš Karel - 4ST201 8

9 3) Sestrojte tabulku rozdělení četností pro proměnnou x 6 počet facebookových přátel proměnná x 4 nabývá mnoha obměn (tabulka četností i graf by nevypadaly dobře) vhodnější je intervalové rozdělení četností musíme zvolit vhodný počet a šířku intervalu Tomáš Karel - 4ST201

10 Sturgesovo pravidlo pro počet intervalů šířka jednoho intervalu: variační rozpětí: R x max x min Tomáš Karel - 4ST201 10

11 průměr (aritmetický, geometrický, harmonický, kvadratický) modus = hodnota s nejvyšší četností a%-ní kvantil = dělí soubor uspořádaný podle velikosti (od nejnižších hodnot po nejvyšší) na prvních a% hodnot a zbývajících (100-a)% medián = prostřední hodnota v souboru uspořádaném podle velikosti = 50% kvantil dolní kvartil = 25% kvantil horní kvartil = 75% kvantil Tomáš Karel - 4ST201

12 Tomáš Karel - 4ST201

13 Jaký je průměrný počet věk vybraných spolužáků? (vypočtěte dvojím způsobem - nejdříve ze základní tabulky a poté z tabulky rozdělení četností) ze základní tabulky (prostý aritmetický průměr) x n i 1 n x i z tabulky rozdělení četností (vážený aritmetický průměr) x k i1 k i1 x i n n i i Tomáš Karel - 4ST201 13

14 Závodní okruh Sosnová má délku základní trasy 1,075 km. Testovací závodník projel tento okruh celkem třikrát. V prvním kole byla jeho průměrná rychlost 60 km/h, v druhém kole už 72 km/h a ve třetím kole dosáhl průměrné rychlosti 80 km/h. Vypočítejte průměrnou rychlost jezdce za celou dobu jízdy, definovanou jako podíl celkové dráhy za celkový čas s = 1,075 km Tomáš Karel - 4ST201 14

15 t Celkový čas celé jízdy t celk. se skládá ze součtu času prvního okruhu t1, času druhého okruhu t2 a času třetího okruhu t3. Délka prvního okruhu (v km) s 1, v1 60 Průměrná rychlost v prvním okruhu Čas v prvním okruhu 0, 0179h t t 2 s 1, 075 v s 1, v3 80 0, 0143h 0, 0134h Průměrná rychlost za celou jízdu (km/h) Celková ujetá vzdálenost (v km) s 3s 31, 075 celk. vp 70,588 tcelk. t1 t2 t3 0, , , 0134 Celkový čas celé jízdy (hod) Průměrná rychlost cyklisty za celou jízdu je dána prostým harmonickým průměrem průměrných rychlostí za jednotlivé okruhy. Tomáš Karel - 4ST

16 Pro proměnnou x 2 - věk určete následující kvantily: a) medián x 0,5 b) horní kvartil x 0,25 c) dolní kvartil x 0, Tomáš Karel - 4ST201

17 hodnoty uspořádáme podle velikosti každá hodnota se musí vyskytovat tolikrát, kolik je její absolutní četnost výpočet kvantilů: p p dolní kvartil medián horní kvartil n z 100 p n x (1);x (2);x(3);x(4);x(5);x(6);x(7);x(8);x(9);x(10) p 25 x x x0,25 n p 50 x x x0,5 n p 75 x x x0,75 n (2) (3) (5) (6) (7) (8) Tomáš Karel - 4ST201 17

18 Kombinační čísla Četnosti Absolutní Relativní Kumulativní Charakteristiky úrovně Průměr Prostý aritmetický Vážený aritmetický Harmonický/vážený harmonický Medián Kvartily n k n i, i 1,2,..., k x n! ( n k)! k! n i 1 x n n x i1 i n 1 x i ni n k n n... p p absolutní i1 n p i i n 1 2 -relativní x k i1 k i1 x n i n i i k i1 p i 1 medián 21; 21; 22; 22; 22; 23; kvartil 2.kvartil

19 Prostý aritmetický průměr Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 5-ti tazatelů. Každý z těchto pěti souborů dat obsahoval údaje o deseti statistických jednotkách (respondentech - těch, kteří odpověděli). x n i 1 soubor Počet respondentů Průměr v souboru (tis. Kč) 18,5 21,2 24, ,2 n x i Vypočítejte celkovou průměrnou hodnotu ze všech získaných dat.

20 soubor Počet respondentů Průměr v souboru (tis. Kč) 18,5 21,2 24, ,2 Prostý aritmetický průměr n xi i1 18,5 21, 2 24, , 2 109,1 x 21,82 n 5 5

21 Vážený aritmetický průměr x k i1 k i1 x i n n i i Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 5-ti tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný počet údajů o statistických jednotkách (respondentech - těch, kteří odpověděli). soubor Počet respondentů Průměr v souboru (tis. Kč) 18,5 21,2 24, ,2 Vypočítejte celkovou průměrnou hodnotu ze všech získaných dat.

22 soubor Počet respondentů - n i Průměr v souboru x i (tis. Kč) 18,5 21,2 24, ,2 Vážený aritmetický průměr k xn i i i1 18,510 21, , , ,9 x 21, 75 k n i1 i

23 Jak je možné, že průměrná mzda v České republice je 24,5 tis Kč a více jak 60 % obyvatel ČR má plat nižší??? Datový soubor od prvního tazatele: respondent průměr příjem 10,5 11 9,5 11,5 15,5 16, , ,5 n xi i1 10,5 11 9,5 11,5 15,5 16, ,5 63 x 18,5 n 10 Odkaz 1 Odkaz2

24 1) Seřadit podle velikosti respondent průměr příjem 9,5 10, , , ,5 16, ,5 medián průměr 63, ,0 22,5 22,0 21,5 21,0 20,5 20,0 19,5 19,0 18,5 18,0 17,5 17,0 16,5 16,0 15,5 15,0 14,5 14,0 13,5 13,0 12,5 12,0 11,5 11,0 10,5 10,0 9,5 9,0 2) Určit prostřední hodnotu x x 15 15,5 2 2 (5) (6) x0,5 x 15, 25 90% hodnot menších než průměr!!!

25 1) Seřadit podle velikosti respondent průměr příjem 9,5 10, , , ,5 16,5 63,1 18,5 medián průměr 63, ,0 22,5 22,0 21,5 21,0 20,5 20,0 19,5 19,0 18,5 18,0 17,5 17,0 16,5 16,0 15,5 15,0 14,5 14,0 13,5 13,0 12,5 12,0 11,5 11,0 10,5 10,0 9,5 9,0 2) Určit 1. kvartil x 0,25 3) Určit 3. kvartil x 0,75 p p n zp n 1 x0,25 x(3) p p n zp n 1 x0,75 x(8) 16, % hodnot menších než průměr!!!

26 Modus (modální hodnota) je taková hodnota, která je v souboru nejčastěji zastoupena (má největší četnost) modus medián průměr 63, ,0 22,5 22,0 21,5 21,0 20,5 20,0 19,5 19,0 18,5 18,0 17,5 17,0 16,5 16,0 15,5 15,0 14,5 14,0 13,5 13,0 12,5 12,0 11,5 11,0 10,5 10,0 9,5 9,0 Průměr 18,5 tis Kč průměrná hodnota Modus 16,5 tis Kč nejčastěji zastoupená hodnota Medián 15,25 tis Kč prostřední hodnota

27 Rozptyl směrodatná odchylka variační koeficient variační rozpětí Rozklad rozptylu vnitroskupinový rozptyl meziskupinový rozptyl Vlastnosti rozptylu

28 Sociální nůžky Představme si dvě městečka v Jihočeském kraji* Levicov a Pravicov V obou městech bylo provedeno šetření o průměrném měsíčním příjmu obyvatel. Z výzkumu vyšlo, že v obou městech je průměrný měsíční příjem stejný a to 20 tis. Kč. Zdá se, že se v průměru se daří obyvatelům obou měst stejně. Pokud se však podíváme na bodový graf podrobněji v něčem se tato města liší. Přestože průměrný příjem jejich obyvatel je stejný. Jak to ale číselně vyjádřit? průměr Pravicov průměr x 20 tis Kč x 20 tis Kč Levicov

29 Na minulém cvičení jsme se zabývali měrami polohy (průměry, medián, modus), které charakterizovaly hodnotovou úroveň souboru, typickou hodnotu v souboru apod. Často je však zapotřebí kromě typické hodnotové úrovně poznat i to, jak moc se jednotlivé hodnoty souboru od sebe odlišují (tzv. variabilitu souboru Levicov vs. Pravicov). K tomuto účelu slouží právě míry variability. Abychom zachytili vzájemnou odlišnost hodnot souboru, můžeme studovat například to, jak se jednotlivé hodnoty liší od průměru. Abychom dokázali kvantifikovat (číselně vajádřit) tuto vlastnost (tj. odlišnost hodnot souboru od průměru) můžeme zvolit několik různých přístupů. Můžeme např. studovat průměrnou absolutní odchylku hodnot souboru od průměru, nebo průměrnou kvadratickou odchylku hodnot souboru od průměru apod. Právě průměrná kvadratická odchylka hodnot souboru od průměru je základem definice rozptylu jako jedné z nejvýznamnějších měr variability souboru. Existují však samozřejmě i jiné míry variability

30 Absolutní Rozptyl kvadratická odchylka od průměru (Klasický) rozptyl známe všechny hodnoty všech jednotek 1 s (x x) n 2 2 x i n i 1 (v každém městě je pouze 10 obyvatel) Výběrový rozptyl známe pouze některé hodnoty ze souboru (v každém městě je víc jak 10 obyvatel) n s x (xi x) n1 i 1 x x Směrodatná odchylka je druhá odmocnina z rozptylu Variační rozpětí - nejvyšší hodnota mínus nejnižší s nebo s R x x max min Relativní Variační koeficient směrodatná odchylka dělená průměrem s s x x x V x,nebo V x x

31 s (x x) ( ) ( )... n x i n 1 i Pravicov 1... ( ) ( ) ( 11000) ( 11000) ) Směrodatná odchylka: Variační koeficient: Variační rozpětí: 2 6 s x s s V 0, 689 x Rozptyl: x R x x max min x x Rozptyl: 1 1 s (x x) ( ) ( )... n x i n 1 i Levicov ( ) ( ) ( 2000) ( 1000) ) 1, Směrodatná odchylka: Variační koeficient: s s 1, Variační rozpětí: x 2 6 x R x x max min s 1154 x x V x 0, 058

32 Míra variability Pravicov Levicov Výběrový rozptyl 190x10 6 1,333x10 6 Výběrová směrodatná odchylka Variační rozpětí Variační koeficient 0,689 0,058 Míra úrovně (polohy) Pravicov Levicov Průměr Medián Modus

33 Co by se stalo s mírami variability v jednotlivých městech, pokud by Česká republika vstoupila do měnové unie se směným kurzem 26 Kč/EUR?

34 Míra variability Pravicov (CZK) Levicov (CZK) Pravicov (EUR) Levicov (EUR) absolutní Výběrový rozptyl 190x10 6 1,333x Výběrová směrodatná odchylka Variační rozpětí relativní Variační koeficient 0,689 0,058 0,689 0,058 Míra úrovně (polohy) Pravicov (CZK) Levicov (CZK) Pravicov (EUR) Levicov (EUR) Průměr Medián Modus

35 Vypočítejte míry variability (rozptyl, směrodatnou odchylku), jestliže jsou údaje z předešlého příkladu zadány v relativních četnostech a známy pro celé město (=základní rozptyl). Levicov 1/10 obyvatel má příjem Kč 2/10 obyvatel má příjem Kč 4/10 obyvatel má příjem Kč 2/10 obyvatel má příjem Kč zbytek obyvatel má příjem Kč

36 Příjem Kč má: Průměr z relativních četností n x xipi i1 k k Rozptyl z relativních četností sx x x xi pi xi pi i1 i , Směrodatná odchylka s s 1, x 2 6 x

37

38

39

40

41

42

43

44

45

46

47

48

49 Náhodný pokus pokus, jehož výsledek se i při dodržení podmínek mění, tj. jehož výsledek závisí na náhodě (např. hod kostkou). Náhodný jev výsledek náhodného pokusu (např. na kostce padla šestka). Náhodný jev budeme značit většinou velkými písmeny, např. A, B atd. Pravděpodobnost náhodného jevu A budeme označovat jako P(A). Jev jistý (označíme např. jako nebo E) Jev, jež nastane vždy, tj. při každém opakování náhod. pokusu (např. na kostce padne nějaké číslo z 1, 2, 3, 4, 5, 6), P( ) =1 Jev nemožný (označíme jako Ø) Jev, jež nikdy nenastane (např. na kostce padne číslo 7), P(Ø ) = 0 Elementární jev nelze vyjádřit jako sjednocení (viz. další slide) dvou jevů, jež jsou různé od tohoto jevu. Doplňkový (opačný) jev k jevu A (označíme A) Jev jež nastane právě, když nenastane jev A, P( A) = 1 - P( A )

50

51 Jednou hodíme klasickou hrací kostkou. Znázorněte pomocí Vennových diagramů následující jevy: a) jev A spočívající v padnutí šesti teček a jev B spočívající v padnutí sudého počtu teček b) jev A spočívající v padnutí šesti teček a jev B spočívající v padnutí sudého počtu teček dělitelných třemi c) jev C spočívající v padnutí šesti teček, jestliže jev A znamená padnutí sudého počtu teček a jev B padnutí pěti nebo šesti teček d) jev D spočívající v padnutí více než šesti teček (jev jistý značíme E a jev nemožný Ø)

52 a) jev A spočívající v padnutí šesti teček a jev B spočívající v padnutí sudého počtu teček b) jev A spočívající v padnutí šesti teček a jev B spočívající v padnutí sudého počtu teček dělitelných třemi

53 c) jev C spočívající v padnutí šesti teček, jestliže jev A znamená padnutí sudého počtu teček a jev B padnutí pěti nebo šesti teček d) jev D spočívající v padnutí více než šesti teček

54 KLASICKÁ DEFINICE PRAVDĚPODOBNOSTI říká, že pravděpodobnost nějakého jevu je rovna podílu počtu výsledků, jež jsou danému jevu příznivé, ku celkovému (konečnému) počtu výsledků, jež jsou apriori stejně pravděpodobné. STATISTICKÁ DEFINICE PRAVDĚPODOBNOSTI říká, že pravděpodobnost nějakého jevu je relativní četností výskytu tohoto jevu v souboru o velké velikosti (v limitě blížící se k nekonečnu).

55

56

57 Příklad nezávislých jevů při hodu dvěma kostkami: A = na první kostce padne 1, B = na druhé kostce padne 1. Příklad závislých jevů při hodu dvěma kostkami: A = na první kostce padne 1, B = součet na obou kostkách bude 10. Jev je jevem nemožným (nemůže na první kostce padnou 1 a zároveň být součet 10), proto: ) ( ) ( ) ( B P A P B A P ) ( ) ( ) ( B P A P B A P ) ( ) ( ) ( 0 B P A P B A P

58 plocha průniku je při součtu P(A)+P(B) započítána 2x, proto jí musíme 1x odečíst pokud jevy A a B nemají průnik, nazýváme je neslučitelné (disjunktní) pokud jevy A a B jsou neslučitelné, přechází pravidlo o sčítání PP. na: ) ( ) ( ) ( ) ( B A P B P A P B A P ) ( ) ( ) ( B P A P B A P

59 Příklad neslučitelných jevů při hodu jednou kostkou: A = padne liché číslo B = padne sudé číslo 3 3 P(A B) P(A) P(B) Příklad jevů, které nejsou neslučitelné při hodu jednou kostkou: A = padne některé z čísel 1, 2, 3 nebo 4 B = padne 4, 5 nebo P(A B) P(A) P(B) P(A B)

60 Jaká je pravděpodobnost, že při hodu dvěma kostkami padne: a) na obou kostkách šestka b) alespoň jedna šestka c) právě jedna šestka d) žádná šestka e) na obou kostkách sudé číslo Jev A... padla šestka na první kostce Jev B... padla šestka na druhé kostce Jev C... padlo sudé číslo na první kostce Jev D... padlo sudé číslo na druhé kostce

61

62

63

64

65

66 Z publikací Českého statistického úřadu byl převzat počet narozených chlapců a děvčat v letech Vypočítejte přibližnou pravděpodobnost, že narozené dítě bude chlapec a přibližnou pravděpodobnost, že narozené dítě bude děvče. Absolutní četnosti Rok Chlapci Děvčata Celkem Celkem

67 P(chlapec) P(chlapec) 0,514 P(celkem) P(dívka) P(dívka) 0, 486 P(celkem)

68 - proměnná, která v závislosti na náhodě nabývá různých hodnot - její hodnota je jednoznačně určena výsledkem náhodného pokusu, před provedením náhodného pokusu nelze určit její konkrétní hodnotu - podle typu dělíme náhodné veličiny na DISKRÉTNÍ náhodné veličiny SPOJITÉ náhodné veličiny

69 !!! Prosím rozlišujte mezi velkým X pro označení náhodné veličiny a malým x pro označení hodnoty, které veličina X nabyla!!! X = počet koupených piv v El Magicu náhodně vybraným studentem za dnešní večer (středa) (program) x = 0, 1, 2, 3, 4, 5, 6... ; diskrétní náhodná veličina X = počet pivních tácků ve stojánku, x = 2, 3, 4,.. diskrétní náhodná veličina X = počet hostů v plackárně na Blanici, x = 1, 2, 3,... ; diskrétní náhodná veličina X = počet SMS obdržených v průběhu téhle hodiny statistiky, x = 0, 1, 2, 3,... ; diskrétní náhodná veličina

70 Je pravidlo, které každé hodnotě nebo množině hodnot z každého intervalu přiřazuje pravděpodobnost, že NV nabude této hodnoty nebo hodnoty z určitého intervalu Distribuční funkce F(x) Udává pravděpodobnost, že náhodná veličina X nabude hodnoty menší nebo rovné hodnotě x F( x) P( X x) Pravděpodobnostní funkce P(x) Udává pravděpodobnost, že veličina X nabude hodnoty x. P( x) P( X x)

71 Podávají souhrnnou informaci o náhodné veličině Střední hodnota E ( X ) x P( x) x Rozptyl 2 2 D(X) EX E(X) x P(x) xp(x) x x 2 příslušné vztahy pro střední hodnotu a rozptyl náhodné veličiny též ve vzorcích z webu porovnejte s výpočtem rozptylu a průměru ze souboru dat za pomoci relativních četností Průměr x i x i p i Rozptyl s 2 x 2 xi pi xi pi i i 2

72 Nejmenovaný klub umístěný pod studentskou kolejí Vltava očekává v příštím roce čtyři možné zisky (před zdaněním) s následujícími pravděpodobnostmi: -1 mil. Kč s pravděpodobností 0,1 1 mil. Kč s pravděpodobností 0,4 2 mil. Kč s pravděpodobností 0,3 3 mil. Kč s pravděpodobností 0,2 a) Sestrojte pravděpodobnostní a distribuční funkci pro náhodnou veličinu zisk. b) Sestavte graf distribuční funkce. c) Jaká je střední hodnota zisku podniku? Co tato hodnota představuje? d) Jak byste ohodnotili nejistotu, že tento očekávaný zisk bude realizován?

73 Náhodnou veličinu zisk podniku v následujícím roce označme jako X Pravděpodobnostní funkce (zadaná tabulkou) x P(x) 0,1 0,4 0,3 0,2 F(x) 0,1 0,5 0,8 1 Distribuční funkce F(x) 0 x 1 F(x) 0,1 1 x 1 F(x) 0,5 1 x 2 F(x) 0,8 2 x 3 F(x) 1, 0 x 3

74 Distribuční funkce: Spojitá zprava Neklesající F(X) nabývá hodnot z intervalu <0;1>

75 Střední (očekávaná) hodnota zisku podniku E(X) x P(x) ( 1) 0,110, 4 20,3 30, 2 1,5 x Pokud by pravděpodobnosti jednotlivých zisků v zadání platily pro každý rok, a pokud bychom každý rok po mnoho let zaznamenávali zisky podniku, pak by se průměrný zisk za jeden rok blížil k hodnotě 1,5 mil. CZK. Neformálně řečeno: podnik je v průměru ziskový, v průměru očekáváme v dlouhodobém horizontu zisk 1,5 milion CZK za rok.

76 Nejistotu (riziko) spojené s podnikáním můžeme charakterizovat charakteristikami variability např. rozptylem D(X) náhodné veličiny X směrodatnou odchylkou s(x) náhodné veličiny X. Rozptyl D(X) můžeme počítat dvěma ekvivalentními tvary:

77 Po dosazení do druhého výpočetního tvaru získáváme D(X) E(X ) E(X) x P(x) xp(x) x x ( 1).0,1 (1).0, 4 (2).0,3 (3).0, 2 1,5 3,5 2, 25 1, 25 D(X) 1, 25 1,12 2 Pokud by pravděpodobnosti jednotlivých zisků v zadání platily pro každý rok, a pokud bychom každý rok po mnoho let zaznamenávali zisky podniku, a počítali směrodatnou odchylku těchto zisků, potom by se tato odchylka blížila 1,12 milionům CZK (s velmi velkou pravděpodobností). Řečeno jinak: očekávaná typická odchylka zisku od očekávaného zisku 1,5 milion CZK je 1,12 miliony CZK.

78 Výsledné známek z předmětu statistika byly v minulém semestru 2012/2013 popsány následující tabulkou. Výsledná známka celkem Počet studentů Určete přibližně pravděpodobnost, že náhodně vybraný student statistiky z minulého semestru získal výslednou známku: a) jedna b) lepší než tři c) prospěl d) neprospěl

79 Tabulka četností: Výsledná známka celkem Počet studentů => Tabulka rozdělení pravděpodobnosti Výsledná známka celkem pravděpodobnost 0,23 0,33 0,28 0,16 1 A) B) C) D) P(1) P(X 1) 0, 23 P(X 3) 0, 23 0,33 0,56 P(X 3) 0, 23 0,33 0, 28 0,84 P(X 4) 1 P(X 3) 10,84 0,16

80 některé náhodné veličiny mají jistý specifický tvar pravděpodobnostní funkce, resp. pravděpodobnostního rozdělení. Mezi nejznámější modelová pravděpodobnostní rozdělení náhodné veličiny patří např.: diskrétní náhodné veličiny: Alternativní Binomické Poissonovo Hypergeometrické

81 Pokus: Házíme jednou kostkou a potřebujeme, aby padla šestka. Náš pokus má tedy pouze dva výsledky (v jednom náhodném pokusu může nabýt pouze dvou hodnot) x = 1 jev nastane P(X=1)=p16 x = 0 jev nenastane P(X=0)=1-p 56 Pravděpodobnostní funkce střední hodnota rozptyl x 1 x ( x) p (1 p ) zvláštní případ binomického rozdělení pro n=1 (viz. dále) P E(X) p 1/ D(X) p(1 p) 1 0,

82 Udává pravděpodobnost úspěchu v sérii n nezávislých pokusů, z nichž každý pokus má stejnou pravděpodobnost úspěchu п (např. jaká je pravděpodobnost, že v deseti hodech kostkou padne 3x šestka) pravděpodobnostní funkce střední hodnota n 10 x 3 3 x n x 10 3 P(x) p (1 p) 1/ 6 (1 1/ 6) 0,155 E(X) np 101/ 6 1,666 rozptyl 1 1 D(X) n p(1 p) ,

83 Příklady, kdy ho použít: Obecně: výběr s vracením (z malého osudí) nebo výběr bez vracením z velkého osudí Počet úspěchů v sérii n nezávislých pokusů, z nichž každý pokus má stejnou pravděpodobnost úspěchu p. Např. jaká je pravděpodobnost, že z 15 hodů kostkou padne pětkrát trojka.

84 V osudí jsou míčky bílé barvy a míčky černé barvy. Pravděpodobnost vytažení míčku bílé barvy je 1/7. Z osudí vytáhneme náhodně jeden míček, zapíšeme si jeho barvu a míček do osudí vrátíme! Poté taháme znovu, zapíšeme si opět barvu vytaženého míčku, a míček opět do osudí vrátíme atd. Celkem takto vytáhneme s vracením 4 míčky. Určete pravděpodobnost, že a) žádný, b) Jeden c) dva z těchto 4 míčků budou bílé barvy. Poté nalezněte obecný vzorec udávající pravděpodobnost, že při vytažení celkem n míčků s vracením jich x bude bílých, pokud pravděpodobnost vytažení bílého míčku v jednom tahu je p.

85 a) b) c)

86 d)

87 Pravděpodobnost, že se narodí chlapec je 0,515. Jaká je pravděpodobnost, že mezi 7 po sobě narozenými dětmi v porodnici budou: a) první 3 děvčata a další 4 chlapci b) právě 3 děvčata?

88 a) první 3 jsou děvčata a další 4 chlapci 3 x n x 7 3 P(x) p (1 p) 0, 485 (1 0, 485) 0,008 b) právě 3 děvčata n 7 x 3 3 x n x 7 3 P(x) p (1 p) 0, 485 (1 0, 485) 0, 281

89 Udává pravděpodobnost výskytu náhodného jevu v určitém časovém intervalu Mají ho například Veličiny, které představují výskyt x událostí v pevném časovém intervalu, přičemž události musejí nastávat nezávisle od okamžiku poslední události veličiny, které mají rozdělení binomické a zároveň počet pozorování velký (n>30) a п je malé (п<0,1) pravděpodobnostní funkce P( x) x x! e střední hodnota E(X) rozptyl D(X)

90 Poissonovo rozdělení mají např. následující 2 typy náhodných veličin: 1.) Veličiny, které mají rozdělení binomické a zároveň parametr n tohoto binomického rozdělení je velký (n>30) a parametr p tohoto binomického rozdělení je malý (p<0,1). Takováto binomická veličina má přibližně také Poissonovo rozdělení, přičemž pro parametr l tohoto Poissonova rozdělení platí = np. 2.) Veličiny, jež představují výskyt x událostí v pevném časovém (případně plošném, prostorovém) intervalu, pokud známe průměrný počet událostí l, které v tomto intervalu nastávají. Navíc události musejí nastávat nezávisle od okamžiku (případně místa výskytu) poslední události. P( x) x x! e E(X) D(X)

91 Při kontrole účetních dokladů v určitém velkém průmyslovém podniku auditor, že zkušenosti ví, že lze předpokládat formální chyby u 2 % účetních dokladů. Jestliže ze souboru účetních dokladů jich auditor vybere 100, jaká je pravděpodobnost, že a) mezi nimi budou právě 2 chybné? b) ani jeden chybný? c) maximálně dva chybné? Učebnice (2.6 / str. 102, neřešený)

92

93

94

95 Student ze zkušenosti ví, že v době od 15:00 do 19:00 obdrží v průměru 3 SMSky od svých kamarádů. Dnes měl v době od 16:00 do 18:00 rozbitý mobil. a.) Jaká je pravděpodobnost, že mu kamarádi během těchto dvou hodin neposlali žádnou SMS? b.) Jaká je střední hodnota a rozptyl počtu náhodné veličiny počet příchozích SMSek v době od 16:00 do 18:00? Modifikace příkladu z učebnice (2.7 / str. 103, neřešený)

96

97 Na povrchu skla se v průměru vyskytuje 5 kazů na metr čtvereční. Jaká je pravděpodobnost, že na skleněné desce o ploše 2 metry čtvereční bude přesně 7 kazů?

98 Pravděpodobnost, že na 2 m 2 bude přesně 7 kazů je 0,09.

99 máme-li soubor N jednotek, z nichž M má určitou vlastnost a ze souboru vybíráme bez vracení n jednotek ( x výběr s vracením binomické rozdělení) pravděpodobnostní funkce střední hodnota P ( x) M E(X) n N M x N M n x N n rozptyl M M N n D(X) n 1 N N N 1

100 V osudí je 30 míčků modrých a 20 červených. Náhodně vybereme 10 míčků. Jaká je pravděpodobnost, že mezi vybranými míčky bude právě 6 červených, jestliže: a) vybíráme s vracením b) vybíráme bez vracení?

101 a) vybíráme s vracením (-> binomické rozdělení) n x x nx P(x) p (1 p) 1 0,111 b) vybíráme bez vracení? (-> hypergeometrické rozdělení) Výběr bez vracení z malého (!!) osudí. V osudí je M prvků s danou vlastností a N M prvků bez této vlastnosti. Vybíráme celkem n objektů a ptáme se, jaká je pravděpodobnost, že prvků s danou vlastností jsme vybrali právě x. n = 10; N = 50; M = 20; x = 6 M N M x n x P(x) 0,103 N 50 n 10

102

103 Určitý typ součástek je dodáván v sériích po 100 kusech. Při přejímací kontrole je z každé série náhodně vybráno 10 výrobků. Série je přijata, jestliže mezi kontrolovanými výrobky je maximálně 1 zmetek. Jaká je pravděpodobnost, že série bude přijata, jestliže obsahuje 8 zmetků. Kontrola je přitom prováděna tak, že kontrolovaný výrobek je podroben destrukční zkoušce. Jedná se o příklad typu výběr bez vracení z malého osudí => hypergeometrické rozdělení

104

105

106 Příklady spojitých náhodných veličin: X = výška náhodně vybraného studenta, 100 cm < x < 220 cm; X = čas, který náhodně vybraný student stráví denně na facebooku, 0 x 24 hodin; X = doba, kterou musíme čekat na obsluhu u baru v El magicu X = maximální rychlost automobilu, kterou automobil dosáhne na dálnici Jednotlivé náhodné veličiny mají různá pravděpodobnostní rozdělení Jak popsat rozdělení pravděpodobnosti pro spojitou náhodnou veličinu?

107 Distribuční funkce F(x) Distribuční funkce F(x) udává pravděpodobnost, že náhodná veličina X nabude hodnoty menší nebo rovné hodnotě x Hustota pravděpodobnosti f(x) b a f (x)dx P(a X b) F(b) F(a) Hustota pravděpodobnosti f(x) je taková funkce, že pro libovolné a < b platí:

108 Sumace byla u spojité NV zaměněna za integraci, pravděpodobnostní funkce za hustotu pravděpodobnosti Střední hodnota Rozptyl Kvantily (pouze pro spojité NV) 100p% kvantil pravd. rozdělení spojité NV je takové číslo xp pro které platí: p x p P(X x ) f (x)dx F(x ) p p

109 Normální rozdělení Normované normální rozdělení Logaritmicko normální rozdělení Chí-kvadrát Studentovo Fisherovo

110 významné rozdělení v teorii pravděpodobnosti a matematické statistiky, mnohé NV v ekonomii, technice a přírodních vědách mají přibližně normální rozdělení (zákon chyb) aproximují (nahrazují) se jím některá nespojitá rozdělení hustota pravděpodobnosti: střední hodnota: E(X ) f ( x) ( x) e 2p 2 x rozptyl: kvantily: 2 D( X ) x p u p

111 Příklady využití: tělesná výška, teplota, hmotnost chyby měření velikost chodidla

112

113 Jaká je pravděpodobnost, že náhodně vybraný muž bude mít výšku v rozmezí 170 až 185 cm? Předpokládejme přitom, že výška mužů má normální rozdělení s parametry: μ = 180 σ 2 =49 =>

114

115

116

117 Pro výpočet využijeme transformaci na normované normální rozdělení Takto transformovaná veličina se označuje jako U a má normální rozdělení s parametry μ = 0 a σ 2 =1. N(0;1) -> NORMOVANÉ NORMÁLNÍ ROZDĚLENÍ

118

119

120

121

122 Jaká je pravděpodobnost, že náhodně vybraná žena bude mít výšku v rozmezí 160 a 175 cm? Předpokládejme přitom, že výška žen má normální rozdělení s parametry μ = 170 a σ 2 = 36.

123

124

125 Náhodná veličina X má normální rozdělení s parametry μ = 10 a σ 2 = 25. Určete následující pravděpodobnosti a kvantily: a) P(X < 5) b) P(8<X<12) c) P(X >18) d) P(X = 5) e) X 0,975 f) X 0,05

126 Bylo zjištěno, že pevnost v tahu určitého druhu výrobku má normální rozdělení se střední hodnotou 200 jednotek a směrodatnou odchylkou 40 jednotek. Každý výrobek je před expedicí testován a ty výrobky, jejichž pevnost v tahu je větší než 220 jednotek, jsou označovány za velmi kvalitní. Jaká je pravděpodobnost vyrobení velmi kvalitního výrobku?

127 Odchylka rozměru výrobku od požadované hodnoty má normální rozdělení se střední hodnotou 0 mm a se směrodatnou odchylkou 5mm. Jaká musí být šířka intervalu normy (symetrického kolem požadované hodnoty) pro velikost výrobku, aby rozměr výrobku nepřekročil interval s pravděpodobností 0,95?

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve

tazatel 1 2 3 4 5 6 7 8 Průměr ve 15 250 18 745 21 645 25 754 28 455 32 254 21 675 35 500 Počet 110 125 100 175 200 215 200 55 respondentů Rozptyl ve Příklady k procvičení k průběžnému testu: 1) Při zpracování studie o průměrné výši měsíčních příjmů v České republice jsme získali data celkem od 8 tazatelů. Každý z těchto pěti souborů dat obsahoval odlišný

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Vypočítejte: 8 3 10 9?? 29.11.2014 Tomáš Karel - 4ST201 2 n n! 8! 87654321 40320 k (n k)! k! (8 3)! 3! (5 4321) 321 1206 56 n n! 10! 109 8 7 6 5 4 3 2 1 10 k (n k)! k! (10 9)!

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

NÁHODNÁ VELIČINA. 3. cvičení

NÁHODNÁ VELIČINA. 3. cvičení NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Základy popisné statistiky

Základy popisné statistiky Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

Číselné charakteristiky

Číselné charakteristiky . Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch

Více

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura

Více

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:

Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy: Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je

Více

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém

Více

23. Matematická statistika

23. Matematická statistika Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

Statistika pro geografy

Statistika pro geografy Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz).

2. Friesl, M.: Posbírané příklady z pravděpodobnosti a statistiky. Internetový zdroj (viz odkaz). 1 Cvičení z předmětu KMA/PST1 Pro získání zápočtu je nutno mimo docházky (max. 3 absence) uspět minimálně ve dvou ze tří písemek, které budou v průběhu semestru napsány. Součástí třetí písemky bude též

Více

22. Pravděpodobnost a statistika

22. Pravděpodobnost a statistika 22. Pravděpodobnost a statistika Pravděpodobnost náhodných jevů. Klasická pravděpodobnost. Statistický soubor, statistické jednotky, statistické znaky. Četnosti, jejich rozdělení a grafické znázornění.

Více

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1

Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1 Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

(motto: Jestliže má jednotlivec rád čísla, pokládá se to za neurózu. Celá společnost se ale sklání před statistickými čísly. Alfred Paul Schmidt)

(motto: Jestliže má jednotlivec rád čísla, pokládá se to za neurózu. Celá společnost se ale sklání před statistickými čísly. Alfred Paul Schmidt) Popisná státistiká (motto: Jestliže má jednotlivec rád čísla, pokládá se to za neurózu. Celá společnost se ale sklání před statistickými čísly. Alfred Paul Schmidt) 1. Příklad V pobočce banky za celý den

Více

Mnohorozměrná statistická data

Mnohorozměrná statistická data Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná

Více

Popisná statistika. Statistika pro sociology

Popisná statistika. Statistika pro sociology Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky

Více

Jevy a náhodná veličina

Jevy a náhodná veličina Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

2. přednáška - PRAVDĚPODOBNOST

2. přednáška - PRAVDĚPODOBNOST 2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání

TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy

Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte

Více

Teorie pravěpodobnosti 1

Teorie pravěpodobnosti 1 Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako

Více

Metodologie pro ISK II

Metodologie pro ISK II Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

Statistika. zpracování statistického souboru

Statistika. zpracování statistického souboru Statistika zpracování statistického souboru statistický soubor zkoumaná skupina znaky zkoumané informace 1 vyjádřen číslem a jednotkou = kvantitativní znak 2 není = kvalitativní znak statistická jednotka

Více

Renáta Bednárová STATISTIKA PRO EKONOMY

Renáta Bednárová STATISTIKA PRO EKONOMY Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy

Více