7. MECHANIKA TEKUTIN - statika

Rozměr: px
Začít zobrazení ze stránky:

Download "7. MECHANIKA TEKUTIN - statika"

Transkript

1 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné tekutiny mají vnitřní tření mezi částicemi tak zvanou viskozitu. Ideální kapalina: - považujeme ji za.. - je.., - považujeme ji za. Ideální plyn: - považujeme ho za - je.. tekutý, - považujeme ho za Tlak v kapalinách Ze základní školy znáte fyzikální veličiny tlak a hustota: Opakování: tlak: fyzikální vztah: hustota: fyzikální vztah: základní jednotka: kde je síla a je plocha na kterou síla působí základní jednotka: kde je hmotnost tělesa a je objem tělesa tlak vyvolaný vnější silou působící na kapalinu v uzavřené nádobě PASCALŮV ZÁKON S F Podle Pascalova zákona tlak aplikovaný na jakoukoli část uzavřené tekutiny se přenáší do všech ostatních částí. Obrázek 1 Mgr. Lenka Skřivanová 7. - statika 1

2 Použití: hydraulická zařízení (brzdy, hydraulické zvedáky ) S 1 F 1 S F 2 Fyzikální vztah: p Obrázek 2 Tlak vyvolaný vlastní tíhovou silou FG Protože každá částice kapaliny je přitahována tíhovou silou směrem k Zemi, tlak bude vzrůstat s rostoucí hloubkou v kapalině, protože se zvětšuje množství kapaliny nad pozorovaným místem (měřeno od volné hladiny kapaliny!). F h hydrostatický tlak hloubka hustota kapaliny Obrázek 3 S tíhové zrychlení Příklady na procvičení: 1. Písty hydraulického lisu mají obsahy průřezů 4 cm 2 a 320 cm 2. Pokud budeme působit silou 150 N na užší píst, jak velký bude tlak vzniklý v kapalině? Dále určete velikost síly, která zvedá širší píst. 2. Jak velká hydrostatická síla bude působit na dno nádrže v hloubce 3 m, jestliže nádrž má tvar kvádru s rozměry dna 5 m a 10 m? Jak velký je tlak v této hloubce? (obrázek 4) Obrázek 4 Mgr. Lenka Skřivanová 7. - statika 2

3 3. Výzkumná ponorka klesla na dno jezera Bajkal do hloubky m. Jaký je tam tlak? (obrázek 5) 4. Jaká minimální síla je potřeba k zakrytí otvoru z vnitřní strany lodi, který je zcela pod vodou? Otvor je v hloubce 4 m a má plochu 5 cm 2. Obrázek Archimédův zákon Na těleso ponořené do kapaliny působí vodorovné tlakové síly kolmo na těleso (obrázek 6). Tyto síly se vzájemně vyruší, protože jsou stejně velké, ale mají opačný směr. Tlakové síly působící ve svislém směru ovšem mají velikost různou (obrázek 7). Složením těchto dvou sil vznikne výsledná síla působící na těleso. Tato síla míří směrem vzhůru a nazýváme ji vztlaková síla (obrázek 8). Obrázek 8 Obrázek 8 Obrázek 8 Velikost vztlakové síly F V odpovídá velikosti tíhové síly F G, která působí na kapalinu vytlačenou ponořenou částí tělesa. ARCHIMÉDŮV ZÁKON Mgr. Lenka Skřivanová 7. - statika 3

4 Chování těles v kapalině: 1. klesá ke dnu hustota kapaliny. Je-li hustota tělesa větší než Obrázek 9 2. vznáší se Je-li hustota tělesa stejná jako hustota kapaliny. 3. stoupá k volné hladině. Obrázek 10 Je-li hustota tělesa menší než hustota kapaliny. Obrázek 11 - stoupá k hladině a částečně se nad ni vynoří. Při vynořování se zmenšuje objem ponořené části tělesa a tím také vztlaková síla. Mgr. Lenka Skřivanová 7. - statika 4

5 hustota tělesa hustota kapaliny objem celého tělesa Obrázek 12 objem ponořené části tělesa Příklady na procvičení: 5. Ledová kra má tvar čtvercové desky plochy 1 m 2 a šířky 35 cm. Jaká bude minimální hmotnost závaží, které má být položeno doprostřed kry, tak aby byla kra zcela ponořena ve vodě? g závaží z a) mědi b) hliníku je ponořeno do vody. Na které závaží působí větší vztlaková síla: na a) nebo na b)? 7. Naložíme-li na loď náklad o hmotnosti 500 kg, zvětší se jeho ponor o 1 cm. Určete obsah vodorovného průřezu lodi v rovině volné hladiny. 8. Jak velkou tlakovou silou působí na dno bazénu plavec o hmotnosti 84 kg, který je zcela ponořen ve vodě? Průměrná hustota těla je 1050 kg.m -3 při vydechnutí a 1000 kg.m -3 při nadechnutí. Hustota vody je 1000 kg.m -3. Mgr. Lenka Skřivanová 7. - statika 5

6 7 - dynamika 7.4. Rovnice spojitosti Objemový tok Obrázek 13 Rovnice spojitosti (kontinuity) toku Následující dvě rovnice platí pouze pro ideální KAPALINU, protože předpokládáme stálou hustotu (nestlačitelnost). Budeme předpokládat ustálené proudění proudnice se navzájem neprotínají, ani nevrací zpět. = zákon zachování HMOTNOSTI proudící kapaliny hmotnost kapaliny protékající jakýmkoli průřezem za určitý čas musí být stejná Obrázek 14 Příklady na procvičení: Mgr. Lenka Skřivanová 7 - dynamika 6

7 9. Jaký je objemový průtok vody v potrubí s průřezem o obsahu 20 cm 2 při rychlosti proudění 3 m/s. Určete, kolik litrů proteče za 1 minutu. 10. Ropovod IKL přivádí do České republiky a SRN arabskou ropu. Urči, kolik tun může ropovodem za rok přitéci, pokud průměr potrubí je 714 mm a ropa v něm může proudit maximální rychlostí 1,2 m s -1.Hustota přiváděné ropy kolísá okolo 850kg m Potrubím s průřezem o obsahu 100 cm 2 proteče za 10 minut litrů vody. Určete objemový průtok a rychlost proudící kapaliny. 12. Hadicí s průřezem o obsahu 12 cm 2 protéká voda rychlostí 1m/s. Jak velkou rychlostí tryská voda ze zúženého nátrubku, jehož průřez má obsah 0,6 12 cm Z naplno otevřeného kohoutku se hrnec o objemu 3 l napustí za 15 sekund. Urči rychlost, kterou teče během napouštění voda v rozvodu, pokud má trubka průměr 10 mm. Jakou rychlostí teče voda v páteřním rozvodu o průměru 26 mm Bernoulliho rovnice Kapalina v potrubí má energii: 1.. kapalina proudí nenulovou rychlostí existence tlaku uvnitř kapaliny: Tlaková energie Hydrostatický tlak p v manometrické trubici určuje hodnotu tlakové energie E t jednotkového objemu. Obrázek 15 Celková energie proudící kapaliny ve vodorovné trubici je tedy dána součtem kinetické a tlakové energie kapaliny. Mgr. Lenka Skřivanová 7 - dynamika 7

8 Pokud tedy dojde k nárůstu kinetické energie vlivem zúžení trubice, musí dojít k poklesu energie tlakové. Energie se mezi sebou mohou vzájemně přeměňovat, jak je známo ze zákona zachování energie. Obrázek 16 Při zúžení trubice dojde podle rovnice kontinuity k nárůstu rychlosti. Ze zákonu zachování energie dojde v tomto místě k poklesu tlakové energie tedy k poklesu tlaku. Kapalina v druhé manometrické trubici vystoupí do menší výšky (obrázek 14). Bernoulliho rovnice: Součet kinetické a tlakové potenciální energie jednotkového objemu kapaliny se ve vodorovné trubici nemění pro vodorovnou trubici se dvěma průřezy S 1 a S 2 platí: Bernoulliho rovnice tedy představuje zákon zachování mechanické energie proudící ideální kapaliny ve vodorovné trubici. Příklady na procvičení: 14. V páteřním vodovodním rozvodu o průměru 26 mm je udržován tlak 0,3MPa, voda teče rychlostí 0,38 m s -1. Jaký bude tlak v zúženém místě na průměr 3 mm? 15. V ropovodním potrubí o průměru 53 cm je udržován tlak 0,6 MPa, ropa teče rychlostí 1,4m s -1. Jaký bude tlak v zúžení ropovodu na průměr 20 cm? Hustota ropy je průměrně 850kg.m -3. Mgr. Lenka Skřivanová 7 - dynamika 8

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = = MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení... 34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická

Více

Proudění ideální kapaliny

Proudění ideální kapaliny DUM Základy přírodních věd DUM III/-T3-9 Téma: Rovnice kontinuity Střední škola Rok: 0 03 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Proudění ideální kapaliny Rovnice kontinuity toku = spojitosti toku

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

Mechanické vlastnosti kapalin hydromechanika

Mechanické vlastnosti kapalin hydromechanika Mechanické vlastnosti kapalin hydromechanika Vlastnosti kapalných látek nemají vlastní tvar, mění tvar podle nádoby jsou tekuté, dají se přelévat jejich povrch je vodorovný se Zemí jsou téměř nestlačitelné

Více

Příklady - rovnice kontinuity a Bernouliho rovnice

Příklady - rovnice kontinuity a Bernouliho rovnice DUM Základy přírodních věd DUM III/2-T3-20 Téma: Mechanika tekutin a rovnice kontinuity Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Příklady Příklady - rovnice kontinuity a Bernouliho

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes

Více

MECHANICKÉ VLASTNOSTI KAPALIN.

MECHANICKÉ VLASTNOSTI KAPALIN. MECHANICKÉ VLASTNOSTI KAPALIN. VLASTNOSTI KAPALIN A PLYNŮ (opakování) Co už víme? Kapaliny: jsou tekuté hladina je vždy vodorovná tvar zaujímají podle nádoby jsou téměř nestlačitelné jsou snadno dělitelné

Více

FYZIKA Mechanika tekutin

FYZIKA Mechanika tekutin Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. FYZIKA Mechanika

Více

MECHANIKA TEKUTIN TEKUTINY

MECHANIKA TEKUTIN TEKUTINY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 28. 3. 2013 Název zpracovaného celku: MECHANIKA TEKUTIN TEKUTINY Tekutiny jsou společný název pro kapaliny a plyny. Společná vlastnost tekutin

Více

FYZIKA. Hydrodynamika

FYZIKA. Hydrodynamika Brno 2007 1 Jak je z obrázku patrné, původní studijní pomůcka (opora) vznikla v roce 1992 pro opakování středoškolské fyziky. Pro výrobu byl použit autorský systém Genie, jehož výstupem jsou DOSové aplikace.

Více

čas t s 60s=1min rychlost v m/s 1m/s=60m/min

čas t s 60s=1min rychlost v m/s 1m/s=60m/min TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický

Více

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_7_Mechanika kapalin a plynů Ing. Jakub Ulmann 7.1 Vlastnosti kapalin a plynů Základní a společnou vlastností

Více

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?)

(1) Řešení. z toho F 2 = F1S2. 3, 09 m/s =. 3, 1 m/s. (Proč se zde nemusí převádět jednotky?) () Která kapalina se více odlišuje od ideální kapaliny, voda nebo olej? Zdůvodněte Popište princip hydraulického lisu 3 Do nádob A, B, C (viz tabule), které mají stejný obsah S dna, je nalita voda do stejné

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

F - Mechanika kapalin - I

F - Mechanika kapalin - I - Mechanika kapalin - I Určeno jako učební text pro studenty dálkového studia a jako shrnující text pro studenty denního studia. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

Mechanické vlastnosti kapalin a plynů. opakování

Mechanické vlastnosti kapalin a plynů. opakování Mechanické vlastnosti kapalin a plynů opakování 1 Jakým směrem se šíří tlak? 2 Chlapci si zhotovili model hydraulického lisu podle obrázku. Na písty ručních stříkaček působí stejnou silou. Který chlapec

Více

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.7.B.32 EU OP VK. Vztlaková síla

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.7.B.32 EU OP VK. Vztlaková síla Identifikace vzdělávacího materiálu VY_52_INOVACE_F.7.B.32 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Květen 2012 Ročník 7. Předmět Fyzika Vztlaková Název,

Více

Archimédův zákon, vztlaková síla

Archimédův zákon, vztlaková síla Variace 1 Archimédův zákon, vztlaková síla Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vztlaková síla,

Více

8. Mechanika kapalin a plynů

8. Mechanika kapalin a plynů 8. Mechanika kapalin a plynů 8. Vlastnosti kapalin a plynů Základní vlastností je tekutost. Tekutost je, když částečky se po sobě velmi snadno a velmi dobře pohybují (platí to pro tekutiny i plyny). Díky

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

1 Vlastnosti kapalin a plynů

1 Vlastnosti kapalin a plynů 1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají

Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají Mechanika tekutin FyzikaII základní pojmy Mechanika tekutin studuje podmínky rovnováhy a zákonitosti pohybu kapalin, plynů a pevných těles do nich ponořených Vlastnosti: Částice tekutiny jsou od sebe ve

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Katedra fyziky ZÁKLADY FYZIKY I Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2004 5. M E C H A N I K A T E K U T I N

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika

Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika Připravil: Roman Pavlačka, Markéta Sekaninová Hydrostatika OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ

nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ HYDRODYNAMIKA 5.37 Jaké objemové nmožství nafty protéká kruhovým potrubím o průměru d za jednu sekundu jestliže rychlost proudění nafty v potrubí je v. Jaký je hmotnostní průtok m τ. d 0mm v 0.3ms.850kgm

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA V STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA V HYDROMECHANIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

Přípravný kurz - příklady

Přípravný kurz - příklady Přípravný kurz - příklady 1. Cyklista ujel první čtvrtinu cesty rychlostí v 1, další tři čtvrtiny pak rychlostí 20 km/hod, průměrná rychlost na celé dráze byla16 km/hod, jaká byla průměrná rychlost v první

Více

Třecí ztráty při proudění v potrubí

Třecí ztráty při proudění v potrubí Třecí ztráty při proudění v potrubí Vodorovným ocelovým mírně zkorodovaným potrubím o vnitřním průměru 0 mm proudí 6 l s - kapaliny o teplotě C. Určete tlakovou ztrátu vlivem tření je-li délka potrubí

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2.

Příklad 1. Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ p 1 = p 2 F 1 = F 2 S 1 S 2. VII Mechanika kapalin a plynů Příklady označené symbolem( ) jsou obtížnější Příklad 1 Jak velká vztlakovásíla bude zhruba působit na ocelové těleso o objemu 1 dm 3 ponořené do vody? /10 N/ Stručné řešení:

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S MECHANICKÉ VLASTNOSTI PLYNŮ. Co už víme o plynech? Vlastnosti ply nů: 1) jsou snadno stlačitelné a rozpínavé 2) nemají vlastní tvar ani vlastní objem 3) jsou tekuté 4) jsou složeny z částic, které se neustále

Více

Základní škola Kaplice, Školní 226

Základní škola Kaplice, Školní 226 Základní škola Kaplice, Školní 6 DUM VY_5_INOVACE_Y5 autor: Mical Benda období vytvoření: 0 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okru: téma: Člověk a příroda yzika

Více

, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu

, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu 7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Výsledný tvar obecné B rce je ve žlutém rámečku

Výsledný tvar obecné B rce je ve žlutém rámečku Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

11. Mechanika tekutin

11. Mechanika tekutin . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický

Více

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326 PROJEKT

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

Rozumíme dobře Archimedovu zákonu?

Rozumíme dobře Archimedovu zákonu? Rozumíme dobře Archimedovu zákonu? BOHUMIL VYBÍRAL Přírodovědecká fakulta Univerzity Hradec Králové K formulaci Archimedova zákona Archimedův zákon platí za podmínek, pro které byl odvozen, tj. že hydrostatické

Více

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA

2. DOPRAVA KAPALIN. h v. h s. Obr. 2.1 Doprava kapalin čerpadlem h S sací výška čerpadla, h V výtlačná výška čerpadla 2.1 HYDROSTATICKÁ ČERPADLA 2. DOPRAVA KAPALIN Zařízení pro dopravu kapalin dodávají tekutinám energii pro transport kapaliny, pro hrazení ztrát způsobených jejich viskozitou (vnitřním třením), překonání výškových rozdílů, umožnění

Více

Rychlostní a objemové snímače průtoku tekutin

Rychlostní a objemové snímače průtoku tekutin Rychlostní a objemové snímače průtoku tekutin Rychlostní snímače průtoku Rychlostní snímače průtoku vyhodnocují průtok nepřímo měřením střední rychlosti proudu tekutiny v STŘ. Ta závisí vzhledem k rychlostnímu

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo.

Proudění viskózní tekutiny. Renata Holubova renata.holubov@upol.cz. Viskózní tok, turbulentní proudění, Poiseuillův zákon, Reynoldsovo číslo. PROMOTE MSc POPIS TÉMATU FYZKA 1 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubov@upol.cz Popis

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny

Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 1: Určení výtokové rychlosti kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY FYZIKÁLNA 2. ročník šestiletého studia

Více

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

Hmotnost atomu, molární množství. Atomová hmotnost

Hmotnost atomu, molární množství. Atomová hmotnost Hmotnost atomu, molární množství Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv atomové hmotnostní jednotky u: Dohodou bylo stanoveno, že atomová hmotnostní

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_95 Jméno autora: Mgr. Eva Mohylová Třída/ročník:

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles.

[GRAVITAČNÍ POLE] Gravitace Gravitace je všeobecná vlastnost těles. 5. GRAVITAČNÍ POLE 5.1. NEWTONŮV GRAVITAČNÍ ZÁKON Gravitace Gravitace je všeobecná vlastnost těles. Newtonův gravitační zákon Znění: Dva hmotné body se navzájem přitahují stejně velkými gravitačními silami

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Metodický list. Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Sada: 3 Číslo DUM: EU-OPVK-ICT-F1-57 Předmět: Fyzika 7.

Metodický list. Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Sada: 3 Číslo DUM: EU-OPVK-ICT-F1-57 Předmět: Fyzika 7. Příjemce: Základní škola Ruda nad Moravou, okres Šumperk, Sportovní 300, 789 63 Ruda nad Moravou Zařazení materiálu: Metodický list Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Sada:

Více

Výfučtení: Kapaliny aneb Hydročtení

Výfučtení: Kapaliny aneb Hydročtení Výfučtení: Kapaliny aneb Hydročtení Proč studujeme kapaliny? Víc než 70 % povrchu Země tvoří voda. Ta je nezbytnou součástí života na Zemi rostliny, zvířata a ani my bychom bez ní nepřežili. Kapaliny jsou

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

VY_52_INOVACE_2NOV47. Autor: Mgr. Jakub Novák. Datum: Ročník: 7.

VY_52_INOVACE_2NOV47. Autor: Mgr. Jakub Novák. Datum: Ročník: 7. VY_52_INOVACE_2NOV47 Autor: Mgr. Jakub Novák Datum: 10. 9. 2012 Ročník: 7. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Mechanické vlastnosti kapalin Téma: Vztlaková síla

Více

3. TEKUTINY A TERMIKA 3.1 TEKUTINY

3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině

Více

HYDRAULICKÉ ZAŘÍZENÍ

HYDRAULICKÉ ZAŘÍZENÍ METODICKÝ LIST /8 HYDRAULICKÉ ZAŘÍZENÍ Tematický okruh Učivo Ročník Časová dotace Klíčové kompetence MECHANICKÉ VLASTNOSTI KAPALIN HYDRAULICKÉ ZAŘÍZENÍ 7. vyučovací hodiny. Kompetence k učení - pozorováním

Více

Vlastnosti kapalin. Povrchová vrstva kapaliny

Vlastnosti kapalin. Povrchová vrstva kapaliny Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří

Více

FYZIKA 6. ročník 2. část

FYZIKA 6. ročník 2. část FYZIKA 6. ročník 2. část 23_Hmotnost tělesa... 2 24_Rovnoramenné váhy.... 3 25_Hustota... 4 26_Výpočet hustoty látky... 4 27_Výpočet hustoty látky příklady... 6 28_Výpočet hmotnosti tělesa příklady...

Více

Ilustrační animace slon a pírko

Ilustrační animace slon a pírko Disipativní síly Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Určeno pro základní kurz biomechaniky studentů FTVS UK, školní rok 2008/2009 Disipativní síly

Více

Počítačem podporované pokusy z mechaniky

Počítačem podporované pokusy z mechaniky Počítačem podporované pokusy z mechaniky Seminář 28. 6. 2016, Slovanské gymnázium Olomouc Metodická pomůcka pro učitele fyziky, kteří začínají pracovat se soupravou Vernier Pro vybrané pokusy budeme potřebovat

Více

Struktura a vlastnosti kapalin

Struktura a vlastnosti kapalin Struktura a vlastnosti kapalin (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Povrchová vrstva Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny 1 Zařazení mechaniky tekutin 2 Rozdělení tekutin 3 Základní pojmy Tekutina je pojem zahrnující kapaliny a plyny. Je to spojité prostředí, které je homogenní

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

TECHNICKÁ ZAŘÍZENÍ BUDOV 1

TECHNICKÁ ZAŘÍZENÍ BUDOV 1 TECHNICKÁ ZAŘÍZENÍ BUDOV 1 HYDRAULIKA POTRUBÍ, ZÁSOBOVÁNÍ OBJEKTŮ VODOU, VNITŘNÍ VODOVOD, POTŘEBA VODY Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - 1 Učební texty, legislativa normy:

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7

2 Jevy na rozhraní Kapilární tlak Kapilární jevy Objemová roztažnost kapalin 7 Obsah Obsah 1 Povrchová vrstva 1 2 Jevy na rozhraní 3 2.1 Kapilární tlak........................... 4 2.2 Kapilární jevy........................... 5 3 Objemová roztažnost kapalin 7 1 Povrchová vrstva

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

Inovace výuky Fyzika F7/ 10. Barometr. Atmosférický tlak, tlak, teplota vzduchu, barometr, aneroid

Inovace výuky Fyzika F7/ 10. Barometr. Atmosférický tlak, tlak, teplota vzduchu, barometr, aneroid Inovace výuky Fyzika F7/ 10 Barometr Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a příroda Fyzika Mechanické vlastnosti tekutin 7. ročník

Více

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus)

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Očekávané výstupy předmětu

Více

S = 2. π. r ( r + v )

S = 2. π. r ( r + v ) horní podstava plášť výška válce průměr podstavy poloměr podstavy dolní podstava Válec se skládá ze dvou shodných podstav (horní a dolní) a pláště. Podstavou je kruh. Plášť má tvar obdélníka, který má

Více