MEZINÁRODNÍ ROK FYZIKY

Rozměr: px
Začít zobrazení ze stránky:

Download "MEZINÁRODNÍ ROK FYZIKY"

Transkript

1 Brána relatiity oteřená MEZINÁRODNÍ ROK FYZIKY Jan Nootný *, Přírodoědeká fakulta MU, Brno Rok 005 je na einsteinoská ýročí bohatý, ale není pohyby, že za Sětoý rok fyziky byl ybrán předeším pro třietistránkoou prái s nenápadným názem K elektrodynamie pohybujííh se těles [1]. Jako datum jejího zrodu se udáá 30. čeren 1905, kdy ji přijal do tisku jeden z nejýznamnějšíh fyzikálníh časopisů té doby, Annalen der Physik (yšla šak až konem září). Práe i dnes (a možná íe než době sého zniku) působí jako zjeení: zatím málo známý autor tu naráz elku jednoduhými prostředky yřešil klíčoý problém tehdejší fyziky a zbudoal její noé základy. Tak úspěšný prní krok do noého sěta nemá e fyzie obdobu. Pro kantoou teorii byhom obdobnou jedinou reprezentatiní prái jediného autora určitě nenašli a shrnutí obené teorie relatiity z roku 1916 předházelo dlouhé Einsteinoo hledání se slepými uličkami a oklikami. Pokusíme se dalším slanou praí se stoletým odstupem projít a (abyhom užili ýrazu módního e filozofikýh kruzíh) poněkud ji dekonstruoat. Zamyslíme se pak také nad tím, zda opradu spadla s čistého nebe. ÚVOD Obr. 1 Úod Einsteinoy práe Annalen der Physik Einsteinoa práe začíná pozoruhodnou ětou: Je dobře známo, že Maxwelloa elektrodynamika jak je jí dnes obykle rozuměno ede při aplikai na pohybujíí se tělesa k asymetriím, jež samotné jey patrně neykazují. V jediné ětě je naznačen elý program článku: založení teorie na symetrii, kterou diktují samotné jey, ale kterou nám zakrýají žité předsudky. Einstein pak uádí příklad: zasouáme-li magnet do odiého okruhu nebo nasouáme-li odiý okruh na magnet se stejnou relatiní ryhlostí obou předmětů, je ýsledek znik proudu yolaného elektromotorikým napětím ždy stejný. V prním případě jej šak připisujeme elektrikému poli zbuzenému změnou magnetikého toku plohou ohraničenou odičem, druhém případě Lorentzoě síle působíí na náboje pohybujíí se s odičem. Přitom jde lastně o jedinou situai popisoanou z hlediska dou různýh ztažnýh sousta. Zatímo při dříějším ztahoání Maxwelloýh roni k absolutnímu prostoru by se musel ýpočet proádět zlášť pro případy měníího se pole a pohybujíího se okruhu (a stejný ýsledek by nebyl zaručen), při noém pohledu se odpoědnost za znik proudu různýh ztažnýh soustaáh různě rozděluje mezi elektriké a magnetiké pole Einsteinoě příkladu může být plně připsána jedné příčině soustaě, níž je klidu okruh, a druhé příčině soustaě, níž je klidu magnet. Podstatné je, že stejnost ýsledku je předem zaručena noě pohopenou symetrií přírody. Einstein pak konstatuje, že podobné příklady spolu s neúspěšnými pokusy určit pohyb Země ůči sětlonosnému prostředí edou k předpokladu, který bude dalším změněn postulát. Tímto postulátem je prinip relatiity naprosté fyzikální ronopránosti ztažnýh sousta, které jsou ronopráné z hlediska mehaniky. Tento prinip bude doplněn dalším, * Školská fyzika 3/005 6 erze ZŠ+SŠ

2 jen zdánliě s prním neslučitelným, totiž postulátem o konstantní ryhlosti sětla e akuu. Tím jsou kostky rženy a opradu zbytek Einsteinoy práe se podstatě nezabýá ničím jiným než yozením důsledků z obou prinipů. KINEMATICKÁ ČÁST Einstein rozdělil sou prái na dě části. Prní se zabýá obenými záěry plynouími z jeho prinipů, druhá speifikým případem zákonů elektromagnetikého pole a jeho působení na náboje. V prní části se Einstein nejpre ěnuje pojmu současnosti. Říká, že šehny naše úsudky, nihž hraje roli čas, jsou úsudky o současnýh událosteh. Místo abyhom říkali: Vlak přijel sedm hodin, mohli byhom říi: Malá ručička mýh hodinek ukázala sedm hodin současně s příjezdem laku. Takoé určení času ošem nestačí, jedná-li se o událost, která je od mýh hodinek zdálena a kterou tedy neidím okamžitě. Je proto třeba, abyh i na zdálenýh místeh měl hodiny, které jsou s mými synhronizoány. Na základě sýh postulátů Einstein přijímá následujíí praidlo synhronizae: Mějme stejné hodiny místě A a místě B. Vyšleme z A čase t A sětelný signál, který je odražen B zpět čase t B a přijat A čase t A. Pak hodiny A a B jdou synhronně, platí-li (1) tb ta = ta tb. V současnýh učebniíh teorie relatiity je obykle ztah (1) přeměněn náod k synhronizai: místě B je třeba nastait hodiny tak, aby okamžiku odrazu signálu odpoídal čas t B, který je průměrem časů odeslání a náratu signálu místě A. Na prní pohled nijak neprookujíí pasáž o synhronizai je pro Einsteinou prái klíčoá sým praidlem synhronizae Einstein překonáá dříe zmíněný zdánliý rozpor mezi sými prinipy. Fyzik ěříí sětlonosný éter by uznal Einsteinoo praidlo pouze e ztažné soustaě spojené s éterem, protože jinýh soustaáh podle něho není ryhlost sětla e šeh směreh stejná a praidlo o synhronizai nedáá skutečný čas. Podle Einsteina takoýto čas nadřazený šem ztažným soustaám ůbe neexistuje, každá soustaa, níž platí zákon setračnosti, má sou lastní současnost. Poznamenejme, že proedura synhronizae zdálenýh hodin byla na počátku století diskutoána zláště souislosti se zaáděním jednotného času železniční dopraě []. Bylo jasné, že při yužití signálů je třeba počítat s jejih konečnou ryhlostí. Einsteinoo praidlo synhronizae má šak tu mimořádnou lastnost, že neyžaduje měření zdálenosti mezi hodinami ani znalost hodnoty ryhlosti sětla. Napadlo někdy Einsteina, jak je to činí perspektiním pro ěk kosmikýh letů? Po definoání synhronizae se Einstein raí ke sým prinipům a podáá jejih přesnou formulai. Zopakujme ji: 1. Zákony, podle nihž se mění stay fyzikálníh systémů, nezáisí na tom, ke které ze dou souřadnioýh sousta, jež se zájemně ronoměrně a přímočaře pohybují, se tyto změny ztahují.. Každý sětelný paprsek se nehybné souřadnioé soustaě pohybuje určitou ryhlostí nezáisle na tom, zda byl yslán nehybným či pohybujíím se tělesem. (Za nehybnou je podle předhozího možno poažoat každou soustau, níž platí zákon setračnosti podle běžné terminologie, které šak Einstein dané prái neužíá, ineriální soustau.) Zbytek kinematiké části práe je ěnoán standardní láte z Einsteinoýh prinipů se yozuje transformae souřadni a času mezi ineriálními soustaami, které dnes říkáme Lorentzoa, kontrake délek pohybujííh se těles, dilatae času na pohybujííh se hodináh a Školská fyzika 3/005 7 erze ZŠ+SŠ

3 relatiistiký zákon skládání ryhlostí. Čtenář této části práe bude ědět o relatiistiké kinematie še, o by měl (buďme optimisty) ědět dnešní středoškolský učitel. Dodejme jen několik poznámek. Odození Lorentzoy transformae je prái poměrně složité a použíá kromě Einsteinoýh prinipů předpokladu o linearitě transformae, která by mohla yplynout z prinipů. Sám Einstein později podal jednodušší odození bez tohoto předpokladu [3]. Vztah pro kontraki délky e směru pohybu (Einsteinou symboliku někdy upraujeme podle dnešníh zyklostí) L 1 () l =, γ = γ 1 neyozuje Einstein pro tyč, ale pro poloosu l elipsoidu, který je e sé klidoé soustaě koulí o poloměru L a pohybuje se ůči naší soustaě ryhlostí. V souislosti s tímto ztahem Einstein popré připomíná, že jeho teorii úlohu nekonečně elké ryhlosti přebírá absolutní ryhlost sětla. I dnes obyklým způsobem je odozen dilatační ztah mezi časem na pohybujííh se hodináh t a jejih lastním časem T (3) t = γ T. Einstein se pak na několika řádíh zabýá problémem, kterému byly později ěnoány elé knihy. Podniknou-li hodiny estu po uzařené křie s konstantní ryhlostí, budou po náratu ukazoat menší čas e shodě s dilatačním ztahem. Obdobně hodiny umístěné na roníku půjdou o něo pomaleji než hodiny na pólu otáčejíí se Země. Mohlo by se zdát, že Einstein se tak yhnul potížím se zryhlenou fází letu, nezapomínejme šak, že i let s konstantní elikostí ryhlosti musel být zryhlený, měly-li se hodiny rátit. Bylo mu tedy zřejmé, že časoý údaj hodin je oliňoán pouze ryhlostí, a nikoli zryhlením. Vztahy pro skládání ryhlostí neodozuje Einstein, jak je dnes obyklé, pro složku ryhlosti e směru pohybu soustay a pro složky k ní kolmé, ale pro složku e směru pohybu a pro elikost ryhlosti. To mu umožňuje okamžitě zjistit, že ryhlost sětla e akuu se Lorentzoou transformaí nemění. V záěru kinematiké části Einstein upozorňuje na to, že Lorentzoy transformae se společným směrem pohybu sousta (dnes byhom řekli speiální Lorentzoy transformae) toří grupu. Pro oenění tohoto postřehu je třeba si uědomit, že důležitost pojmu grupy nebyla tehdy ještě ani špičkoým fyzikům zřejmá. Je užitečné dodat, že kinematika je u Einsteina hápána poněkud odlišně, než jak jsme zyklí z ýkladů Newtonoy mehaniky. Tam kinematika podáá prostředky k popisu pohybu části, těles či kontinuí zela bez ohledu na to, jakými fyzikálními zákony se pohyb řídí. V teorii relatiity se kinematika zabýá takoými záěry o pohybu, které lze yodit čistě z relatiistiké inariane neměnnosti taru fyzikálníh zákonů Lorentzoou transformaí bez ohledu na jejih konkrétní tar. Není proto spráné říkat (jak se někdy děje), že relatiistiká kontrake či dilatae nemá ni společného se siloým působením. Předstame si zláštní bytosti, které natolik trají na jediné použitelné ztažné soustaě, že si otázku přepisu sýh roni do jiné soustay ůbe nekladou, které šak doedou mnohem lépe než my formuloat fyzikální zákony a propočítáat jejih důsledky. Tyto bytosti by i bez znalosti teorie relatiity a Lorentzoy transformae dospěly k záěru, že pohybujíí se tělesa se zkraují a hodiny zpomalují, a to na základě znalosti zákonů interake mezi jejih elementy (atomy či částiemi). O něo podobného se snažili Einsteinoi současníi, když např. yozoali kontraki délky, potřebnou pro ysětlení ýsledků experimentů, z lastností elektromagnetikýh sil. Einsteinoa teorie umožňuje učinit tento záěr bez znalosti detailů, čistě na základě dou prinipů. Školská fyzika 3/005 8 erze ZŠ+SŠ

4 ELEKTRODYNAMICKÁ ČÁST Einstein nejpre ukazuje inariani Maxwelloýh roni e akuu ůči Lorentzoým transformaím a yozuje transformační zákony pro komponenty elektriké intenzity a magnetiké induke. Poměrně jednoduhý důkaz je zajímaé si pročíst a promyslet už proto, že dnes se učebniíh obykle uádí jen e čtyřrozměrné formulai, která samozřejmě úkol podstatně usnadňuje. Einstein ji ošem ještě k dispozii neměl. Dále Einstein odozuje relatiistiké zore pro hoání roinné elektromagnetiké lny (kterou se stáá každá lna ysílaná zdrojem dostatečné zdálenosti od něho) soustaě pozoroatele, který se pohybuje ůči zdroji ryhlostí pod úhlem ϕ ke sé spojnii se zdrojem. Pak se pro něho změní frekene υ ysílaná zdrojem jeho lastní soustaě na 1 (4) υ = υ osϕ, 1 ož pro ϕ = 0 (podélný je) dáá 1 (5) υ = υ. 1+ Pro pozoroatele dopadá sětlo pod úhlem určeným ztahem osϕ (6) osϕ =. 1 osϕ Dostááme tak relatiistiké zore (4), (5) pro Dopplerů je a (6) pro aberai sětla, které se později ukázaly být elmi důležité z hlediska experimentálního oěření teorie relatiity, protože pro elké ryhlosti se podstatně liší od zorů nerelatiistikýh (nehááme na čtenáři, aby si je připomněl). Zatímo zore pro kontraki délek a dilatai času byly pro účely ysětlení experimentů uažoány již před Einsteinem, relatiistiké ztahy pro Dopplerů je a aberai sětla zapsal Einstein nepohybně jako prní. Znalost transformačníh ztahů pro komponenty elektromagnetikého pole umožňuje Einsteinoi yodit také ztah mezi energiemi elektromagnetikého záření soustředěného určitém objemu sětelného komplexu z hlediska různýh ztažnýh sousta. Poažuje za pozoruhodné, že tento ztah je shodný se ztahem pro frekene (5). (Tato okolnost se ukázala důležitá pro budoání kantoé fyziky.) Dále propočítáá odraz sětelné lny od Obr. Albert Einstein ideální zradloé roiny záislosti na jejím pohybu počátkem roku 1906 zhledem k peně zolené ztažné soustaě. Určuje tlak, kterým lna na zradlo působí. Poté se Einstein ěnuje tomu, čemu dnes říkáme relatiistiká dynamika. Vyozuje pohyboé ronie elektronu elektromagnetikém poli o intenzitě E a induki B. Vyhází z předpokladu, že soustaě S, níž je elektron o hmotnosti m a náboji e daném okamži- Školská fyzika 3/005 9 erze ZŠ+SŠ

5 ku klidu, jsou tyto ronie ma = ee (Einstein ošem neužíá ektoroé symboliky a rozepisuje ronie do složek). Přepisem do soustay S, níž se elektron pohybuje, Einstein dostáá 3 d x m γ = e E x = e Ex, d y (7a, b, ) m γ = e γ ( Ey Bz) = e E y, d z m γ = e γ ( Ez + By) = e Ez. Einstein poažuje za komponenty síly ýrazy na praé straně roni, i když připouští, že by sílu bylo možno definoat i jinak a že proto při sronáání různýh teorií pohybu elektronu je třeba opatrnosti. Che-li zahoat newtonoskou podobu roni hmotnost krát zryhlení je síla, dospíá k záěru, že elektron má podélnou hmotnost m γ a příčnou 3 hmotnost m γ. K tomuto postupu byl patrně seden newtonoskou mehanikou, kde se síla přehodem k jiné ineriální soustaě nemění, protože se nemění ani hmotnost a zryhlení. To šak teorii relatiity neplatí. Dnešnímu čtenáři připadne patrně rozumnější poažoat za sílu e ( E+ B) a příčná hmotnost pak yjde m γ. Tento ýraz pro příčnou hmotnost našel již před Einsteinem Lorentz. Jak ukázal později Max Plank, je teorii relatiity hodné nespojoat sílu působíí na pohybujíí se částii s ýrazem ma, ale s půodní newtonoskou definií síly jako časoé změny hybnosti. Jedině potom budou zahoány základní ztahy spojujíí sílu, hybnost a energii. Definie energie a hybnosti musí být ošem pozměněna tak, aby se zaručila platnost a relatiistiká inariane zákonů zahoání. Fyzikálně spráné relatiistiké pohyboé ronie částie (četně elektronu) siloém poli jsou proto dp d ( m γ ) (8) = = F a po proedení deriae a úpraě je lze zapsat jako (9) γ ma = F ( F ). Pro komponentu ronie e směru síly ( F = F ) tak dostááme prní z Einsteinoýh roni (7a) po ynásobení γ, zatímo pro komponenty e směru kolmém ( F = 0 ) dostaneme Einsteinoy ronie (7b, ) po ynásobení γ. Einstein tedy sie sestail formálně platné pohyboé ronie, ale e fyzikálně málo průhledném taru (a naí použitelné jen soustaě, kde je okamžitá ryhlost částie ronoběžná s osou x, ož nedooluje studoat obené pohyby). To mu nezabránilo yodit spráné dynamiké záěry o pohybu. Předeším spráně určil kinetikou energii elektronu jako dráhoý integrál síly, protože při pohybu e směru síly se Einsteinů ýraz pro sílu neliší od Plankoa (sr. 7a). Protože ýsledek nezáisí na elektrikém náboji elektronu, jde o kinetikou energii liboolné částie (10) ( ). W = e E dx= m a γ dx= m γ d= m γ 1 Poučený čtenář zde již může idět náznak slaného ztahu mezi hmotností a energií ždyť odečítaný člen je klidoá energie částie! V této híli to šak ještě mnoho neznamená, protože není patrno, že by se klidoá hmotnost mohla měnit. Důležitý doplněk k teorii relatiity přináší až další Einsteinoa práe Záisí setračnost tělesa na energii něm obsažené? [4], která byla Školská fyzika 3/ erze ZŠ+SŠ

6 přijata do tisku Annalen 7. září Na pouhýh dou stránkáh a s jednoduhou matematikou tu Einstein uažuje o tělese, které ypouští opačnýh směreh dě stejné pore elektromagnetiké energie, takže zůstáá e sé půodní klidoé soustaě i po emisi. Ze ztahů pro transformai energie záření a zákona zahoání energie plyne, že jiné ztažné soustaě těleso mění sou kinetikou energii, a protože jeho ryhlost zůstáá nezměněna, musí se měnit jeho hmotnost. Byla-li tedy elkoá emitoaná energie klidoé soustaě tělesa L, činí rozdíl kinetikýh energií pohybujíí se soustaě před emisí a po emisi (11) W = L ( γ 1) a z poronání s (10) plyne záěr, který Einstein yjadřuje takto: ydáá-li těleso energii L L podobě záření, mění se jeho hmotnost o [ ] hmotnost tělesa je mírou jeho energetikého obsahu. Čtenář si již jistě pošiml, že Einstein označuje jako m klidoou hmotnost částie či tělesa, kterou nemá zapotřebí odlišoat indexem či přílastkem klidoá, protože pro podélnou a příčnou hmotnost nezaádí zláštní symboly ani jih šířeji neyužíá. (Tyto pojmy byly brzy zela opuštěny, protože označují pouze koefiienty mezi sílou a zryhlením e směru pohybu a e směru na pohyb kolmém, které použíání roni (8) a (9) zbauje ýznamu.) Později se hlaně pod liem knihy Wolfganga Pauliho [5] z roku 191 stalo běžným označoat klidoou hmotnost jako m 0 a zaádět kromě ní ještě relatiistikou hmotnost γ m0 (ronou někdejší hmotnosti příčné), která se pak nazýá prostě hmotností a označuje se jako m bez indexu. V posledníh desetiletíh šak zejména částioí fyzii mají tendeni raet se k půodní Einsteinoě terminologii a označení, takže nejslanější zore fyziky E = m se u nih zapíše jako E = γ m a naí ztráí sou sláu, protože ekialeni (klidoé) energie a hmotnosti yjadřuje zore E 0 = m. Jakou hmotnost měl na mysli Einstein, který sůj poznatek yjádřil jen sloy? Za nejlepší odpoěď (kterou nehi čtenářům nuoat) byh poažoal toto: Einstein ukázal, že změna klidoé energie tělesa je doproázena změnou jeho klidoé hmotnosti. V klidoé energii tělesa jsou ošem zahrnuty i kinetiké energie kmitaýh a otáčiýh pohybů jeho součástí, ož znamená, že přispíají i ke klidoé hmotnosti tělesa. Mezi klidoou a kinetikou energií tedy není žádná absolutní hranie a nelze proto mít zásadní námitky proti rozšíření ekialene klidoé energie a (klidoé) hmotnosti na ekialeni energie a hmotnosti ůbe. Pak je ošem třeba hápat hmotnost jako relatiistikou hmotnost E. Fyzikoé mikrosěta mají práo relatiistiké hmotnosti neužíat, ož znamená, že mírou setračnosti a zdrojem graitae pro ně není hmotnost, ale energie. Hmotnost je pro ně zkráený a tradií posěený termín pro klidoou energii mikročásti. Einstein končí sou základní prái třemi záěry o relatiistikém pohybu elektronů, které mohou být podle jeho názoru experimentálně proěřeny. Poslední z nih je, že homogenním magnetikém poli o induki B se elektrony o ryhlosti pohybují po kružniíh o poloměreh γ m R =. I když se Einstein při odození sýh záěrů odoláá na ronie (7), neužíá e B sé definie síly a její nehodnost proto neohrožuje spránost ýsledku. Na koni Einsteinoy práe nás ještě zaujme poděkoání příteli a kolegoi M. Besso, který byl ěrným pomoníkem při rozpraoání zde yloženýh problémů, a naprostá nepřítomnost odkazů na literaturu. Nedostatek itaí nemůžeme posuzoat z dnešní až extrémní korektnosti tomto směru, kdy lze často práem pohyboat, zda autor stačil šehny itoané práe ůbe přečíst, natož prostudoat. Ošem i e sronání se současníky Einstein itaemi Školská fyzika 3/ erze ZŠ+SŠ

7 neplýtal. Ve sýh čistě odbornýh praíh si kladl za íl rozřešit problém a nezabýal se obykle podrobněji jeho historií a dříějšími neuspokojiými pokusy o řešení. Sědomitě šak itoal jiné autory tam, kde od nih skutečně přezal ýsledek, který nebyl obeně známý. V případě zde rozebírané práe patrně neítil potřebu odoláat se na jiné důěra prinip relatiity u něho neyplýala z neúspěhu pokusů o zjištění absolutního pohybu, ale z elementárního itu pro symetrii, a jeho ílem bylo ukázat, že da prinipy postačí k odstranění šeh potíží, na něž jeho současníi naráželi. V letošním roe jsme mohli íekrát číst úahy o tom, zda na zniku speiální relatiity či dokone šeh článků z roku 1905 měla ýznamný, ne-li dokone hlaní podíl Einsteinoa manželka Milea [6]. Nemyslím šak, že pro takoý názor existují záažné důody. Je prada, že dopiseh Mileě (ošem z období o několik let předházejíího zniku teorie relatiity) Einstein někdy psal o jejih společné prái. Na zrání jeho myšlenek se Milea nepohybně podílela diskusemi, kritikým čtením a kontrolou ýpočtů. Z její korespondene šak není patrno, že by přiházela se samostatnými tůrčími myšlenkami. Einstein publikoal řadu praí se spoluautory poslední byla mladá žena Bruria Kaufmannoá a íekrát yjádřil sou děčnost lidem, z jejihž práe či znalostí těžil. Těžko pohopit, proč by tomto směru zanedbal sou ženu. Nemám proto důod neěřit, že jediným, kdo opradu ýznamně pomohl zrodu teorie relatiity Einsteinoě hlaě, byl Mihele Besso. RELATIVITA A RELATIVISTÉ Mediální obraz Alberta Einsteina jako hězdy spadlé s nebe ošem realitě zela neodpoídá. Jeho problémem se s nezanedbatelnými ýsledky zabýali i další fyzikoé. Problém priilegoanosti či ronopránosti ztažnýh sousta se táhne elými dějinami fyziky. V druhé půli 19. století dohází k zláštnímu obratu Maxwelloa teorie elektromagnetikého pole zdánliě rozhodně sědčí o existeni priilegoané soustay spojené se sětoým éterem, zhledem k níž by mělo být možné určit pohyb. Tyto pokusy, o něž se zláště zasloužil Mihelson a Morley, šak nedáají očekáané ýsledky. Prní kroky k relatiitě prošlapáají lidé, kteří se spíše snaží ysětlit, proč se éter nedaří najít, než aby přijali za sé ýhodisko jeho neexisteni. Z Einsteinoýh souputníků a naazoatelů je třeba jmenoat alespoň pět osobností [7]. Britský fyzik Joseph Larmor ( ) knize Éter a látka [8] nalezl transformai, která podle jeho názoru přirozeněji spojoala klidoou a pohybujíí se (ůči éteru) ztažnou soustau. Byla to táž transformae, které dnes říkáme Lorentzoa. Larmor také dospěl k řadě poznatků, které později dobře zapadly do ráme teorie relatiity. Holanďan Hendrik Antoon Lorentz ( ) se zabýal problémem éteru po desítky let. Transformai nazýanou jeho jménem ododil 1904 [9] Obr. 3 Joseph Larmor a užíal ji ke zdůodnění neúspěhu pokusů o objeení pohybu ůči éteru. Zhruba zároeň s irským fyzikem FitzGeraldem zaedl předpoklad o kontraki délek a uažoal i o dilatai času. Nedospěl šak k názoru, že éter je třeba zela zarhnout a i po zniku speiální teorie relatiity tral na tom, že jeho teorie není identiká s Einsteinoou. Franouz Jules Henri Poinaré ( ) připouštěl již před Einsteinem relatiitu času a předídal znik noé fyziky s limitní ryhlostí sětla. V černu 1905 publikoal kráte před odesláním Obr. 4 Hendrik Antoon Lorentz Školská fyzika 3/005 1 erze ZŠ+SŠ

8 Obr. 5 Jules Henri Poinaré Einsteinoy práe do Análů článek O dynamie elektronu [10], jehož podstatně rozšířená erze yšla následujíím roe. Vyházel něm z předpokladu, že šehny fyzikální zákony jsou inariantní ůči Lorentzoě transformai (pro niž zaedl tento náze), a ukázal, že spráně pohopené Maxwelloy ronie tuto lastnost mají. Objeil, že Lorentzoy transformae spojují soustay souřadni čtyřrozměrném prostoru. Max Karl Ernst Ludwig Plank ( ) prosazoal pro Einsteinou teorii termíny prinip relatiity a teorie relatiity, kterýh začal později užíat i Einstein. Roku 1906 Plank zdokonalil relatiistikou formulai dynamiky [11]. (Je kuriózní, že úodu sé publikae se za to téměř omlouá, protože se domníá, že Kaufmannoy experimenty s hoáním elektronů elektromagnetikém poli prinip relatiity zpohybnily. Kaufmann se těmito experimenty snažil rozhodnout mezi Einsteinoou teorií a alternatiními teoriemi Lorentze, Abrahama a Buherera. Samotný Buherer podobnými experimenty roku 1908 posílil pozii teorie relatiity [1], určitá nejistota šak trala ještě po řadu let. Einstein se tím nenehal yést z míry a byl přesědčen, že alternatiní teorie jsou příliš umělé, než aby mohly platit přírodě. Němeký matematik Hermann Minkowski ( ), který kdysi učil Einsteina na uryšské polytehnie, ýstižně popsal geometrii čtyřrozměrného prostoročasu a ukázal, že teorie relatiity je teorií fyzikálníh jeů tomto prostoročase [13]. Zapsal e čtyřrozměrném taru šehny základní ztahy teorie relatiity četně Maxwelloýh roni. Einstein yužil objeu Minkowského k dalšímu zobenění, kterým byla obená teorie relatiity jako teorie zakřieného prostoročasu. Není příliš jasné, o Einstein znal z praí sýh předhůdů. V době, kdy se o to historikoé ědy začali zajímat, si to již patrně Obr. 7 Hermann Minkowski Obr. 6 Max Karl Ernst Ludwig Plank ani přesně nepamatoal. Jeho přístup k problému byl originální a sou fyzikální hloubkou a průhledností zapůsobil tak, že byl téměř jednohlasně uznán za hlaního, ne-li jediného tůre teorie relatiity. Přispěla k tomu i jeho mimořádná snaha zpřístupnit teorii relatiity sým kolegům fyzikům a širší eřejnosti. Poněkud přehlédnuty zůstaly zásluhy Poinarého, na něž po jeho smrti upozornil Lorentz [14]. Zajímaý a dosti záhadný je ztah Einsteina a Poinarého: ačkoli se o sobě zájemně yslooali s útou, ani jeden z nih se neyjádřil k prái druhého na poli teorie relatiity (resp. Einstein jmenoal Poinarého jako průkopníka relatiistikýh idejí až na sklonku žiota dopise Maxu Bornoi). I když tradičně mluíme o teorii relatiity, jde o něo í než o jednu z teorií nějakého konkrétního okruhu fyzikálníh jeů. Spíše byhom mohli mluit o paradigmatu duhu filozofa Thomase Kuhna [15]: teorie relatiity podala obené shéma, do něhož by měly být uloženy teorie šeh fyzikálníh jeů, a ytýčila program naplňoání tohoto úkolu. Brzy se mělo ukázat, že graitační jey do tohoto shématu nezapadnou a že je třeba formuloat nadřazené paradigma obené teorie relatiity. Speiální teorie relatiity fyzika plohém prostoročase bez graitačníh jeů tím neztratila sůj smysl limitního případu, do jehož ráme bylo třeba ložit elou negraitační fyziku např. hydrodynamiku, elektrodynamiku látkoého prostředí, termodynamiku a statistikou fyziku. Tímto problémem se již Einstein příliš ne- Školská fyzika 3/ erze ZŠ+SŠ

9 zabýal a přenehal jej sým následoníkům, kteří se s ním úspěšně yronali, i když některé otázky jsou dosud oteřeny. Ještě náročnějším úkolem bylo spojení speiálně relatiistikého a kantoého paradigmatu, jež yústilo e znik kantoé elektrodynamiky, teorie elektroslabýh interakí a standardního modelu elementárníh části. Přes elké úspěhy experimentálního rázu naráží toto sjednooání fyziky na ážné obtíže prinipiální poahy (elké množstí neysětlenýh a zájemně nesouisejííh parametrů e standardním modelu, nekonečné hodnoty některýh fyzikálníh eličin, kterýh se lze zbait jen za enu ne zela korektníh matematikýh operaí aj.). Přinese řešení těhto problémů zahrnutí graitae [16]? LITERATURA [1] Einstein A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik 17 (1905) 891. Němekou erzi článku lze najít na <http://www.physis.utoledo.edu/~lj/speiaal.html>, anglikou na <http://www.fourmilab.h/etexts/einstein/sperel/sperel.pdf>. Všehny zde itoané články klasiků jsou obsaženy ruštině e sborníku Tjapkin A. A.(ed.): Prinip otnositeľnosti. Moska, Atomizdat [] Galison P.: Einsteinoy hodiny a Poinarého mapy. Mladá Fronta, Praha 005. [3] Einstein A.: Teorie relatiity. VUT Brně/VUTIUM, Brno 005. [4] Einstein A.: Ist die Trägheit eines Körpers on seinem Energieinhalt abhängig?, Annalen der Physik 18 (1905) 639. [5] Pauli W.: Relatiitätstheorie. Enzyklopädie der Mathematishen Wissenshaften V, IV (191). [6] Viz např. Kraus I.: Milea Maričoá-Einsteinoá. Českosloenský časopis pro fyziku 55 (005) 71 nebo Martínez A.: Arguing about Einstein s wife. <http://physisweb.org/artiles/world/17/4//1>. [7] <http://www-groups.ds.st-and.a.uk/~history/mathematiians/larmor.html>. Po záměně jména se dostaneme k medailonkům dalšíh osobností uedenýh našem článku. [8] Larmor J.: Aether and Matter. Cambridge Uniersity Press [9] Lorentz H. A.: Eletromagneti phenomena in a system moing with any eloity smaller that of light. Proeedings of the Aademy of Sienes of Amsterdam 6 (1904) 809. [10] Poinaré H.: Sur la dynamique de l életron. Comptes Rendues Aadémie des Sienes 140 (1905) Delší stejnojmenný článek je Rendionti del Cirolo Matematio di Palermo XXI (1906) 19. [11] Plank M.: Das Relatiitätsprinzip und Grundgleihungen der Mehanik. Verhandlungen der Deutshen Physikalishen Gesellshaft (1906) 136. [1] Fölsing A.: Albert Einstein. Volox Globator, Praha 001. [13] Minkowski H.: Raum und Zeit. Physikalishe Zeitshrift 10 (1909) 104. [14] Lorentz H. A.: Deux mémoires de Henri Poinaré sur la physique mathematique. Ata Mathematia 38 (1914) 93. [15] Kuhn T.: Struktura ědekýh reoluí. Oikoymenh, Praha [16] Viz např. Kaku M.: Einsteinů esmír. Dokořán, Argo, Praha 005. Děkuji Mgr. Janě Jurmanoé, Ph.D. z katedry obené fyziky PřF MU Brně za diskuse a připomínky, které edly ke zlepšení článku. Školská fyzika 3/ erze ZŠ+SŠ

Speciální teorie relativity IF relativistická kinematika

Speciální teorie relativity IF relativistická kinematika Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,

Více

SPECIÁLNÍ TEORIE RELATIVITY

SPECIÁLNÍ TEORIE RELATIVITY SPECIÁLNÍ TEORIE RELATIVITY 1. Základní informae autor Albert Einstein jey pozoroané e DVOU ztažnýh soustaáh, které se zhledem k sobě pohybují ryhlostí blízkou ryhlosti sětla e akuu Co uidí nější a nitřní

Více

2 = 1/εµ. Tento objev na konci 19. století podnítil inten-

2 = 1/εµ. Tento objev na konci 19. století podnítil inten- SPECIÁLNÍ TEORIE RELATIVITY A SÍLY ELEKTROMAGNETICKÉHO POLE (Ladisla Szántó) K nejětším přínosům Maxwelloýh roni patří konstatoání, že ryhlost šíření elektro- a magnetikýh ln (sětla) e akuu záisí jedině

Více

Speciální teorie relativity IF

Speciální teorie relativity IF Speiální teorie relativity IF Speiální teorie relativity Newtonovy pohybové zákony umožňují popis hování těles pohybujííh se nízkými ryhlostmi. Při ryhlosteh, kterýh dosahují částie v uryhlovačíh, však

Více

FYZIKA 4. ROČNÍK. Pole a éter. Souřadnicové soustavy (SS) Éter a pohyb

FYZIKA 4. ROČNÍK. Pole a éter. Souřadnicové soustavy (SS) Éter a pohyb Poe a éter Pro fyzika 19. stoetí neexistoao poe jen substane a změny její poohy prostoru poe půodně jen berička postupně substani zastínio Maxwe poe je ytářeno e. nábojem Sěto má astnosti nění (interferene,

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Relativistická fyzika. Galileův princip relativity

Relativistická fyzika. Galileův princip relativity 3.4.3. Předpokady a důsedky speiání teorie reatiity Reatiistiká fyzika A.Einstein 95 Speiání teorie reatiity 95 Obená teorie reatiity Shrnutí prinipů kasiké mehaniky pohyb těes nemá i na běh času, jejih

Více

38.1 CO VŠECHNO PATŘÍ K RELATIVITĚ

38.1 CO VŠECHNO PATŘÍ K RELATIVITĚ 38 Relatiita DneönÌ d lko naigace soustanï sleduje a aktualizuje p esnè polohy a rychlosti letadel. SystÈm naigaënìch druûic NAVSTAR dooluje urëoat kdekoli na Zemi polohy s p esnostì asi 16 m a rychlosti

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE

VLIV SLUNEČNÍHO ZÁŘENÍ NA VĚTRANÉ STŘEŠNÍ KONSTRUKCE VLIV SLUNEČNÍHO ZÁŘENÍ N VĚTRNÉ STŘEŠNÍ KONSTRUKCE ZÁKLDNÍ PŘEDPOKLDY Konstrukce douplášťoých ětraných střech i fasád ke sé spráné funkci yžadují tralé ětrání, ale případě, že proedeme, zjistíme, že ne

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

Fyzika mikrosvěta aktivně Aleš Trojánek

Fyzika mikrosvěta aktivně Aleš Trojánek Fyzika mikrosěta aktině Aleš Trojánek Úod Je možno idět atomy? Jak porozumět periodiké soustaě prků? Co je to tuneloý je a jak prauje tuneloý rastroaí mikroskop? Jaký je prinip laseru a kde se šude laser

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Metody měření rychlosti světla

Metody měření rychlosti světla Metody měření ryhlosti sětla a) metody římé Prní (neúsěšný) okus o změření ryhlosti sětla roedl Galileo s oužitím dou lueren s dířky umístěnýh na dou několik kilometrů zdálenýh ršíh. 1. Roemeroa metoda

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

Operace s polem příklady

Operace s polem příklady Equation Chapter 1 Setion 1 1 Gradient Operae s polem příklady Zadání: Nadmořská výška libovolného bodu na povrhu kope je dána formulí h(x y) = A exp [ (x/l 0 ) 9(y/l 0 ) ] kde A = 500 m l 0 = 100 m Nalezněte

Více

I. PRVNÍ POHLED NA PROBLEMATIKU

I. PRVNÍ POHLED NA PROBLEMATIKU I. PRVNÍ POHLED NA PROBLEMATIKU Dříve než se pustíme do podrobnějšího výkladu speiální teorie relativity, bude vhodné připomenout některá fakta, popisy a prinipy, z nihž vyhází. Některé důsledky teorie

Více

K Mechanika styku kolo vozovka

K Mechanika styku kolo vozovka Mechanika styku kolo ozoka Toto téma se zabýá kinematikou a dynamikou kola silničních ozidel. Problematika styku kolo ozoka má zásadní ýznam pro stanoení parametrů jízdy silničních ozidel, neboť má li

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

Lorentzovy transformace trochu netradičně

Lorentzovy transformace trochu netradičně Lorentzovy transformae trohu netradičně Vladimír Majerník, Lukáš Rihterek Katedra teoretiké fyziky Přírodovědeké fakulty Univerzity Palakého, tř. Svobody 26, Olomou, 77 46 2. února 2007 Věnováno 45. výročí

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

MATEMATIKA. O paradoxech spojených s losováním koulí

MATEMATIKA. O paradoxech spojených s losováním koulí MATEMATIKA O paradoxeh spojenýh s losováním koulí PAVEL TLUSTÝ IRENEUSZ KRECH Ekonomiká fakulta JU, České Budějovie Uniwersytet Pedagogizny, Kraków Matematika popisuje a zkoumá různé situae reálného světa.

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

Světlo elektromagnetické vlnění

Světlo elektromagnetické vlnění FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla

Více

6. OBROBITELNOST MATERIÁLŮ

6. OBROBITELNOST MATERIÁLŮ 6. OBROBITELNOST MATERIÁLŮ Po úspěšném a aktiním absoloání této KAPITOLY Budete umět: Obecné pojmy a terminologii obrobitelnosti. Stanoit základní kritéria obrobitelnosti a součinitel obrobitelnosti. Popsat

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

Bohrova disertační práce o elektronové teorii kovů

Bohrova disertační práce o elektronové teorii kovů Niels Bohr jako vědec, filosof a občan 1 I. Úvod Bohrova disertační práce o elektronové teorii kovů do angličtiny. Výsledek byl ale ne moc zdařilý. Bohrova disertační práce byla obhájena na jaře roku 1911

Více

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II.

Předmět: Technická fyzika III.- Jaderná fyzika. Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY. Obor:MVT Ročník:II. Předmět: Technická fyzika III.- Jaderná fyzika Název semestrální práce: OBECNÁ A SPECIÁLNÍ TEORIE RELATIVITY Jméno:Martin Fiala Obor:MVT Ročník:II. Datum:16.5.2003 OBECNÁ TEORIE RELATIVITY Ekvivalence

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

18.2 RYCHLOST ZVUKU 18.1 ZVUKOVÉ VLNĚNÍ

18.2 RYCHLOST ZVUKU 18.1 ZVUKOVÉ VLNĚNÍ 18 Vlny ó II Netop r plnè tmï nejen ÑidÌì letìcì hmyz, ale naìc pozn, jak rychle se Ëi nïmu pohybuje. To mu umoûúuje hmyz loit. Na jakèm principu funguje jeho detekënì systèm? Jak m zp sobem se m ûe hmyz

Více

Digitální učební materiál

Digitální učební materiál Digitální učení mteriál Projekt: Digitální učení mteriály e škole registrční číslo projektu CZ.1.07/1..00/4.07 Příjeme: Střední zdrotniká škol Vyšší odorná škol zdrotniká Huso 71 60 České Budějoie Náze

Více

OVĚŘOVÁNÍ DÉLKY KOTEVNÍCH ŠROUBŮ V MASIVNÍCH KONSTRUKCÍCH ULTRAZVUKOVOU METODOU

OVĚŘOVÁNÍ DÉLKY KOTEVNÍCH ŠROUBŮ V MASIVNÍCH KONSTRUKCÍCH ULTRAZVUKOVOU METODOU XVI. konference absolentů studia technického znalectí s mezinárodní účastí 26. - 27. 1. 2007 Brně OVĚŘOVÁNÍ DÉLKY KOTEVNÍCH ŠROUBŮ V MASIVNÍCH KONSTRUKCÍCH ULTRAZVUKOVOU METODOU Leonard Hobst 1, Lubomír

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Změna skupenství Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Název a adresa školy: Střední škola průmyslová a uměleká Opava příspěvková organizae Praskova 399/8 Opava 7460 Název operačního programu: OP Vzdělávání pro konkureneshopnost oblast podpory.5 Registrační

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

x p [k]y p [k + n]. (3)

x p [k]y p [k + n]. (3) STANOVENÍ VLASTNOSTÍ ELEKTROAKUSTICKÝCH SOUSTAV POMOCÍ PSEUDONÁHODNÝCH SIGNÁLŮ 1 Úod Daid Bursík, František Kadlec ČVUT FEL, katedra radioelektroniky, Technická 2, Praha 6 bursikd@feld.cut.cz, kadlec@feld.cut.cz

Více

Zasláno E - mailem. V Roudnici nad Labem 20. února 2010

Zasláno E - mailem. V Roudnici nad Labem 20. února 2010 Zasláno E - mailem r předseda Ústaního soudu České republiky Joštoa 8 660 83 Brno V Roudnici nad Labem 20. února 2010 Věc: Stížnost proti Ústaního soudu České republiky, který podle J 163a zák. 140/1931

Více

Příloha 01. Deskriptory kvalifikačních úrovní Národní soustavy povolání

Příloha 01. Deskriptory kvalifikačních úrovní Národní soustavy povolání Příloha 01 Deskriptory kalifikačních úroní Národní soustay poolání Znalosti teoretické a faktické (aplikoatelné e ýkonu ) Doednosti kognitiní - použíání logického, intuitiního a tůrčího myšlení a doednosti

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

dále zaslánu také na tytu adresy

dále zaslánu také na tytu adresy Zasláno E - mailem Prezident České republiky Václa Klaus Praha - Hrad 119 08 dále zaslánu také na tytu adresy Vláda České republiky nábřeží Edarda Beneše 4 118 01 Praha 1 - Malá Strana Poslanecká sněmona

Více

2. Akustika, základní pojmy a veličiny v akustice

2. Akustika, základní pojmy a veličiny v akustice . Akustika, základní pojmy a veličiny v akustie. Předmět akustiky Akustika je definována jako věda zabývajíí se fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho dalším šířením a vnímáním

Více

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo?

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo? ..7 Ronoměrně zrychlený pohyb příkldech III Předpokldy: 6 Pedgogická poznámk: Hodinu dělím n dě části: 5 minut n prní d příkldy zbytek n osttní. I když šichni nestihnout spočítt druhý příkld je potřeb,

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla Paprskoá optika Sětlo jako elektromagetiké lěí Šířeí sětla, Odraz a lom sětla Disperze sětla Sětlo jako elektromagetiké lěí James Clerk Maxwell (83 879) agliký fyzik autorem teorie, podle íž elektro-magetiké

Více

6.1.4 Kontrakce délek

6.1.4 Kontrakce délek 6..4 Kontrake déek Předpokady: 603 Existuje na Zemi jev, na kterém je diatae času opravdu vidět? Př. :Částie mion má poočas rozpadu (doba, za kterou se rozpadne přibižně poovina části) 2,2µs. Vysvěti,

Více

Dynamika vozidla Hnací a dynamická charakteristika vozidla

Dynamika vozidla Hnací a dynamická charakteristika vozidla Dynamika ozidla Hnací a dynamická charakteristika ozidla Zpracoal: Pael BRABEC Pracoiště: VM Tento materiál znikl jako součást projektu In-TECH, který je spoluinancoán Eropským sociálním ondem a státním

Více

OBSAH. Automatizace Obsah

OBSAH. Automatizace Obsah Atomatizace Obsah OBSAH. Předmla.... Operační zesiloač.... Seznámení s operačním zesiloačem.....a Co to lastně je.....b Jak to lastně fngje... 4. Základní zapojení s operačním zesiloačem...6..a Komparátor...

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

AKTIVITY PROJEKTU V KOSTCE

AKTIVITY PROJEKTU V KOSTCE Číslo ydání: 02/2014 Elektronický zpraodaj projektu Prolomit zeď Unitř tohoto ydání: AKTIVITY PROJEKTU V KOSTCE Aktiity projektu kostce 1 Prorodinná politika města Třebíče 1-2 Podnik podporující rodinu

Více

Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz. Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz. Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikoané geoinformatiky a kartografie PřF UK Praze Základní pojmy Semin ář z geo oinform

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

2.9.13 Logaritmická funkce II

2.9.13 Logaritmická funkce II .9. Logaritmiká funke II Předpoklady: 9 Logaritmus se základem nazýváme dekadiký logaritmus a místo log píšeme pouze log pokud v zápisu logaritmu hybí základ, předpokládáme, že základem je číslo (logaritmus

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Pedagogická poznámka: Tato hodina je netypická tím, že jde v podstatě o přednášku.

Pedagogická poznámka: Tato hodina je netypická tím, že jde v podstatě o přednášku. .. Dějiny fyziky Předpoklady: Pomůky: BlakBox Pedagogiká poznámka: Tato hodina je netypiká tím, že jde v podstatě o přednášku. Fyzika z řekého fysis (příroda) původně označení univerzální přírodovědy,

Více

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ

TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ TRANSPORT VLHKOSTI VE VZORCÍCH IZOLAČNÍCH MATERIÁLŮ Gunnar Kűnzel, Mlosla Lnda Abstract V příspěku jsou uedeny analoge elčn a parametrů př transportu lhkost zorkem materálu e formě desky a elektrckém obodu.

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

CÍL V této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, výpočtu a regulace.

CÍL V této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, výpočtu a regulace. 1 ČERPADLA! čerpadla, tlak, objemoý průtok, ýtlačná ýška, regulace čerpadel, oběžné kolo CÍL této kapitole se seznámíte s čerpadly, s jejich účelem, principem činnosti, se základy jejich konstrukce, ýpočtu

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí Fakulta staební ČVUT Praze Katedra hydrauliky a hydrologie Předmět HYA K4 FS ČVUT Hydraulika potrubí Doc. Ing. Aleš Halík, CSc., Ing. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ

Více

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5 Obsah Historický přehled 5 Plynný sta hmoty 8. Jednotky tlaku................ 8.. Použíané jednotky tlaku.......... 9.. Rozlišení oblastí akua podle tlaku...... 9. Staoá ronice................ 9.. Gay

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková

Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09

Více

c λ v Z T = c f = c λ = f = c f. (1.2) c v Z

c λ v Z T = c f = c λ = f = c f. (1.2) c v Z ÚlohaN1 Měření Dopplerova jevu 1.1 Úkol měření Proměřte posuv kmitočtu ultrazvukové vlny, pokud pozorovatel(přijímač) či zdroj(vysílač) této vlny budou ve vzájemném pohybu. Porovnejte naměřené hodnoty

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ DIPLOMOVÁ PRÁCE Modeloání proudění ody na měrném přeliu Vedoucí práce: Ing. Jiří Palásek, Ph.D. Diplomant: Roman Kožín 009 Prohlášení Prohlašuji,

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at PROMOTE MSc POPIS TÉMATU FYZIKA 4 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Software Dynamická geometrie v optice Optika Andreas Ulovec Andreas.Ulovec@univie.ac.at Užití

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m Mehaniké kmitání Periodiký pohyb - harakterizován pravidelným opakováním pohybového stavu tělesa ( kyvadlo, těleso na pružině, píst motoru, struna na kytaře, nohy běžíího člověka ) - nejkratší doba, za

Více

ERserver. iseries. Globalizace (vývoj globálních aplikací)

ERserver. iseries. Globalizace (vývoj globálních aplikací) ERserer iseries Globalizace (ýoj globálních aplikací) ERserer iseries Globalizace (ýoj globálních aplikací) Copyright International Business Machines Corporation 1998, 2002. Všechna práa yhrazena. Obsah

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN Ientifikátor ateriálu: ICT 1 10 Regitrační čílo projektu Náze projektu Náze příjece popory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýtup Klíčoá loa Druh učebního ateriálu Druh interaktiity Cíloá

Více

MARKETING A KOMUNIKACE V LESNÍ PEDAGOGICE

MARKETING A KOMUNIKACE V LESNÍ PEDAGOGICE MARKETING A KOMUNIKACE V LESNÍ PEDAGOGICE Seminář: Jak na handicapy lesního pedagoga Kouty n. D.,12.-13. 11. Ing. Jan Řezáč Záměr semináře Vytořit platformu, která finančně, organizačně a metodicky zajistí

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole.

Stacionární magnetické pole. Kolem trvalého magnetu existuje magnetické pole. Magnetické pole Stacionární magnetické pole Kolem trvalého magnetu existuje magnetické pole. Stacionární magnetické pole Pilinový obrazec magnetického pole tyčového magnetu Stacionární magnetické pole

Více

Pojmové mapy ve výuce fyziky

Pojmové mapy ve výuce fyziky Pojmové mapy ve výuce fyziky Renata Holubová Přírodovědecká fakulta UP Olomouc, e-mail: renata.holubova@upol.cz Úvod Rámcové vzdělávací programy mají pomoci dosáhnout u žáků přírodovědné gramotnosti. Tento

Více

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD

F-1 Fyzika hravě. (Anotace k sadě 20 materiálů) ROVNOVÁŽNÁ POLOHA ZAPOJENÍ REZISTORŮ JEDNODUCHÝ ELEKTRICKÝ OBVOD F-1 Fyzika hravě ( k sadě 20 materiálů) Poř. 1. F-1_01 KLID a POHYB 2. F-1_02 ROVNOVÁŽNÁ POLOHA Prezentace obsahuje látku 1 vyučovací hodiny. materiál slouží k opakování látky na téma relativnost klidu

Více

PŘÍLOHA. Příloha 6. NAŘÍZENÍ V PŘENESENÉ PRAVOMOCI (EU) č. /..,

PŘÍLOHA. Příloha 6. NAŘÍZENÍ V PŘENESENÉ PRAVOMOCI (EU) č. /.., EVROPSKÁ KOMISE V Bruselu dne 3.5.2013 C(2013) 2458 final PŘÍLOHA Příloha 6 k NAŘÍZENÍ V PŘENESENÉ PRAVOMOCI (EU) č. /.., kterým se doplňuje směrnie Evropského parlamentu a Rady 2010/30/EU, pokud jde o

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Zajímavé pokusy s keramickými magnety

Zajímavé pokusy s keramickými magnety Veletrh nápadů učitelů fyziky Vl Zajímavé pokusy s keramickými magnety HANS-JOACHIM WILKE Technická UIŮverzita, Drážďany, SRN Překlad - R. Holubová V úvodu konference byla přednesena velice zajímavá přednáška

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Hoval IDKM 250 plochý kolektor pro vestavbu do střechy. Popis výrobku ČR 1. 10. 2011. Hoval IDKM 250 plochý kolektor

Hoval IDKM 250 plochý kolektor pro vestavbu do střechy. Popis výrobku ČR 1. 10. 2011. Hoval IDKM 250 plochý kolektor pro estabu do střechy Popis ýrobku ČR. 0. 20 Hoal IDKM 250 plochý kolektor ysoce ýkonný plochý kolektor se skleněnou přední stěnou, určený pro termické yužití sluneční energie sestaením několika kolektorů

Více

Joseph Louis François Bertrand. Anna Kalousová Robust 2010, 31. 1. 5. 2. 2010

Joseph Louis François Bertrand. Anna Kalousová Robust 2010, 31. 1. 5. 2. 2010 Joseph Louis François Bertrand Anna Kalousová Robust 2010, 31. 1. 5. 2. 2010 Joseph Louis François Bertrand (1822 1900) otec Alexandre Bertrand (1795 1831), lékař (specializoval se na studium náměsíčnosti),

Více

Kinematika Trajektorie pohybu, charakteristiky pohybu Mirek Kubera

Kinematika Trajektorie pohybu, charakteristiky pohybu Mirek Kubera Kinematika Mirek Kubera Výstup RVP: Klíčová slova: žák užívá základní kinematické vztahy při řešení problémů a úloh o pohybech rovnoměrných a rovnoměrně zrychlených/zpomalených trajektorie, rychlost, GPS,

Více

Matematika kr sy. 5. kapitola. V hoda pr ce s grupami

Matematika kr sy. 5. kapitola. V hoda pr ce s grupami 5. kapitola Matematika kr sy V hoda pr ce s grupami Původním úkolem geometrie byl popis různých objektů a vztahů, pozorovaných v okolním světě. Zrakem vnímáme nejen struktury tvaru objektů, všímáme si

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Rychlost světla. Kapitola 2

Rychlost světla. Kapitola 2 Kapitola 2 Rychlost světla Michael Faraday, syn yorkshirského kováře, se narodil v jižním Londýně roku 1791. Byl samoukem, který školu opustil ve čtrnácti, aby se stal učněm u knihaře. Zajistit si vstup

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více