Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Rozměr: px
Začít zobrazení ze stránky:

Download "Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12"

Transkript

1 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 1 / 13

2 Logika X. Prenexní normální tvar. Skolemizace. Rezoluční metoda. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 2 / 13

3 Prenexní normální tvar Definice Formule je v prenexním normální tvaru, jestliže je ve tvaru (Q 1 x 1 )...(Q n x n )A, kde A je otevřená formule, Q i jsou kvantifikátory, x i jsou proměnné. ( x)( y)( z)(y < x y ), ( k)(n = 2k) Definice Formule B je varianta formule A, jestliže se liší jen přejmenováním vázaných proměnných. ( u)( v)( w)(w < u v ), ( l)(n = 2l). Věta Je-li B varianta A, pak A B. ( x)( y)( z)(y < x y ) ( u)( v)( w)(w < u v ) (( k)(n = 2k) ( l)(n = 2l)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 3 / 13

4 Prenexní operace Chceme mít formule v prenexním tvaru. Víme: (( x)a ( x)b) ( x)(a B) (( x)a ( x)b) ( x)(a B) Prenexní operace 1 ( x)a ( x) A ( x)a ( x) A 2 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 3 Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)) (A ( x)b(x)) ( x)(a B(x)) 4 Není-li x volná v B, pak (( x)a(x) B) ( x)(a(x) B) (( x)a(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 4 / 13

5 Prenexní operace - důkaz ad 2. Není-li x volná v A, pak (A ( x)b(x)) ( x)(a B(x)). Dokážeme (A ( x)b(x)) ( x)(a B(x)). Sporem. Kdyby ex. M tak, že M = (A ( x)b(x)) ( x)(a B(x)), pak M = (A ( x)b(x)) a M = ( x)( A B(x)), tedy existuje m M tak, že A B[m], ale A B[m].. Dokážeme ( x)(a B(x)) (A ( x)b(x)). Sporem. Kdyby ex. M tak, že M = ( x)(a B(x) (A ( x)b(x)), pak M = ( x)(a B(x)) a M = A a M = ( x) B(x), tedy existuje m M tak, že B[m], ale A B[m] a A.. ad 3. Není-li x volná v A, pak (A ( x)b(x)) ( A ( x)b(x)) ( x)( A B(x)) ( x)(a B(x)) ad 4. Není-li x volná v B, pak (( x)a(x) B) ( ( x)a(x) B) (( x) A(x) B) ( x)(a(x) B) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 5 / 13

6 Prenexní normální tvar Věta Ke každé formuli existuje formule s ní ekvivalentní v prenexním normálním tvaru. Příklady: 1 ( a)( b)((a < b) ( c)(a < b < c) ( a)( b)( c)((a < b) (a < b < c) 2 ( x)(x = 0) ( x)(x = S(0)) ( x)(x = 0) ( y)(y = S(0)) ( x)( y)((x = 0) (y = S(0))) 3 ( x)(x > 0) ( y)(x + y > 0)) ( z)(z > 0) ( y)(x + y > 0)) ( z)( y)((z > 0) (x + y > 0)) ( y)( z)((z > 0) (x + y > 0)) 4 ( ɛ)((ɛ > 0) ( δ)( x)((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) ( ɛ)( δ)( x)((ɛ > 0) ((δ > 0) ( x c < δ) ( f (x) f (c) < ɛ)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 6 / 13

7 Skolemizace Chceme jen obecné kvantifikátory. Definice T je konzervativní rozšíření teorie T, právě když L L a pro každou formuli jazyka L platí T = A, právě když T = A. ( x)a(x)... vybereme novou konstantu c L = L {c} T = T {( x)a(x) A(c)} ( x)( y)a(x, y)... definujeme novou funkci f (x) L = L {f (x)} T = T {( x)a(x, f (x))) ( x)( y)a(x, y)} RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 7 / 13

8 Skolemův normální tvar Věta Ke každé uzavřené formuli A existuje formule A S, která je v prenexním normální tvaru, kde všechny kvantifikátory jsou obecné, tzv. Skolemův normální tvar. Příklady: A je splnitelná, právě když A S je splnitelná. ( y)( x)(x > y)... definujeme konstantu c tak, že ( x)(x > c) ( x)( y)(x > y)... definujeme funkci f (x) tak, že ( x)(x > f (x)) ( t)( x)( y)( z)( u)( w)a(t, x, y, z, u, w)... c ( x)( y)( z)( u)( w)a(c, x, y, z, u, w)... g(x, y) ( x)( y)( u)( w)a(c, x, y, g(x, y), u, w)... h(x, y, u) ( x)( y)( u)a(c, x, y, g(x, y), u, h(x, y, u)) RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 8 / 13

9 Otevřené jádro formule Věta Nechť A je otevřená formule s volnými proměnnými x 1,..., x n. Potom pro libovolnou interpretaci M platí M = A, právě když M = ( x 1 )...( x n )A. A je tautologie ( x 1 )...( x n )A je tautologie. A se nazývá otevřené jádro formule ( x 1 )...( x n )A Příklad: ( x)( y)((x > y) (y > x)) je pravdivé v N, právě když (x > y) (y > x) je pravdivé v N A(x) je tautologie, právě když ( x)a(x) je tautologie. POZOR! A(x) ( x)a(x) není tautologie. A(x) ( x)a(x) není tautologie. ( x 1 )...( x n )A není logicky ekvivalentní s A. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 9 / 13

10 Rezoluční metoda v predikátové logice 1 Teorie. Konjunkce formuĺı. 2 Prenexní normální tvar. 3 Skolemizace. 4 Otevřené jádro formule. 5 Klausule. 6 Resolventy formuĺı. 7 Kontradikce? Příklad: ( x)(p(x) Q(x)), ( x) P(x) = ( x)q(x)? ( x)(p(x) Q(x)) ( x) P(x) ( x)q(x) ( x)(p(x) Q(x)) ( z) P(z) ( y) Q(y) ( z)( x)( y)((p(x) Q(x)) P(z) Q(y)) ( x)( y)((p(x) Q(x)) P(c) Q(y)) (P(x) Q(x)) P(c) Q(y)) Q(c), Q(c), RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 10 / 13

11 Rezoluční metoda v predikátové logice Žádný člověk není zvíře Některé zvíře je šelma. Tudíž některá šelma není člověk. ( x)(c(x) z(x)), ( x)(z(x) s(x)) = ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( x)(z(x) s(x)) ( x)(s(x) c(x)) ( x)( c(x) z(x)) ( v)(z(v) s(v)) ( u)(s(u) c(u)) ( x)( c(x) z(x)) (z(k) s(k)) ( u)(s(u) c(u)) ( x)( u)( c(x) z(x)) z(k) s(k) ( s(u) c(u)) (( c(x) z(x)) z(k) s(k) ( s(u) c(u)))... otevřená formule s(k), c(k), z(k), z(k),. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 11 / 13

12 Příklady Každá větší ryba je rychlejší než menší ryba. Tudíž jestliže je nějaká ryba největší, pak je i nějaká ryba nejrychlejší, v(x, y), r(x, y) ( x)( y)(v(x, y) r(x, y)) = ( z)( y)v(z, y) ( z)( y)r(z, y) Sporem: ( x)( y)(v(x, y) r(x, y)) (( z)( u)v(z, u) ( z)( u)r(z, u)) ( x)( y)(v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t)r(s, t) ( x)( y)( v(x, y) r(x, y)) ( z)( u)v(z, u) ( s)( t) r(s, t) RM: ( x)( y)( v(x, y) r(x, y)) ( u)v(c, u) ( s) r(s, f (s)) v(c, u), r(c, f (c)), v(c, f (c)), v(c, f (c)) r(c, f (c)). Spor. STROM: Tedy existuje c tak, že ( u)v(c, u). Tedy též existuje d tak, že r(c, d). Tedy i v(c, d). Ale v(c, d) r(c, d). Tedy spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 12 / 13

13 Příklad Každý Cadillac je dražší než jakékoli levné vozidlo. Tudíž Cadillac není levné vozidlo, c(x), l(x) d(x, y) ( x)( y)((c(x) l(y)) d(x, y)) = ( x)(c(x) l(x)) Kdyby tomu tak nebylo, pak ( x)( y)((c(x) l(y) d(x, y))) ( x)(c(x) l(x)) Označme si toto konkrétní auto m. Platí c[m] l[m] (( c[m] l[y])) d[m, m]). Tedy d[m, m]. To je spor. RNDr. Kateřina Trlifajová PhD. (FIT ČVUT) Logika XI. BI-MLO, ZS 2011/12 13 / 13

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

Sémantika predikátové logiky

Sémantika predikátové logiky Sémantika predikátové logiky pro analýzu sémantiky potřebujeme nejprve specifikaci jazyka (doména, konstanty, funkční a predikátové symboly) příklad: formální jazyk s jediným binárním predikátovým symbolem

Více

Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika III. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Cvičení z logiky II.

Cvičení z logiky II. Cvičení z logiky II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 https://edux.fit.cvut.cz/courses/bi-mlo/lectures/

Více

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika II. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2015/2016 1 / 16 Tablo metoda v PL Důsledky úplnosti Vlastnosti

Více

Výroková a predikátová logika - IX

Výroková a predikátová logika - IX Výroková a predikátová logika - IX Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IX ZS 2013/2014 1 / 15 Korektnost a úplnost Důsledky Vlastnosti teorií

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

2016 Česká republika ŽENY (aktuální k )

2016 Česká republika ŽENY (aktuální k ) 2016 Česká republika ŽENY (aktuální k 27. 11. 2017) věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002462 0.997538 100 000.00 246.23 99787 8205207 82.05 100 000.00 243.07 5 066 877.57 34 975.90 176 922

Více

Česká republika - ŽENY

Česká republika - ŽENY 2012 Česká republika - ŽENY věk qx px lx dx Lx Tx ex Dx Cx Nx Mx Sx Rx 0 0.002338 0.997662 100000 234 99804 8088058 80.88 100 000.00 229.43 4 164 194.04 22 355.11 130 483 842.84 1 731 180.86 1 0.000144

Více

Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný

Skolemizace. x(x + f(x) = 0). Interpretace f unární funkce, která pro daný Skolemizace převod formulí na formule bez existenčních kvantifikátorů v jazyce, který je rozšířen o tzv. Skolemovy funkce; zachovává splnitelnost idea převodu: formuli x 1... x n yp (x 1,..., x n, y) transformujeme

Více

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Stefan Ratschan. Fakulta informačních technologíı. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Logika pro každodenní přežití Stefan Ratschan Katedra číslicového návrhu Fakulta informačních technologíı České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Úvod do logiky (PL): negace a ekvivalence vět mimo logický

Úvod do logiky (PL): negace a ekvivalence vět mimo logický Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): negace a ekvivalence vět mimo logický čtverec

Více

Převyprávění Gödelova důkazu nutné existence Boha

Převyprávění Gödelova důkazu nutné existence Boha Převyprávění Gödelova důkazu nutné existence Boha Technické podrobnosti Důkaz: Konečná posloupnost výrokůkorektně utvořených formulí nějakého logického kalkulu), z nichž každý jelogickým) axiomem, postulátemteorie),

Více

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka

Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka Celkové hodnocení BI-MLO (nevyplňujte!) Semestr Zkouška Cvičení Aktivita 1. část 2. část 3. část Ústní Celkem Známka BI-MLO Písemná zkouška 9. února 2016 Matematická logika FIT ČVUT v Praze Varianta B

Více

Logika. 8. Automatické dokazování v predikátové logice (obecná rezoluční metoda)

Logika. 8. Automatické dokazování v predikátové logice (obecná rezoluční metoda) Logika 8. Automatické dokazování v predikátové logice (obecná rezoluční metoda) RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

1 Pravdivost formulí v interpretaci a daném ohodnocení

1 Pravdivost formulí v interpretaci a daném ohodnocení 1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří

Více

Predikátová logika [Predicate logic]

Predikátová logika [Predicate logic] Predikátová logika [Predicate logic] Přesněji predikátová logika prvého řádu. Formalizuje výroky o vlastnostech předmětů (entit) a vztazích mezi předměty, které patří do dané předmětné oblasti univerza.

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz

Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Úvod do TI - logika Predikátová logika 1.řádu (4.přednáška) Marie Duží marie.duzi@vsb.cz Jednoduché úsudky, kde VL nestačí Všechny opice mají rády banány Judy je opice Judy má ráda banány Z hlediska VL

Více

Výroková a predikátová logika - X

Výroková a predikátová logika - X Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2015/2016 1 / 22 Herbrandova věta Úvod Redukce nesplnitelnosti na

Více

Hilbertovský axiomatický systém

Hilbertovský axiomatický systém Hilbertovský axiomatický systém Predikátová logika H 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 24. října 2008 Specifikace H 1 Jazyk L H1 přejímáme jazyk predikátové logiky

Více

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7 1 Výroková logika 1 Výroková logika 1 2 Predikátová logika 3 3 Důkazy matematických vět 4 4 Doporučená literatura 7 Definice 1.1 Výrokem rozumíme každé sdělení, o kterém má smysl uvažovat, zda je, či není

Více

2.5 Rezoluční metoda v predikátové logice

2.5 Rezoluční metoda v predikátové logice 2.5. Rezoluční metoda v predikátové logice [101104-1520] 19 2.5 Rezoluční metoda v predikátové logice Rezoluční metoda v predikátové logice je obdobná stejnojmenné metodě ve výrokové logice. Ovšem vzhledem

Více

2.2 Sémantika predikátové logiky

2.2 Sémantika predikátové logiky 14 [101105-1155] 2.2 Sémantika predikátové logiky Nyní se budeme zabývat sémantikou formulí, tj. jejich významem a pravdivostí. 2.2.1 Interpretace jazyka predikátové logiky. Interpretace predikátové logiky

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Cvičení z logiky I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

Predikátová logika. Kapitola 2. 2.1 Formule predikátové logiky

Predikátová logika. Kapitola 2. 2.1 Formule predikátové logiky 5 Kapitola 2 Predikátová logika 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.

Více

Úvod do logiky (PL): ekvivalence a negace výroků logického

Úvod do logiky (PL): ekvivalence a negace výroků logického Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): ekvivalence a negace výroků logického čtverce

Více

V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu.

V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu. 1 Predikátová logika Základní informace V této výukové jednotce se student seznámí se základními pojmy z teorie predikátového počtu. Výstupy z výukové jednotky Student se seznámí se základními termíny

Více

IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n,

IA008 Computational logic Version: 6. května Formule je v konjunktivní normální formě (CNF), pokud má tvar α 1... α n, 1 Převody do normálních forem Příklad 1.1: Vyjádřete následující formule v DNF pomocí pravdivostní tabulky a pomocí převodu logických spojek. a) (A B) C b) (A B) C c) (A B) (C D) Formule je v disjunktivní

Více

Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D.

Logika. 5. Rezoluční princip. RNDr. Luděk Cienciala, Ph. D. Logika 5. Rezoluční princip RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216,

Více

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika I. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Okruh č.3: Sémantický výklad predikátové logiky

Okruh č.3: Sémantický výklad predikátové logiky Okruh č.3: Sémantický výklad predikátové logiky Predikátová logika 1.řádu formalizuje úsudky o vlastnostech předmětů a vztazích mezi předměty pevně dané předmětné oblasti (univerza). Nebudeme se zabývat

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Klínové řemeny obalované s úzkým průřezem

Klínové řemeny obalované s úzkým průřezem profilem Řemenice a lanové kladky Spojky a křížové emeny Řetězové pohony Inteligentní nástroje Klínové ky Spojky a křížové klouby Ozubené řemeny Řetězová í nástroje Klínové řemeny a řemeny s úzkým profilem

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

3. Polynomy Verze 338.

3. Polynomy Verze 338. 3. Polynomy Verze 338. V této kapitole se věnujeme vlastnostem polynomů. Definujeme základní pojmy, které se k nim váží, definujeme algebraické operace s polynomy. Diskutujeme dělitelnost polynomů, existenci

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

Predikátová logika. 3.1 Formule predikátové logiky

Predikátová logika. 3.1 Formule predikátové logiky 12 Kapitola 3 Predikátová logika 3.1 Formule predikátové logiky 3.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolů uvedených v textu.

Více

k n ( k) n k F n N n C F n F n C F F q n N C F n k 0 C [n, k] [n, k] q C [n, k] k n C C (n k) n C u C u T = T. [n, k] C (n k) n T = k (n k). F n N u = (u 1,..., u n ) v = (v 1,..., v n ) F n d(u, v) u

Více

Přednáška 3: rozhodování o platnosti úsudku

Přednáška 3: rozhodování o platnosti úsudku Přednáška 3: rozhodování o platnosti úsudku Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky Úsudky Úsudek je platný, jestliže nutně, za všech okolností, tj. při všech interpretacích, ve kterých

Více

Rezoluční kalkulus pro logiku prvního řádu

Rezoluční kalkulus pro logiku prvního řádu AD4M33AU Automatické uvažování Rezoluční kalkulus pro logiku prvního řádu Petr Pudlák Logika prvního řádu (Někdy nepřesně nazývaná predikátová logika.) Výhody Vyšší vyjadřovací schopnost jazyka, V podstatě

Více

Negace bázového atomu Negace atomu s existenčním termem Negace klauzule Negace množiny klauzulí Predikát rovnosti. Klauzulární logika

Negace bázového atomu Negace atomu s existenčním termem Negace klauzule Negace množiny klauzulí Predikát rovnosti. Klauzulární logika Vlastnosti klauzulí, negace Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 27. října 2008 Věta o transferu bázového atomu

Více

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20

Další (neklasické) logiky. Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Predikátová logika Jiří Velebil: AD0B01LGR 2015 Predikátová logika 1/20 Jazyk predikátové logiky Má dvě sorty: 1 Termy: to jsou objekty, o jejichž vlastnostech chceme hovořit. Mohou být proměnné. 2 Formule:

Více

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek

Unární je také spojka negace. pro je operace binární - příkladem může být funkce se signaturou. Binární je velká většina logických spojek Otázka 06 - Y01MLO Zadání Predikátová logika, formule predikátové logiky, sentence, interpretace jazyka predikátové logiky, splnitelné sentence, tautologie, kontradikce, tautologicky ekvivalentní formule.

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie

Více

Logika Libor Barto. Výroková logika

Logika Libor Barto. Výroková logika Logika Libor Barto Výroková logika Definice.(Jazyk výrokové logiky) Ve výrokové logice používáme tyto symboly: (1) Výrokové proměnné: velká písmena, případně opatřená indexy. (2) Výrokovéspojky:,,&,,,....

Více

Výroková a predikátová logika - XII

Výroková a predikátová logika - XII Výroková a predikátová logika - XII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XII ZS 2018/2019 1 / 15 Rezoluční metoda v PL Rezoluční důkaz Obecné

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2017/2018 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Výroková a predikátová logika - VII

Výroková a predikátová logika - VII Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře

Více

Přednáška 2: Formalizace v jazyce logiky.

Přednáška 2: Formalizace v jazyce logiky. Přednáška 2: Formalizace v jazyce logiky. Marie Duží marie.duzi@vsb.cz Úvod do teoretické informatiky (logika) Dva základní logické systémy: Výroková logika a predikátová logika. řádu. Výroková logika

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

Výroková logika. Sémantika výrokové logiky

Výroková logika. Sémantika výrokové logiky Výroková logika Výroková logika se zabývá vztahy mezi dále neanalyzovanými elementárními výroky. Nezabývá se smyslem těchto elementárních výroků, zkoumá pouze vztahy mezi nimi. Elementární výrok je takový

Více

platné nejsou Sokrates je smrtelný. (r) 1/??

platné nejsou Sokrates je smrtelný. (r) 1/?? Predikátová logika plně přejímá výsledky výrokové logiky zabývá se navíc strukturou jednotlivých jednoduchých výroků na základě této analýzy lze odvodit platnost některých výroků, které ve výrokové logice

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Úvod do teoretické informatiky(2017/2018) cvičení 6 1

Úvod do teoretické informatiky(2017/2018) cvičení 6 1 Úvod do teoretické informatiky(2017/2018) cvičení 6 1 Cvičení 6 Příklad 1: Pro každou z následujících sekvencí symbolů rozhodněte, zda se jedná o a) term, b) formuli predikátové logiky(používejte běžné

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Systém přirozené dedukce výrokové logiky

Systém přirozené dedukce výrokové logiky Systém přirozené dedukce výrokové logiky Korektnost, úplnost a bezespornost Šárka Vavrečková Ústav informatiky, FPF SU Opava Poslední aktualizace: 6. října 2008 Věta o korektnosti Věta (O korektnosti Systému

Více

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D.

Logika. 2. Výroková logika. RNDr. Luděk Cienciala, Ph. D. Logika 2. Výroková logika RNDr. Luděk Cienciala, Ph. D. Tato inovace předmětu Úvod do logiky je spolufinancována Evropským sociálním fondem a Státním rozpočtem ČR, projekt č. CZ. 1.07/2.2.00/28.0216, Logika:

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

Výroková a predikátová logika - XI

Výroková a predikátová logika - XI Výroková a predikátová logika - XI Petr Gregor KTIML MFF UK ZS 2014/2015 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XI ZS 2014/2015 1 / 21 Další dokazovací systémy PL Hilbertovský kalkul

Více

Predikátová logika dokončení

Predikátová logika dokončení Predikátová logika dokončení Jiří Velebil: X01DML 1. října 2010: Predikátová logika dokončení 1/18 Syntaktická analýza Jako ve výrokové logice (syntaktické stromy). Každý list úspěšného stromu je obsazen

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

Výroková a predikátová logika - XIII

Výroková a predikátová logika - XIII Výroková a predikátová logika - XIII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - XIII ZS 2013/2014 1 / 13 Úvod Algoritmická (ne)rozhodnutelnost Které

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.    horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 20 Predikátová logika Motivace Výroková

Více

Výroková a predikátová logika - V

Výroková a predikátová logika - V Výroková a predikátová logika - V Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - V ZS 2015/2016 1 / 21 Dokazovací systémy VL Hilbertovský kalkul Hilbertovský

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

4 Počítání modulo polynom

4 Počítání modulo polynom 8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li

Více

Úvod do logiky (PL): analýza vět mimo logický čtverec

Úvod do logiky (PL): analýza vět mimo logický čtverec Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): analýza vět mimo logický čtverec doc. PhDr.

Více

Základy matematické logiky

Základy matematické logiky OBSAH 1 Základy matematické logiky Obsah 1 Úvod 2 1.1 Předmět matematiky.......................... 2 1.2 Nástin historie.............................. 2 1.3 Axiomatická výstavba matematických teorií.............

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30 Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,

Více

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy.

Rovnost lze vyjádřit jako predikát, např. můžeme zvolit, že P(x, y) reprezentujetvrzení xjerovnoy. Rovnost Jedním z nejdůležitějších druhů relací je rovnost(identita). Prvkyxayjsousirovny,cožzapisujeme x =y, jestližesejednáojedenatentýžprvek. Rovnost lze vyjádřit jako predikát, např. můžeme zvolit,

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

Okruh č.9: sémantické metody dokazování v PL1 model formule Tradiční Aristotelova logika kategorický sylogismus subjekt predikátové výroky

Okruh č.9: sémantické metody dokazování v PL1 model formule Tradiční Aristotelova logika kategorický sylogismus subjekt predikátové výroky Okruh č.9: sémantické metody dokazování v PL1 Pomocí metody Vennových diagramů a relačních struktur vytváříme grafický model situace, která je úsudkem vyjádřena. Ověřujeme, zda náš graficky znázorněný

Více

Výroková logika. Teoretická informatika Tomáš Foltýnek

Výroková logika. Teoretická informatika Tomáš Foltýnek Výroková logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika strana 2 Opakování z minulé přednášky Co je to formalismus a co je jeho cílem? Formulujte Russelův paradox

Více

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana.

Která tvrzení jsou pravdivá nezávisle na tom, který den v týdnu byla vyslovena? Tvrzení trosečníka Dana. Trosečníci Adam, Barry, Code a Dan zapoměli po čase kalendář. Začali se dohadovat, který den v týdnu vlastně je. Každý z nich řekl svůj názor: A: Dnes je úterý nebo zítra je neděle B: Dnes není úterý nebo

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

Výroková logika syntaxe a sémantika

Výroková logika syntaxe a sémantika syntaxe a sémantika Jiří Velebil: AD0B01LGR 2015 Handout 01: & sémantika VL 1/16 1 Proč formální jazyk? 1 Přirozené jazyky jsou složité a často nejednoznačné. 2 Komunikace s formálními nástroji musí být

Více

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik

Matematická logika. Rostislav Horčík. horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Predikátová logika Motivace Výroková

Více

Matematika III přednáška Aplikace vytvořujících funkcí - další úlohy

Matematika III přednáška Aplikace vytvořujících funkcí - další úlohy S Matematika III - 14. přednáška Aplikace vytvořujících funkcí - další úlohy Michal Bulant Masarykova univerzita Fakulta informatiky 18. 12. 2007 Obsah přednášky Řešení rekurencí Q Exponenciální vytvořující

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 3 Predikátový počet Uvažujme následující úsudek.

Více

Teoretická informatika - Úkol č.1

Teoretická informatika - Úkol č.1 Teoretická informatika - Úkol č.1 Lukáš Sztefek, xsztef01 18. října 2012 Příklad 1 (a) Gramatika G 1 je čtveřice G 1 = (N, Σ, P, S) kde, N je konečná množina nonterminálních symbolů N = {A, B, C} Σ je

Více

Úvod do logiky (PL): logický čtverec (cvičení)

Úvod do logiky (PL): logický čtverec (cvičení) Logika: systémový rámec rozvoje oboru v ČR a koncepce logických propedeutik pro mezioborová studia (reg. č. CZ.1.07/2.2.00/28.0216, OPVK) Úvod do logiky (PL): logický čtverec (cvičení) doc. PhDr. Jiří

Více

Kapitola 7: Neurčitý integrál. 1/14

Kapitola 7: Neurčitý integrál. 1/14 Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní

Více

Výroková a predikátová logika - III

Výroková a predikátová logika - III Výroková a predikátová logika - III Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - III ZS 2017/2018 1 / 16 2-SAT 2-SAT Výrok je v k-cnf, je-li v CNF a

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více