Relační datový model. Integritní omezení. Normální formy Návrh IS. funkční závislosti multizávislosti inkluzní závislosti

Rozměr: px
Začít zobrazení ze stránky:

Download "Relační datový model. Integritní omezení. Normální formy Návrh IS. funkční závislosti multizávislosti inkluzní závislosti"

Transkript

1 Relační datový model Integritní omezení funkční závislosti multizávislosti inkluzní závislosti Normální formy Návrh IS

2 Funkční závislosti funkční závislost elementární redundantní redukovaná částečná pokrytí minimální pokrytí Armstrongova pravidla

3 Funkční závislosti speciální druh IO, vymezuje určitou množinu přípustných relací. Jsou definovány mezi 2 množinami atributů v rámci jednoho schématu relace jedná se o vztahy mezi daty - ne mezi entitami či entitami a daty funkční závislost lze definovat za předpokladu pevné sémantiky Pozorováním funkčních závislostí lze zjistit že: platnost některých vede k platnosti jiných některé platí vždy

4 Formální popis funkční závislosti: Funkční závislosti R (Ω, F ) ; R(Ω) schéma relace a F množina funkčních závislostí Funkční závislost Mějme 2 množiny atributů: X, Y kde X, Y Ω. Pak Y funkčně závisí na X ( nebo X funkčně určuje Y) jestliže ke každé X-hodnotě existuje nejvýše jedna Y- hodnota. Značíme: X Y

5 Funkční závislosti Explicitní vyjádření funkční nezávislosti: X -/ Y PK lze vyjádřit pomocí funkčních závislostí: Je-li dáno R(Ω) a K, kde K Ω, pak K je klíčem schématu R jestliže splňuje 2 vlastnosti: 1) K Ω 2) Neexistuje K K taková, že K Ω (platí : K -/ Ω)

6 Funkční závislosti uzávěr Pokrytí - ekvivalence Uzávěr F Množina všech funkčních závislostí odvoditelných z F se nazývá uzávěr F, značí se F+. Je-li tedy funkční závislost odvoditelná z F patří do F+. Pokrytí - ekvivalence Pokrytí množiny funkčních závislostí F je množina funkčních závislostí G taková, že F+ = G+. 2 množiny funkčních závislostí F, G jsou ekvivalentní vymezují-li 2 stejné množiny relací. Říkáme, že F je pokrytím G, resp.g je pokrytím F.

7 Funkční závislosti Kanonické pokrytí Je-li F množina, která vznikne z F dekompozicí jejích neelementárních závislostí, platí F + = F +. Toto pokrytí je kanonické. Elementární funkční závislost Závislost, která má na pravé straně jeden atribut nazýváme elementární funkční závislost Redundantní závislost Závislost f je redundantní v F, pokud platí: ( F-{f}) + = F +

8 Funkční závislosti Redukovaná závislost Redukovaná závislost je taková závislost, která nemá na levé straně žádné redundantní atributy. Částečná závislost Částečná závislost je taková závislost, která není redukovaná.

9 Funkční závislosti Minimáln lní pokrytí Minimální pokrytí je kanonické neredundantní pokrytí tvořené z redukovaných závislostí. Odstraňování redundantních závislostí a odstraňování redundantních atributů nelze provádět v libovolném pořadí.

10 Funkční závislosti Nalezení minimálního pokrytí pro množinu funkčních závislostí F: Vytvořit kanonické pokrytí F odstranit redundantní atributy ze závislostí -t.j. všechny závislosti budou redukované odstranit redundantní funkční závislosti

11 Funkční závislosti ARMSTRONGOVA PRAVIDLA ARMSTRONGOVA PRAVIDLA - jsou: korektní - co jimi z nějaké množiny F odvodíme, platí ve všech relacích z Rel úplná - lze jimi odvodit všechny funkční závislosti, které platí na každé relaci z Rel. Nezávislá -odstraněním jakéhokoliv z nich porušíme vlastnost úplnosti.

12 Funkční závislosti ARMSTRONGOVA PRAVIDLA Nechť X, Y, Z jsou podmnožiny Ω. FZ1: triviální funkční závislost : je-li Y X, pak X Y FZ2: tranzitivita : X Y Y Z, pak X Z FZ3: kompozice : X Y X Z, pak X YZ FZ4: dekompozice: X YZ, pak X Y X Z Pozn.: YZ je sjednocení množiny Y a Z.

13 Multizávislosti vycházejí ze závislostí mezi 2 množinami atributů v rámci jedné relace Na multizávislostech je založena 4.NF Uvažujme schéma relace R(Ω), 2 množiny atributů A, B Ω, pak multizávislost B na A vychází z představy, že jedné A-hodnotě přiřadí více B-hodnot.

14 Multizávislosti Definice multizávislosti: Pro schéma relace R(Ω), kde Ω = { A, B, C}, C = Ω -A - B, A > B je multizávislost na A, jestliže pro každou přípustnou relaci R platí: R = R[A, B] * R[A, C]. Je-li C prázdná množina, pak se A > B nazývá multizávislost triviální. Lzeříci, že B multizávisí na A.

15 Multizávislosti Na multizávislostech je založena 4.NF jsou to jiné typy závislostí než FZ, ale stejně jako FZ vycházejí ze závislostí mezi 2 množinami atributů v rámci jedné relace. Uvažujme schéma relace R(Ω), 2 množiny atributů A, B Ω, pak multizávislost B na A vychází z představy, že jedné A- hodnotě přiřadí více hodnot B.

16 Inkluzní závislosti Na rozdíl od předchozích závislostí se jedná o vztah dvou relací, je to tedy globální IO Definice inkluzní závislosti: Nechť R i (Ω i ) a R j (Ω j ) jsou 2 schémata relací z R. Nechť X, resp. Y jsou kompatibilní podmnožinyω i resp. Ω j. Pak tvrzení R i [X] incl R j [Y] nazýváme inkluzní závislost. Daná inkluzní závislost platí na odpovídajících relacích tehdy, jestliže platí vztah inkluze mezi uvedenými projekcemi. Pokud je Y primární klíč R j, pak se jedná o referenční integritu, je-li Y jednotlivý atribut, pak se jedná o unární inkluzní závislost

17 Normalizace Normalizace přestavuje soubor pravidel aplikovaných na datové struktury Pravidla vycházejí z praktických problémů při aktualizaci databáze UPDATE, INSERT, DELETE Na základě pravidel (NF) se provádí úprava těch struktur (relací), které pravidla porušují. Základní postup je jediný - rozdělení do menších datových struktur (dekompozice ).

18 Normalizace Jednotlivým pravidlům se říká normální formy (NF) každá z těchto NF vede k omezení některých nedostatků NF vedou k odstranění duplicit a nekonzistencí v datech Codd nazýval praktické problémy aktualizační anomálie redundance ztráta informace nemožnost evidovat informace aniž by si je někdo vybral.

19 Normalizace Existují tyto NF: I.NF, II.NF, III.NF, IV.NF, BCNF IV.NF vychází z multizávislostí Platí: Je-li schéma relace ve vyšší NF, pak je samozřejmě i v nižší NF. V praxi je snaha dosáhnout III. NF, resp. BCNF

20 Normalizace I.NF Týká se jednoho záznamu (prvku relace) a odstranění nekonzistence v něm - prvky domén n jsou atomické 0.NF Schéma relace je v nulté normální formě právě tehdy, když existuje alespoň jeden atribut, který obsahuje více v než jednu hodnotu. Pokud schéma relace není v nulté normální formě, pak je alespoň v první normální formě.

21 Normalizace II.NF Schéma relace je ve II. NF, pokud je v I.NF a každý neklíčový atribut je plně funkčně závislý na PK. Plná funkční závislost Nechť pro podmnožiny atributů X, Y relace R ( Ω) existuje funkční závislost X Y. Pak říkáme, že Y je plně funkčně závislý na X, pokud neexistuje žádná funkční závislost A Y, kde A X.

22 III.NF Normalizace III.NF Schéma relace je ve III.NF, jestliže každý neklíčový atribut schématu R není tranzitivně závislý na žádném klíči schématu. Tvrzení: Schéma relace R(Ω,F), kde F je množina elementárních funkčních závislostí, je ve III.NF právě když pro každou funkční závislost schématu X A platí alespoň jedna ze tří podmínek: a) závislost je triviální b) X obsahuje klíč schématu R c) A je částí klíče schématu R

23 Normalizace Boyce-Coddova NF - BCNF Boyce-Coddova NF - BCNF Schéma relace je Boyce-Coddově NF, jestliže pro každou netriviální závislost X A platí, že X obsahuje klíč schématu R Tvrzení: Schéma relace R(Ω,F), kde F je množina elementárních funkčních závislostí, je v BCNF právě když pro každou funkční závislost schématu X A platí alespoň jedna ze dvou podmínek: a) závislost je triviální b) X obsahuje klíč schématu R

24 Normalizace Boyce-Coddova NF - BCNF BCNF Relace je v BCNF tehdy a jen tehdy, pokud každý determinant je kandidátem klíče. Tvrzení: Je-li schéma relace R(Ω,F) ve třetí NF a má pouze jednoduché klíče, pak je v BCNF.

25 Normalizace IV.NF IV.NF Schéma relace je ve IV.NF jestliže pro každou netriviální multizávislost X > Y platí, že X je nadmnožinou nějakého klíče schématu R. Tvrzení: Schéma relace R, je ve čtvrté NF právě když pro každou multizávislost schématu X >A platí alespoň jedna ze dvou podmínek: a) multizávislost je triviální b) X je nadmnožinou nějakého klíče schématu R

26 Normalizace V.NF V.NF Schéma relace je v páté normální formě, pokud je ve čtvrté normální formě a není možné do ní přidat nový atribut nebo novou skupinu atributů tak, aby se tím rozpadla vlivem skrytých závislostí na několik dílčích tabulek.

27 Návrh relačního schématu databáze na základě funkčních závislostí a multizávislostí kriteria pro návrh relačního schématu databáze: odstranění anomálií při aktualizacích relací řešení pomocí 3NF, BCNF děje se v procesu dekompozice schématu relace

28 Návrh relačního schématu databáze Problém při dekompozici = problém reprezentace : výsledné relace by měly mít stejnou sémantiku Výsledné relace by měly obsahovat stejná data

29 Návrh relačního schématu databáze stejná sémantika Stejná sémantika relace je dána IO ( zde IO = FZ) Při dekompozici - jedná se o dekompozici FZ mezi jednotlivá schémata. Jde tedy o vztah F, F i pro i 1,2,... N Vlastnost pokrytí závislostí: Nechť R = {S(Ω,F)} je relační schéma databáze a R 1 = {R i (Ω i, F i ), 1 i n, n 1} je dekompozice daného relačního schématu R. Pak R 1 má vlastnost pokrytí závislostí, jestliže: F + = ( F i ) +

30 Návrh relačního schématu databáze stejná sémantika Jak stanovit Fi: jde o závislosti, které platí na Ω i. jsou z F + (nejen z F), Projekce závislostí: Projekce F do Ω i je definována jako množina funkčních závislostí Fi = { X Y; X Y je v F + a XY je podmnožinou Ω i }

31 Návrh relačního schématu databáze stejná data Stejnost dat je dána bezztrátovostí dekompozice Nahrazení schématu R(Ω) schématy R i (Ω i ), kde 1 i n, přičemž pro množinu atributů platí: Ω = Ω i Dekompozice schématu znamená na úrovni databáze projekci původní relace na atributy odpovídající jednotlivým schématům po dekompozici (Ω i ): R i (Ω i ) = R [Ω i ] Pro každou dekompozici platí: R(Ω) R [Ω i ]

32 Návrh relačního schématu databáze stejná data dekompozice ztrátová - pak rekonstrukcí získáme více prvků relace (tj. bude obsahovat některéřádky relace, které v původní relaci nebyly). Dekompozice bezztrátová, pokud pro každou její přípustnou relaci je odpovídající dekompozice bezztrátová. R(Ω) = R [Ω i ]

33 Návrh relačního schématu databáze stejná data Tvrzení pro bezztrátovou dekompozici: Nechť R( X,Y,Z) je schéma relace kde X, Y, Z jsou disjunktní množiny atributů a X Y je funkční závislost. Rozložíme-li R( X,Y,Z) na schémata R 1 ( X,Y) a R 2 ( X,Z), je takto provedená dekompozice bezztrátová. Naopak: je-li dekompozice R 1 ( X,Y) a R 2 ( X,Z) bezztrátová, musí platit buď X Y nebo X Z.

34 Návrh relačního schématu databáze 2 algoritmy návrhu Dekompozice může mít buď jednu nebo obě vlastnosti pokrytí závislostí bezztrátové spojení Dekompozice a syntéza 2 algoritmy návrhu relačního schématu databáze Vycházejí z funkčních závislostí jde o dekompozici univerzálního schématu relace

35 Návrh relačního schématu databáze 2 algoritmy návrhu Univerzální schéma relace - zajišťuje: jednoznačnost jmen atributů ve všech schématech jméno atributu má pouze jeden význam, atributy se stejnými jmény mají stejnou doménu Cílem návrhu: splnit požadavek 3NF či BCNF zachování pokrytí závislostí vlastnost bezztrátového spojení

36 Metoda dekompozice Metoda syntézy

37 Dekompozice postupné nahrazování jednoho schématu dvěma. v tomto případě je vždy výsledné schéma v dané NF dekompozice má vlastnost bezztrátov tového spojení nemusí být zachována vlastnost pokrytí závislostí

38 Syntéza jde o vytváření schémat syntézou - přímo z funkčních závislostí výsledek algoritmu bude ve 3NF má zachovány závislosti nemusí být vždy zachováno bezztrátové spojení

39 Vstup: F, R(Ω) Postup: Syntéza vytvoří se minimální pokrytí závislosti minimálního pokrytí se roztřídí do skupin : každá skupina obsahuje závislosti se stejnou levou stranou, atributy závislostí každé skupiny tvoří schéma jedné relace -syntezované schéma, atributy levé strany tvoří klíč Jsou-li mezi syntezovanými schématy schémata s funkčně ekvivalentními klíči - pak se tato schémata sloučí v jedno schéma. Pokud při sloučení vzniknou tranzitivity je třeba je odstranit.

40 Syntéza Pokud nebudou atributy obsažené v R v žádné FZ umístí se do samostatné relace, která se připojí k R: X je množina atributů nevyskytujících se v minimálním pokrytí Y jsou takové atributy, aby XY tvořily klíč schématu R

41 Syntéza Metodu syntézy uvedl v r Bernstein. V r Biskup, Dayal, Bernstein dokázali zařídit bezztrátovost spojení: pokud K, kde K je klíč příslušného univerzálního schématu, není podmnožinou některého ze syntezovaných schémat pak stačí připojit k výsledku schéma s množinou atributů K. V tomto případě bude muset klíč K obsahovat i ty atributy, které nejsou obsaženy v žádné FZ.

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

UDBS Cvičení 10 Funkční závislosti

UDBS Cvičení 10 Funkční závislosti UDBS Cvičení 10 Funkční závislosti Ing. Miroslav Valečko Zimní semestr 2014/2015 25. 11. 2014 Návrh schématu databáze Existuje mnoho způsobů, jak navrhnout schéma databáze Některá jsou lepší, jiná zase

Více

DBS Normální formy, normalizace

DBS Normální formy, normalizace DBS Normální formy, normalizace Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze c Michal Valenta, 2010 BI-DBS, ZS 2010/11 https://edux.fit.cvut.cz/courses/bi-dbs/

Více

Kvalita relačního schématu, normalizace

Kvalita relačního schématu, normalizace Kvalita relačního schématu, normalizace Dva přístupy k návrhu struktury relačního schématu: normalizační teorie Metoda návrhu pomocí funkčních závislostí z konceptuálního schématu Metoda návrhu pomocí

Více

7. Normální formy. PŘ: POJIŠŤOVNA Povinné ručení relace Platby

7. Normální formy. PŘ: POJIŠŤOVNA Povinné ručení relace Platby 7. Normální formy PŘ: POJIŠŤOVNA Povinné ručení relace Platby Rodné číslo 7407111234 7407111234 7407111234 7407111234 481123123 481123123 481123123 481123123 Jméno majitele Dvořák Petr Dvořák Petr Dvořák

Více

Obsah přednášky. Databázové systémy. Normalizace relací. Normalizace relací. Normalizace relací. Normalizace relací

Obsah přednášky. Databázové systémy. Normalizace relací. Normalizace relací. Normalizace relací. Normalizace relací Obsah přednášky Databázové systémy Logický model databáze normalizace relací normální formy tabulek 0NF, 1NF, 2NF, 3NF, BCNF, 4NF, 5NF, DNF denormalizace zápis tabulek relační algebra klasické operace

Více

Úvod do databázových systémů

Úvod do databázových systémů Vysoká škola báňská Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Úvod do databázových systémů Cvičení 12 Ing. Petr Lukáš petr.lukas@vsb.cz Ostrava, 2014 Opakování Univerzální relační

Více

Databázové systémy Tomáš Skopal

Databázové systémy Tomáš Skopal Databázové systémy Tomáš Skopal - relační model * základní algoritmy * hledání klíčů * dekompozice a syntéza Osnova přednášky algoritmy pro analýzu schémat základní algoritmy (atributový uzávěr, příslušnost

Více

Úvod do databázových systémů. Cvičení 12 Ing. Martin Zwierzyna

Úvod do databázových systémů. Cvičení 12 Ing. Martin Zwierzyna Úvod do databázových systémů Cvičení 12 Ing. Martin Zwierzyna Základní pojmy Redundance Stejná data jsou uložena v databázi na více místech, zbytečně se opakují Řešení: Minimalizace redundance Základní

Více

Teorie zpracování dat

Teorie zpracování dat Teorie zpracování dat Návrh struktury databáze Funkční závislosti Vlastnosti dekompozice relačního schématu Normální formy Algoritmy návrhu struktury databáze 1 NÁVRH STRUKTURY DATABÁZE dosud návrh struktury

Více

TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů

TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů TÉMATICKÝ OKRUH Teorie zpracování dat, Databázové a informační systémy a Teorie informačních systémů Číslo otázky : 14. Otázka : Návrh struktury relační databáze, funkční závislosti. Obsah : 1. Návrh struktury

Více

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS

Relační databázový model. Vladimíra Zádová, KIN, EF, TUL- DBS Relační databázový model Databázové (datové) modely základní dělení klasické databázové modely relační databázový model relační databázový model Základní konstrukt - relace relace, schéma relace atribut,

Více

Databázové systémy. Úvod do teorie normalizace. Vilém Vychodil

Databázové systémy. Úvod do teorie normalizace. Vilém Vychodil Databázové systémy Úvod do teorie normalizace Vilém Vychodil KMI/DATA1, Přednáška 12 Databázové systémy V. Vychodil (KMI/DATA1, Přednáška 12) Úvod do teorie normalizace Databázové systémy 1 / 10 Přednáška

Více

DATABÁZOVÝ SYSTÉM Proč databázový systém? Vrstvy modelování Konceptuální datové modelování

DATABÁZOVÝ SYSTÉM Proč databázový systém? Vrstvy modelování Konceptuální datové modelování DATABÁZOVÝ SYSTÉM - databáze (data) - je logicky uspořádaná (integrovaná) kolekce navzájem souvisejících dat. - je sebevysvětlující, protože data jsou uchovávána společně s popisy, známými jako metadata

Více

Primární klíč (Primary Key - PK) Je právě jedna množina atributů patřící jednomu z kandidátů primárního klíče.

Primární klíč (Primary Key - PK) Je právě jedna množina atributů patřící jednomu z kandidátů primárního klíče. Primární a cizí klíč Kandidát primárního klíče (KPK) Je taková množina atributů, která splňuje podmínky: Unikátnosti Minimálnosti (neredukovatelnosti) Primární klíč (Primary Key - PK) Je právě jedna množina

Více

Databáze I. 4. přednáška. Helena Palovská

Databáze I. 4. přednáška. Helena Palovská Databáze I 4. přednáška Helena Palovská palovska@vse.cz Mapování ER modelu do relačního DB schématu Od 80. let 20. stol. znám algoritmus, implementován v CASE nástrojích Rutinní postup s volbami rozhodnutí

Více

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky.

Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Inovace tohoto kurzu byla spolufinancována z Evropského sociálního fondu a státního rozpočtu České republiky. Projekt ESF OP VK reg.č. CZ.1.07/2.2.00/28.0209 Elektronické opory a e-learning pro obory výpočtového

Více

Databáze I. Přednáška 3

Databáze I. Přednáška 3 Databáze I Přednáška 3 Normální formy relací normální formy relací definují určité vlastnosti relací, aby výsledná databáze měla dobré vlastnosti, např. omezena redundance dat snažíme se převést navržené

Více

Analýza a modelování dat 3. přednáška. Helena Palovská

Analýza a modelování dat 3. přednáška. Helena Palovská Analýza a modelování dat 3. přednáška Helena Palovská Historie databázových modelů Relační model dat Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM

Více

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází

Informační systémy 2008/2009. Radim Farana. Obsah. Obsah předmětu. Požadavky kreditového systému. Relační datový model, Architektury databází 1 Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní, Katedra automatizační techniky a řízení 2008/2009 Radim Farana 1 Obsah Požadavky kreditového systému. Relační datový model, relace, atributy,

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

11. blok Normalizace. Studijní cíl

11. blok Normalizace. Studijní cíl 11. blok Normalizace Studijní cíl Využití normalizace při návrhu databáze. Vliv nenormalizovaných tabulek na vznik anomálií a nekonzistence v databázi. Pravidla spojená s nejužívanějšími normálními formami

Více

Kapitola 6: Omezení integrity. Omezení domény

Kapitola 6: Omezení integrity. Omezení domény - 6.1 - Omezení domény Referenční integrita Aserce Spouštěče (Triggers) Funkční závislosti Kapitola 6: Omezení integrity Omezení domény Omezení integrity zabraňují poškození databáze; zajišťují, že autorizované

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta RELAČNÍ DATABÁZE (DISTANČNÍ VÝUKOVÁ OPORA) Zdeňka Telnarová. Aktualizovaná verze 2006

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY. Přírodovědecká fakulta RELAČNÍ DATABÁZE (DISTANČNÍ VÝUKOVÁ OPORA) Zdeňka Telnarová. Aktualizovaná verze 2006 UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta RELAČNÍ DATABÁZE (DISTANČNÍ VÝUKOVÁ OPORA) Zdeňka Telnarová Aktualizovaná verze 2006 Ostravská univerzita OBSAH 1 Modul 1... 6 1.1 Relační datový

Více

Terminologie v relačním modelu

Terminologie v relačním modelu 3. RELAČNÍ MODEL Relační model reprezentuje databázi jako soubor relací. Každá relace představuje tabulku nebo soubor ( ve smyslu soubor na nosiči dat ). Terminologie v relačním modelu řádek n-tice ( n-tuple,

Více

Hierarchický databázový model

Hierarchický databázový model 12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického

Více

Otázka č. 1 (bodů za otázku: 4)

Otázka č. 1 (bodů za otázku: 4) Otázka č. 1 (bodů za otázku: 4) Agendy - redundance Která z následujících tvrzení charakterizují redundanci dat v databázi? Je to opakování stejných dat pouze v různých souborech. Je zdrojem nekonzistence

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

RELAČNÍ DATABÁZOVÉ SYSTÉMY

RELAČNÍ DATABÁZOVÉ SYSTÉMY RELAČNÍ DATABÁZOVÉ SYSTÉMY VÝPIS KONTROLNÍCH OTÁZEK S ODPOVĚDMI: Základní pojmy databázové technologie: 1. Uveďte základní aspekty pro vymezení jednotlivých přístupů ke zpracování hromadných dat: Pro vymezení

Více

Kurz Databáze. Obsah. Návrh databáze E-R model. Datová analýza, tabulky a vazby. Doc. Ing. Radim Farana, CSc.

Kurz Databáze. Obsah. Návrh databáze E-R model. Datová analýza, tabulky a vazby. Doc. Ing. Radim Farana, CSc. Kurz Databáze Datová analýza, tabulky a vazby Doc. Ing. Radim Farana, CSc. Obsah Návrh databáze, E-R model, normalizace. Datové typy, formáty a rozsahy dat. Vytváření tabulek, polí, konvence pojmenování.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY (doplňující text ke konzultacím v 3. ročníku kombinovaného bakalářského studia oboru Aplikovaná

Více

Databázové systémy. Tomáš Skopal. - úvod do relačního modelu. - převod konceptuálního schématu do relačního

Databázové systémy. Tomáš Skopal. - úvod do relačního modelu. - převod konceptuálního schématu do relačního Databázové systémy - úvod do relačního modelu Tomáš Skopal - převod konceptuálního schématu do relačního Osnova přednášky relační model převod ER diagramu do relačního modelu tvorba univerzálního relačního

Více

Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava. Úvod do databázových systémů 2012/2013 IS MHD

Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava. Úvod do databázových systémů 2012/2013 IS MHD Fakulta elektrotechniky a informatiky Vysoká škola báňská - Technická univerzita Ostrava Úvod do databázových systémů 2012/2013 IS MHD Jiří Znoj, (zno0011) Ostrava, 29. listopadu 2012 I. Obsah I. Obsah...

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD

Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Okruhy otázek ke státní závěrečné zkoušce z předmětu Databázové technologie (DB) Databázové systémy 1 (DB1) Databázové systémy 2 (DB2) Případové studie databázových

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

4IT218 Databáze. 4IT218 Databáze

4IT218 Databáze. 4IT218 Databáze 4IT218 Databáze Osmá přednáška Dušan Chlapek (katedra informačních technologií, VŠE Praha) 4IT218 Databáze Osmá přednáška Normalizace dat - dokončení Transakce v databázovém zpracování Program přednášek

Více

8.2 Používání a tvorba databází

8.2 Používání a tvorba databází 8.2 Používání a tvorba databází Slide 1 8.2.1 Základní pojmy z oblasti relačních databází Slide 2 Databáze ~ Evidence lidí peněz věcí... výběry, výpisy, početní úkony Slide 3 Pojmy tabulka, pole, záznam

Více

Konceptuální modelování. Pavel Tyl 21. 3. 2013

Konceptuální modelování. Pavel Tyl 21. 3. 2013 Konceptuální modelování Pavel Tyl 21. 3. 2013 Vytváření IS Vytváření IS Analýza Návrh Implementace Testování Předání Jednotlivé fáze mezi sebou iterují Proč modelovat a analyzovat? Standardizované pracovní

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

C8 Relační databáze. 1. Datový model

C8 Relační databáze. 1. Datový model C8 Relační databáze návrh návrh 1. Datový model 2. Příklad T2 Datová základna a její využití v práci manažera 2 Cíle cvičen ení C8 Relační databáze návrh 1. Navrhnout myšlenkový datový model jednoduché

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR):

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR): Mezi příkazy pro manipulaci s daty (DML) patří : 1. SELECT 2. ALTER 3. DELETE 4. REVOKE Jaké vlastnosti má identifikující relace: 1. Je relace, která se využívá pouze v případě modelovaní odvozených entit

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav automatizace a informatiky DATABÁZOVÉ SYSTÉMY (doplňující text ke konzultacím v 3. ročníku kombinovaného bakalářského studia oboru Aplikovaná

Více

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou:

Relační databáze. V dnešní době existuje řada komerčních DBMS, nejznámější jsou: Relační databáze Pojem databáze, druhy databází Databází se myslí uložiště dat. V době začátků využívání databází byly tyto členěny hlavně hierarchicky, případně síťově (rozšíření hierarchického modelu).

Více

Úvod do databázových systémů

Úvod do databázových systémů Úvod do databázových systémů Databáze je dnes velmi často skloňovaným slovem. Co se pod tímto termínem skrývá si vysvětlíme na několika následujících stranách a cvičeních. Databáze se využívají k ukládání

Více

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola

Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Materiál byl vytvořen v rámci projektu Nové výzvy, nové příležitosti, nová škola Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Co je to databáze? Jaké

Více

J. Zendulka: Databázové systémy 4 Relační model dat 1

J. Zendulka: Databázové systémy 4 Relační model dat 1 4. Relační model dat 4.1. Relační struktura dat... 3 4.2. Integritní pravidla v relačním modelu... 9 4.2.1. Primární klíč... 9 4.2.2. Cizí klíč... 11 4.2.3. Relační schéma databáze... 13 4.3. Relační algebra...

Více

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.

Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13. Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Databázové a informační systémy

Databázové a informační systémy Databázové a informační systémy 1. Teorie normálních forem Pojem normálních forem se používá ve spojitosti s dobře navrženými tabulkami. Správně vytvořené tabulky splňují 4 základní normální formy, které

Více

Jiří Mašek BIVŠ V Pra r ha 20 2 08

Jiří Mašek BIVŠ V Pra r ha 20 2 08 Jiří Mašek BIVŠ Praha 2008 Procesvývoje IS Unifiedprocess(UP) Iterace vývoje Rysy CASE nástrojů Podpora metodických přístupů modelování Integrační mechanismy propojení modelů Podpora etap vývoje Generování

Více

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph)

Marketingová komunikace. 2. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) Marketingová komunikace Kombinované studium Skupina N9KMK1aPH/N9KMK1bPH (um1a1ph/um1b1ph) 2. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Minulé soustředění úvod

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

DBS Konceptuální modelování

DBS Konceptuální modelování DBS Konceptuální modelování Michal Valenta Katedra softwarového inženýrství FIT České vysoké učení technické v Praze Michal.Valenta@fit.cvut.cz c Michal Valenta, 2010 BIVŠ DBS I, ZS 2010/11 https://users.fit.cvut.cz/

Více

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy

Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit (entitní množiny) Atributy - 2.1 - Kapitola 2: Entitně-vztahový model (Entity-Relationship model) Množiny entit Množiny vztahů Otázky návrhu Plánování mezí Klíče E-R diagram Rozšířené E-R rysy Návrh E-R databázového schématu Redukce

Více

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model

Databázové systémy. * relační kalkuly. Tomáš Skopal. - relační model Databázové systémy Tomáš Skopal - relační model * relační kalkuly Osnova přednášky relační kalkuly doménový n-ticový Relační kalkuly využití aparátu predikátové logiky 1. řádu pro dotazování rozšíření

Více

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz

Databázové systémy. Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Databázové systémy Doc.Ing.Miloš Koch,CSc. koch@fbm.vutbr.cz Vývoj databázových systémů Ukládání dat Aktualizace dat Vyhledávání dat Třídění dat Výpočty a agregace 60.-70. léta Program Komunikace Výpočty

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Střední průmyslová škola Zlín

Střední průmyslová škola Zlín VY_32_INOVACE_33_01 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

RELACE, OPERACE. Relace

RELACE, OPERACE. Relace RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé

Více

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1 Substituce Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 2 1 Algebra termů Předpokládáme, že je dán jazyk termů. L, definovali jsme množinu jeho Zavedeme některé užitečné

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 1. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 1. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká I. Úvod do teorie DB systémů

Více

Databázové systémy. Ing. Radek Holý

Databázové systémy. Ing. Radek Holý Databázové systémy Ing. Radek Holý holy@cvut.cz Literatura: Skripta: Jeřábek, Kaliková, Krčál, Krčálová, Kalika: Databázové systémy pro dopravní aplikace Vydavatelství ČVUT, 09/2010 Co je relační databáze?

Více

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph)

Marketingová komunikace. 2. a 3. soustředění. Mgr. Pavel Vávra 9103@mail.vsfs.cz. Kombinované studium Skupina N9KMK3PH (vm3aph) Marketingová komunikace Kombinované studium Skupina N9KMK3PH (vm3aph) 2. a 3. soustředění Mgr. Pavel Vávra 9103@mail.vsfs.cz http://vavra.webzdarma.cz/home/index.htm Co nás čeká: 2. soustředění 16.1.2009

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Relační model reprezentuje databázi jako soubor relací. Kaţdá relace představuje tabulku nebo soubor (ve smyslu soubor na nosiči dat).

Relační model reprezentuje databázi jako soubor relací. Kaţdá relace představuje tabulku nebo soubor (ve smyslu soubor na nosiči dat). 3. Relační model Relační model reprezentuje databázi jako soubor relací. Kaţdá relace představuje tabulku nebo soubor (ve smyslu soubor na nosiči dat). Příklad 3.1: Filmová databáze relace: FILM REŢISÉR

Více

Zadání. Slovníček pojmů. Otázka 19 A7B36DBS

Zadání. Slovníček pojmů. Otázka 19 A7B36DBS Otázka 19 A7B36DBS Zadání... 1 Slovníček pojmů... 1 Návrh relačního schématu... 2 Normalizace schématu formou dekompozice... 5 Kritéria kvality dekompozice... 15 Návrh schématu relační databáze přímou

Více

Úvod do databázových systémů. Lekce 1

Úvod do databázových systémů. Lekce 1 Úvod do databázových systémů Lekce 1 Sylabus Základní pojmy DBS Životní cyklus DB, normalizace dat Modelování DBS, ER diagram Logická úroveň modelu, relační model Relační algebra a relační kalkul Funkční

Více

Strukturované metodologie

Strukturované metodologie Strukturované metodologie Strukturovaný přístup aplikace má podobu hierarchie funkcí, která je realizována strukturovanými programy styl práce: AKCE OBJEKT Entitně relační model (ERA) alternativní názvy:

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující

Více

4 Pojem grafu, ve zkratce

4 Pojem grafu, ve zkratce Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

Kapitola 4: Extrémy funkcí dvou proměnných 1/5

Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Kapitola 4: Extrémy funkcí dvou proměnných 1/5 Lokální extrémy Definice: Necht f : M R 2 R a (x 0, y 0 ) M. Říkáme, že fce f má v bodě (x 0, y 0 ) lokální maximum (resp. lokální minimum) jestliže existuje

Více

2. Teorie databázových systémů

2. Teorie databázových systémů - 1-1. Úvod Zpracování dat můžeme definovat jako obsažné a účelné sestavení dat provedené strojem ze zadaných údajů. Cílem je nejen ušetřit lidskou práci a čas, ale zejména zabránit možným chybám. Výsledkem

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů:

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů: 1 Predikátová logika 1.1 Syntax Podobně jako ve výrokové logice začneme nejprve se syntaxí predikátové logiky, která nám říká, co jsou správně utvořené formule predikátové logiky. V další části tohoto

Více

Ontologie. Otakar Trunda

Ontologie. Otakar Trunda Ontologie Otakar Trunda Definice Mnoho různých definic: Formální specifikace sdílené konceptualizace Hierarchicky strukturovaná množina termínů popisujících určitou věcnou oblast Strukturovaná slovní zásoba

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více