Zobecněný lineární model (GLM)

Rozměr: px
Začít zobrazení ze stránky:

Download "Zobecněný lineární model (GLM)"

Transkript

1 FINANCIALSERVICES/ACTUARIAL SERVICES Zobecněný lneání model (GLM) Moslav Šmuda ADVISORY

2 Obsah Motvace Zobecněný lneání model (GLM) Stuktua modelu Vsvětlující poměnné Lneání model Exponencální odna ozdělení Metoda maxmální věohodnost Příklad Sestavení a vhodnocení modelu Ukázk Poškození lodí vlvem počasí Chování pojštěnců výhod GLM Tpcké model, použtí Lteatua Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze

3 Motvace Fomální shoda řad egesních modelů. Lneání egese ANOVA Logstcká egese Loglneání model Multnomcké model Snaha co nejúplněj posthnout vzájemnou souvslost ůzných jevů: škodní fekvence v závslost na segmentac, půměná výše škod v závslost na segmentac, stonovost v závslost na čemkolv, maketng Metoda schopná spávných předpovědí, zohledňující koelace nteakce. Paktck použtelná, tj. v běžné pax nepřílš složtá. Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 3

4 GLM stuktua modelu Pozoujeme náhodnou velčnu Y, jejíž každou ealzac (výsledek měření) považujeme za kombnac sstematcké složk E[Y] a náhodné složk ε. E [ Y ] + ε + ε Sstematckou složku se snažíme vjádřt pomocí vsvětlujících velčn, náhodná složka je geneována podkladovým náhodným dějem, kteý je zodpovědný za ozdělení ρ ( ) velčn Y. GLM umožňuje na základě hstoe (n měření) předpovídat sstematckou složku pomocí zvolených vsvětlujících velčn a záoveň espektovat náhodnost podkladového děje. Bohužel an závslost (x,...,x p ) an ozdělení ρ ( ) nemohou být lbovolné. Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 4

5 GLM stuktua modelu Předpokládáme, že sstematcká složka je postřednctvím posté a dfeencovatelné funkce g, tzv. spojovací (lnk) funkce, spojena s tzv. lneáním pedktoem, tj. lneání funkcí paametů modelu. g ( ) g ( ) V ámc GLM je ted sstematcká složka funkcí lneáního pedktou. Dále předpokládáme, že ozdělení ρ velčn Y je z tzv. exponencální odn ozdělení. Po tato ozdělení platí, že jsou plně učena střední hodnotou a ozptlem (mají až volné paamet) a ozptl je funkcí střední hodnot. V modelu zvolíme spojovací funkc g, vsvětlující velčn, a na základě předpokladu o ozdělení ρ náhodné velčn Y hledáme takové koefcent lneáního pedktou, ab model co nejlépe vsthoval výsledk měření. Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 5

6 GLM vsvětlující poměnné Lneání pedkto je následující funkce p xj j + ξ;, K, n j + ξ je tzv. konstukční matce (desgn matx) nebol matce n x p, jejíž řádk odpovídají jednotlvým měřením a sloupce tvoří jednotlvé vsvětlující poměnné. Ab bl model jednoznačně defnován, musí mít matce plnou sloupcovou hodnost. jsou koefcent, kteé vjadřují vlv jednotlvých vsvětlujících poměnných na modelovanou velčnu a jejchž hodnot hledáme. ξ je tzv. offset nebol člen shnující vlv, jejchž efekt na modelovanou velčnu známe a nepotřebujeme ted, ab jej model odhadoval. Vsvětlující velčn, esp. poměnné, mohou být jak kvanttatvní (spojté), například hmotnost, tak kvaltatvní (kategoální), například bava. Toto ozlšení je však často dáno spíše kontextem a volbou. Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 6

7 GLM vsvětlující poměnné Kategoálním poměnným jsou hladn (levels) jednotlvých kategoálních velčn, faktoů (factos). Například velčna bava může mít několk hladn, kteé pak tvoří jednotlvé poměnné. Kategoální poměnné jsou takové, pomocí nchž sledujeme, zda měření patří nebo nepatří do nějaké kategoe. Nabývají ted tpck hodnot patří, 0 nepatří (Dumm vaables). Hladn lze zakódovat ůzně (,0;-,;...) matce kontastů (contast matx). U kategoálních poměnných může snadno dojít k lneání závslost. Například po poměnné muž a žena, b platlo muž-žena. Tto závslost ohožují hodnost desgn matx, a ted učtost modelu je třeba spávně zvolt kontast. Absolutní člen (ntecept) 0, kteý v sobě obsáhne všechn základní hladn faktoů epezentovaných kategoálním poměnným takové obtíže řeší. Všechna měření pak obsahují tento absolutní člen (základní hladnu) a poměnné popsují pouze odlšnost od této efeence. Máme pak jen nezávslé poměnné a absolutní člen. p xj j + + ξ ;, K, n j 0 Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 7

8 8 Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze Lneání model a metoda nejmenších čtveců ε + Y Y E I va σ Y E 0 ε I va σ ε ( ) ( ) ( ),, σ σ T N N Y ( ( ) )Y Y Y T T hat-matx tzv. I ε p n T χ σ ε ε p n T ε ε σ ( ) Y Y Y T T T 0 Σ va σ Y Σ va σ ε T Σ SS ε ε + + S S S Y Y I va σ Y I va σ ε ( ) Y T T Σ Σ ( ) va σ Σ T Zobecněná metoda nejmenších čtveců metoda vážených nejmenších čtveců (w.l.s.) Občejná metoda nejmenších čtveců (n počet měření, p počet paametů modelu) ε + Y EY E 0 ε

9 GLM exponencální odna ozdělení Hustota pavděpodobnost exponencální odn ozdělení má obecně tva b( ) ( φ) ρ ( ;, φ) Exp + (, φ) c a je kanoncký paamet souvsející se střední hodnotou, φ je ozptlový paamet souvsející s ozptlem, a (φ) je spojtá a kladná funkce, b() (kumulantová funkce) je dvakát dfeencovatelná konvexní funkce a c(,φ) je funkce nomující ρ, nezávslá na. va E [ ] b ( ) d b d ( ) a ( φ ) a ( φ ) b ( ) a ( φ) V ( ) d b d V je vaanční funkce, obvkle a (φ)φ /w, kde w je aponí váha -tého měření Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 9

10 GLM exponencální odna ozdělení Označení Defnční obo φ b ( ) c (,φ) ( ) ( ) V ( ) (kanoncký lnk) Nomální N(,σ ) (, ) σ + ln φ ( πφ ) Possonovo P( ) 0,,,K e ln(! ) e ln( ) Bnomcké B ( m, π ) m 0,,, K, m m m ( e ) ln + m ln m e + e ln ( ) Gamma G(,ν ) ( 0, ) ν ln( ) ν ln ( ν ) ln( ) ln( Γ( ν )) Invezní Gaussovo IG (,σ ) ( 0, ) σ ln ( ) πφ + φ 3 3 Blízcí příbuzní: negatvně bnomcké, Webulovo,... (Lognomální NE) Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 0

11 Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze GLM metoda maxmální věohodnost Řešení GLM nalezení nejvěohodnějšího odhadu hledání maxma věohodnostní funkce L (lkelhood), espektve jejího logatmu (loglkelhood), vůč paametům l ( ) n L, ; φ ρ ( ) ( ) ( ) + n c a b L, ln φ φ l ( ) ( ) ( ) ( ) j p j p j n j j x a W x V a φ φ 0 l l l Odhad paametu φ lze povést například pomocí zobecněné Peasonov statstk nebo pomocí devance D, esp. škálované devance D *. p n φ Maxmum věohodnostní funkce se hledá numeck (Newton-Raphson, Fshe scong) metoda teačně vážených nejmenších čtveců. p n D φ ( ) ( ) p n V χ φ * D φ D ( ) ( ) *,, p n D χ φ φ l l

12 Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze GLM Iteace nástn... ( ) g ( ) ( ) ( ) ( ) ( ) ( ) z g g g ( ) ( ) ( ) ( ) E va E va E E E E vâ z z z ( ) vâ Σ W w V z () ( ) ( ) ( ) ( ) ( ) w.l.s.,, + z z W

13 GLM exponencální odna ozdělení nad-ozptl (ovedspeson) Za učtých okolností nemusí být splněno, že φ u bnomckého nebo Possonova ozdělení je. Dochází k tzv. nad-ozptlu (ovedspeson). V případě bnomckého ozdělení může nad-ozptl vznkat například exstencí shluků (clustes) lšících se pavděpodobnostm sledovaného jevu (nebo velkostí). Y Z + Z + + Z m / k L Z B( π k), E vaπ τ π ( π ) π π EY mπ vay [ τ ] σ mπ ( π ) ( π ) + ( k ) mπ V případě Possonova ozdělení může totéž nastávat například pokud jedna událost přspívá více sledovaným jev nebo pokud je pavděpodobnost jevu ůzná po ůzné jednotk na nchž výskt jevu sledujeme. Y Z L+ + Z + Z N, Z N..d. Z K N Po( n) E Y EN EZ vay EN EZ Ve duhém zmíněném případě je náchlnost k jevu u jednotlvých jednotek v soubou ůzná. Ted jev má u každé jednotk Possonovo ozdělení, ale střední hodnota je u každé jednotk jná (nte-subject vaablt). Pokud mají střední hodnot v soubou např. gamma ozdělení pak celkové počt jsou ozdělen negatvně bnomck. Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 3

14 GLM kvaz-věohodnost Po specfkac GLM jsme potřeboval pouze nezávslost měření, spojovací a vaanční funkc, bez odkazu na jné vlastnost ozdělení. Pokud po nezávslá Y známe střední hodnotu a ozptl, pak po povedení GLM potřebujeme navíc pouze věohodnostní funkc. Eu 0 va u φv q ( ) φv t () t dt u φv ( ) u E φv ( ) u l u odpovídá v uvedených vlastnostech devac logatmcké věohodnostní funkce Integací (pokud lze) získáme něco jako logatmckou věohodnostní funkc tzv. kvaz-věohodnostní funkc nebo přesněj logatmckou kvaz-věohodnostní funkc q (quas-lkelhood, log quas-lkelhood) q n q Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 4

15 GLM příklad M Ž Ml St Rozdělení Possonovo Lnk Logatmus l MM MM e ln( 000! ) MM + St ( MM + St ) e ln( 600! ) MM + Ž ( MM + ) e Ž ln( 500! ) ( MM + Ž + St + + ) e ln( 300! ) MM Ž St + Ž + St 0 0 MM Ž St MM Ž e e e e e MM Ž St Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 0 0 l 0 l 0 MM St l 0 6,9078 0,693 0,508 Ž Ž MM Ž St St St l 900 e 800 e Ž 400 e St 4 MM MM MM + St + MM Ž MM + + Ž St ( ) ln(!) ln St Ž St + Ž ( + e + e + e ) MM MM + Ž ( e + e ) MM MM + St ( e + e ) 5

16 Sestavení a vhodnocení modelu Rozdělení Analýza ozdělení sledované velčn, poovnání výsledků modelu se skutečností Spojovací funkce Paktčnost Realstčnost Vsvětlující poměnné, desgn matx Volba velčn Volba hladn kategoálních velčn Zahnutí nteakcí Analýza vlvu jednotlvých poměnných na výsledk modelu Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 6

17 Sestavení modelu ozdělení Volba ozdělení vchází z předchozí znalost, zkušeností a podstat podkladového náhodného děje. Spávnost volb lze (ne nezávsle na zbtku modelu) ověřt pomocí ůzných mě ozdílu, ezduí, mez měřeným a modelem předpovídaným hodnotam. Vhodnou volbou jsou tzv. devanční ezdua, kteá jsou př spávné volbě modelu velm dobře nomálně ozdělena. D N D, D sgn t d t V ( ) d sgn( ) () t Standadzovaná devanční ezdua mají navíc jednotkový ozptl. DS φ D ( h ) sgn φ ( ) t ( h ) V () t d t h jsou dagonální pvk vlvové matce (hat-matx) tzv. pák (leveage), kteé popsují vlv -tého měření na model, velký vlv, 0 malý vlv Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 7

18 Sestavení modelu spojovací funkce Kanoncký lnk zjednodušuje tva věohodnostní funkce, a jeho použtí má jné příznvé důsledk, kteé však dnes, dík počítačům, nejsou ozhodující. Rozhodují data a paktčnost v pojšťovnctví je zpavdla příjemný multplkatvní model s logatmem jako spojovací funkcí. Po bnomcké model je třeba lnk, kteý zobazuje hodnot z ntevalu <0,> na <-, > - např. kvantlové funkce. Testovat lze maxmum věohodnostní funkce, kteého je možné dosáhnout s ůzným spojovacím funkcem. g ( x; λ) λ x, λ 0 λ ln, λ 0 g(x;λ) přechází od nvezní, po λ -, přes logatmckou, po λ 0, do dentcké, po λ, spojovací funkce, a nabízí tak možnost učt vhodnou spojovací funkc nalezením maxma věohodnostní funkce v závslost na λ, a vbat tak spojovací funkc maxmalzující věohodnost. ( x) Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 8

19 Sestavení modelu poměnné testování Přdáván b měl být pouze poměnné, kteé model sgnfkantně vlepší. Standadní míou dobé shod modelu je devance D, epektve škálovaná devance D * D n t V () t dt D * n φ t V Dva vnořené model lze ted poovnávat sovnáním jejch škálovaných devancí, pokud je paamet ϕ známý (např. u Possonova ozdělení) (model ω je podmodelem modelu Ω). () t dt D * ω ( l Ω lω ) ~ χ df df, dfω Ω D df Ω * Ω > ω Případně, pokud je φ odhadované, D φ df ω ω D df Ω ~ Fdf df > ω dfω, df, Ω ω Ω df Ω φ df φ D df Poovnávání ůzných modelů Akakeho nfomační ktéum [ l( ) + p] [ l( ) + ] AIC p + Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 9

20 Sestavení modelu obecně + příklad Dostatečná expozce ve všech kategoích. Rozumné chování ezduí (vz výše). Konzstence v čase koefcent dané velčn b neměl jeden ok vpadat úplně jnak než jný ok. Učení paametu příslušného dané poměnné b mělo být přměřeně přesné. Devanční test modelu. Ilustační příklad: Poškození způsobené vlnam na přídích lodí Tp lod (TS): A, B, C, D, E Rok stavb (YC): , , , Období povozu (OP): , Vlajka pod kteou loď pluje (FL): 0 kategoí Celková doba povozu v měsících expozce offset Počet událostí Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 0

21 Ukázka NL poškození lodí Resduals Resduals vs Ftted Std. devance esd Nomal Q-Q 7 9 Possonovo ozdělení s nad-ozptlem Nulový model: YC, OP D 0 6,365; df 0 9; φ 0,85. model: ST, YC, OP Pedcted values Theoetcal Quantles D 38,695; df 5; φ, F~F 4,5 -> p 0,0 Std. devance esd Scale-Locaton Pedcted values Std. devance esd Resduals vs Leveage Cook's dstance Leveage ST sgnfkantní - zahnout. model: ST, YC, OP, FL D 0,965; df 6; φ,09.8 F~F 9,6 -> p 0,4 FL nesgnfkantní - vloučt Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze

22 Ukázka NL poškození lodí Resduals Cook statstc Lnea Pedcto Odeed devance esduals Cook statstc Quantles of standad nomal Coeffcents: Estmate Std. Eo t value P(> t ) (Intecept) < e-6 STB STC STD STE YC YC YC OP absolutní člen: STA, YC960-64, OP h/(-h) Case Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze

23 Ukázka Analýza stoen vlv nteakcí Ukončení žvotního pojštění během let od sjednání Databáze: 0 let zkušeností smluv. Zkoumané fakto a jejch kategozace, tak jak bl uveden klentem př uzavření smlouv: pohlaví (Muž, Žena) věk (A: 8-9, A: 30-39, A3: 40-49, A4: 50-59, A5: 60+), manželský stav (M0: svobodný/ozvedený, M: ženatý/vdaná) dět (C0: žádné, C: a více) výdělek (tsíce Kč: E: <0; E: 0-0; E3: 0-30; E4:30+) sjednané pojštění (T: smt bez podílu na zsku, T: smt podíl na zsku, T3: dožtí bez podílu na zsku, T4: dožtí s podílem na zsku, T5: unt lnk) pojstná částka (tsíce Kč I: 0-500, I: , I3: 000+) dstbuce (O, O, O3, O4, O5) ok sjednání (kalendářní ok sjednání: Y: 96-97, Y: 98-99, Y3: 00-0, Y4: 0-03, Y5: 04-05) sídlo (obvatelé: R: <0000, R: , R3: , R4:>00000) Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 3

24 Ukázka Analýza stoen vlv nteakcí Insuance tpe Maage:Tpe Multple TT TT TT3 TT4 TT5 GLM One-w a Multple M:TT M:TT3 M:TT4 M:TT5 GLM catego Inteacton catego Age:Tpe Tpe:Chlden Multple AA:TT AA3:TT AA4:TT AA5:TT AA:TT3 AA3:TT3 AA4:TT3 AA5:TT3 AA:TT4 AA3:TT4 AA4:TT4 AA5:TT4 AA:TT5 AA3:TT5 AA4:TT5 AA5:TT5 GLM Multple TT:C TT3:C TT4:C TT5:C GLM Inteacton catego Inteacton catego Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 4

25 Tpcké model, použtí Modelovaná velčna Y Škodní fekvence Počet škod Výše škod Pavděpodob nost - stona Lnk ln ( x) ln ( x) ln( x) x ln x Rozdělení Possonovo Possonovo gamma bnomcké Škálovací paamet odhad /m Vaanční funkce x x x x( x) Aponí váh expozce počet škod / Offset 0 ln( expozce) 0 0 Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 5

26 Tpcké model, použtí Modelování přežívání, gaduace vhlazování změřených pavděpodobností. Modelování ntenzt přechodů mez stav ve zdavotním pojštění. Ftování ozdělení výše škod v nežvotním pojštění. Klasfkace zk modelování nad-úmtnost, stoen,... Stanovení pojstného Modelování IBNR Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 6

27 Lteatua P. McCullagh, J. A. Nelde Genealzed Lnea Models, Chapman&Hall/CRC 997 J. J. Faawa Lnea Models wth R, Chapman&Hall/CRC 005 J. J. Faawa Extendng the lnea model wth R: Genealzed lnea, Mxed Effects and Nonpaametc Regesson Models, Chapman&Hall/CRC 006 S. N. Wood Genealzed Addtve Models: An Intoducton wth R, Chapman&Hall/CRC 006 J. Anděl, Statstcké metod, MatfzPess, Paha 003 D. Andeson, S. Feldblum, C. Modln, D. Schmache, E. Schmache, N. Thand A Pacttone s Gude to Genealzed Lnea Models, CAS 005 Zhjn Wu, BC05 Genealzed Lnea Models, S. Habeman, A. E. Renshaw, Genealzed Lnea Models and Actuaal Scence The Statstcan, Vol. 45, No. 4. (996), pp Nelde, J.A. & Weddebun, R.W.M.; J. R. Statst. Soc. A, 35 (97), ; Genealzed lnea models Jogensen, B.; J. R. Statst. Soc. B, 49 (987),, 7-6; Exponental Dspeson Models Renshaw, A. E. and Habeman, S.J.; Inst. Act.; 3 (986), Statstcal analss of lfe assuance lapses Wght, T.S.J. Inst. Act., 7 (990), ; A stochastc method fo clams esevng n geneal nsuance Renshaw, A. E. and Habeman, S.J.; Insu. Math. Econ. 7 (995), -7; On the gaduatons assocated wth a multple state model fo pemanent health nsuance The R Development Coe Team, R: A Language and Envonment fo Statstcal Computng, Semnář aktuáských věd , Matematcko-fzkální fakulta Unvezta Kalova v Paze 7

28 Moslav Šmuda KPMG Česká epublka, s..o The nfomaton contaned heen s of a geneal natue and s not ntended to addess the ccumstances of an patcula ndvdual o entt. Although we endeavo to povde accuate and tmel nfomaton, thee can be no guaantee that such nfomaton s accuate as of the date t s eceved o that t wll contnue to be accuate n the futue. No one should act on such nfomaton wthout appopate pofessonal advce afte a thoough examnaton of the patcula stuaton. Infomace zde obsažené jsou obecného chaakteu a nejsou učen k řešení stuace konkétní osob č subjektu. Ačkolv se snažíme zajstt, ab posktované nfomace bl přesné a aktuální, nelze zaučt, že budou odpovídat skutečnost k datu, ke kteému jsou doučen, č že budou platné v budoucnost. Bez důkladného pošetření konkétní stuace a řádné odboné konzultace b neměla na základě těchto nfomací být čněna žádná opatření. 007 KPMG Česká epublka, s..o., a Czech lmted lablt compan and a membe fm of the KPMG netwok of ndependent membe fms afflated wth KPMG Intenatonal, a Swss coopeatve. All ghts eseved. Pnted n the Czech Republc. 8

REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI

REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI REDUKCE DIMENSIONALITY PRAVDĚPODOBNOSTNÍCH MODELŮ PRO FDI J. Jkovský 1, M. Hofete 2 1 Humusoft s..o., Paha 2 Ústav Přístojové a řídcí technky, Fakulta stojní, ČVUT v Paze Abstakt Příspěvek se věnuje poblematce

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE. FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu EKONOMIKA V ZEMĚMĚŘICTVÍ A KATASTRU číslo úlohy 1. název úlohy NEMOVITOSTÍ Analýza

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

Náhodným vektorem rozumíme sloupcový vektor složený z náhodných veličin X = (X 1, X 2,

Náhodným vektorem rozumíme sloupcový vektor složený z náhodných veličin X = (X 1, X 2, Statstka I cvčení - 54-5 NÁHODNÝ VEKTOR Náhodným vektorem rozumíme sloupcový vektor složený z náhodných velčn = n který je charakterzován sdruženou smultánní dstrbuční unkcí ; F náhodný vektor s dskrétním

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Využití korelace v rezervování povinného ručení

Využití korelace v rezervování povinného ručení INSURANCE Využití korelace v rezervování povinného ručení Ondřej Bušta, Actuarial services 7. prosince 2007 ADVISORY 1 Agenda Nástin problému Majetkové škody Zdravotní škody Korelační analýza a riziko

Více

Metoda hlavních komponent

Metoda hlavních komponent d d Víceozměná data Metoda hlavních komonent Václav Adamec vadamec@mendelucz Extenze unvaetních dat na více oměnných () Datová matce: n x Hodnot oměnných získán z jednoho subjektu () Předoklad závslostí

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

9.3.5 Korelace. Předpoklady: 9304

9.3.5 Korelace. Předpoklady: 9304 935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Základy počítačové grafiky

Základy počítačové grafiky Základy počítačové gafky Pezentace přednášek Ústav počítačové gafky a multmédí Téma přednášky Radozta Motto Světlo se šíří podle fyzkálních zákonů! Př ealstcké zobazení vtuálních počítačových scén e poto

Více

Vztah mezi počtem květů a celkovou biomasou rostliny CELKE EM. slá pro KVETU = závi

Vztah mezi počtem květů a celkovou biomasou rostliny CELKE EM. slá pro KVETU = závi Regrese a korelace Regrese versus korelace Regrese (regresson)* popsuje vztah = závslost dvou a více kvanttatvních (popř. ordnálních) proměnných formou funkční závslost měří těsnost Korelace (correlaton)

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta eská zemdlská unvezta v Paze, Techncká fakulta 9. lektcké pole 9. lektcký náboj Každá látka je vytvoena z tzv. elementáních ástc, kteé vytváejí složtjší stuktuy. ástce na sebe vzájemn psobí slam, kteé

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ

ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ ANALÝZA SPOTŘEBITELSKÉHO CHOVÁNÍ S VYUŽITÍM TÖRNQUISTOVÝCH FUNKCÍ U VYBRANÝCH POTRAVINÁŘSKÝCH VÝROBKŮ THE ANALYSIS OF CONSUMER BEHAVIOR WITH TÖRNQUIST FUNCTIONS USING FOR CHOICE FOOD PRODUCTS Pavlína Hálová

Více

ROZDĚLENÍ PŘÍJMŮ A JEHO MODELY. Jitka Bartošová

ROZDĚLENÍ PŘÍJMŮ A JEHO MODELY. Jitka Bartošová ROZDĚLENÍ PŘÍJMŮ A JEHO MODELY Jitka Batošová Kateda managementu infomací, Fakulta managementu, Vysoká škola ekonomická Paha, Jaošovská 1117/II, 377 01 Jindřichův Hadec batosov@fm.vse.cz Abstakt: Poces

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE

ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE ANALÝZA VLIVU DEMOGRAFICKÝCH FAKTORŮ NA SPOKOJENOST ZÁKAZNÍKŮ VE VYBRANÉ LÉKÁRNĚ S VYUŽITÍM LOGISTICKÉ REGRESE Jana Valečková 1 1 Vysoká škola báňská-techncká unverzta Ostrava, Ekonomcká fakulta, Sokolská

Více

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček

Aplikace Li-Ma metody na scintigrafické vyšetření příštítných tělísek. P. Karhan, P. Fiala, J. Ptáček Aplkace L-Ma metody na scntgrafcké vyšetření příštítných tělísek P. Karhan, P. Fala, J. Ptáček Vyšetření příštítných tělísek dagnostka hyperparatyreózy: lokalzace tkáně příštítných tělísek neexstence radofarmaka

Více

7. Analýza rozptylu jednoduchého třídění

7. Analýza rozptylu jednoduchého třídění 7. nalýza rozptylu jednoduchého třídění - V této kaptole se budeme zabývat vztahem mez znaky kvanttatvním (kolk) a kvaltatvním (kategorálním, jaké jsou) Doposud jsme schopn u nch hodnott: - podmíněné charakterstky

Více

Č Í Á Ž Ť ť č Ť č š ď Í ť š š Ť ť š č š Ť ť č č Ť č č Ť č č č Ž Ť š č č Ť č š Ť ť Í č Ž č ť Ť č Ž Ť š ň Í Í Ť Ť šš É Ž š š č š š č š Ť ť š Ž Ť č Ť Ť Ť š ť š Ť č Ť č Š š č š Ť š Ť č Ť ť č Ž č Ž č č Ž š

Více

Validation of the selected factors impact on the insured accident

Validation of the selected factors impact on the insured accident 6 th Internatonal Scentfc Conference Managng and Modellng of Fnancal Rsks Ostrava VŠB-TU Ostrava, Faculty of Economcs,Fnance Department 0 th th September 202 Valdaton of the selected factors mpact on the

Více

6A Paralelní rezonanční obvod

6A Paralelní rezonanční obvod 6A Paalelní ezonanční obvod Cíl úlohy Paktickým měřením ověřit základní paamety eálného paalelního ezonančního obvodu (PRO) - činitel jakosti Q, ezonanční kmitočet f a šířku pásma B. Vyšetřit selektivní

Více

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran Elena Melcová, Radmla Stoklasová a Jaroslav Ramík; Statstcké programy TESTOVÁNÍ HYPOTÉZ RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevl jsem pravdu! ale raděj: Objevl jsem jednu z pravd! Chall Gbran Testování hypotéz

Více

ÚČINNOST KOTLE. Součinitel přebytku spalovacího vzduchu z měřené koncentrace O2 Účinnost kotle nepřímou metodou Účinnost kotle přímou metodou

ÚČINNOST KOTLE. Součinitel přebytku spalovacího vzduchu z měřené koncentrace O2 Účinnost kotle nepřímou metodou Účinnost kotle přímou metodou ÚČINNOST KOTLE 1. Cíl páce: Roštový kotel o jmenovtém výkonu 100 kw, vybavený automatckým podáváním palva, je učen po spalování dřevní štěpky. Teplo z topného okuhu je předáváno do chladícího okuhu pomocí

Více

Současná daňová problematika a její dopad na nemovitostní trh

Současná daňová problematika a její dopad na nemovitostní trh Současná daňová problematika a její dopad na nemovitostní trh KPMG ČR 21. února 2008 DAŇOVÉ PORADENSTVÍ Daňová reforma Pozitiva daňové reformy snížení daňových sazeb u právnických osob 19 %, u fyzických

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Teorie efektivních trhů (E.Fama (1965))

Teorie efektivních trhů (E.Fama (1965)) Teore efektvních trhů (E.Fama (965)) Efektvní efektvní zpracování nových nformací Efektvní trh trh, který rychle a přesně absorbuje nové nf. Ceny II (akcí) náhodná procházka Předpoklady: na trhu partcpuje

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu

Měření solventnosti pojistitelů neživotního pojištění metodou míry solventnosti a metodou rizikově váženého kapitálu Měření solventnost pojsttelů nežvotního pojštění metodou míry solventnost a metodou rzkově váženého kaptálu Martna Borovcová 1 Abstrakt Příspěvek je zaměřen na metodku vykazování solventnost. Solventnost

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová

Solventnost II. Standardní vzorec pro výpočet solventnostního kapitálového požadavku. Iva Justová 2. část Solventnost II Standardní vzorec pro výpočet solventnostního kaptálového požadavku Iva Justová Osnova Úvod Standardní vzorec Rzko selhání protstrany Závěr Vstupní údaje Vašíčkovo portfolo Alternatvní

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model

MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN. The End Stage Renal Disease Treatment Model ROČNÍK LXXII, 2003, č. 1 VOJENSKÉ ZDRAVOTNICKÉ LISTY 5 MODEL LÉČBY CHRONICKÉHO SELHÁNÍ LEDVIN 1 Karel ANTOŠ, 2 Hana SKALSKÁ, 1 Bruno JEŽEK, 1 Mroslav PROCHÁZKA, 1 Roman PRYMULA 1 Vojenská lékařská akademe

Více

EASYSTAT 1.0 Uživatelský manuál

EASYSTAT 1.0 Uživatelský manuál EASYSTAT.0 Užvatelsý manuál Josef Novotný, Votěch Nose, Kael Jelíne Kontat: pepno@natu.cun.cz Příodovědecá faulta Unvezt Kalov v Paze OBSAH. Úvod... 2. Spuštění pogamu, načtení dat, volba počítaných ndátoů...

Více

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal

4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal 4. konfeence o matematice a fyzice na VŠT Bno, 15. 9. 25 Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

Ý Ť Ť ť Ž Í Ž Ť Ť Ť Ť š Ž Ť š š Ť Ť Ž Ť Ý Ť š Ť š š š Ť š Ťš Ť Í š š š š Ž Ť Ť š š š Ť š š Ť š š Ť š Ť ď Ť Í Š Ť š Ť Ó Ť š Ť š Ť Š š š šť š Ť š š Ť Í ď š š š Ť š Í Ú š Š š š š š ř š š Ťš Ť š ť š š Š Ť

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

Transformace dat a počítačově intenzivní metody

Transformace dat a počítačově intenzivní metody Transformace dat a počítačově ntenzvní metody Jří Mltký Katedra textlních materálů, Textlní fakulta, Techncká unversta v Lberc, Lberec, e- mal jr.mltky@vslb.cz Mlan Meloun, Katedra analytcké cheme, Unversta

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Specifikace, alokace a optimalizace požadavků na spolehlivost

Specifikace, alokace a optimalizace požadavků na spolehlivost ČESKÁ SPOLEČNOST PRO JAKOST Novotného lávka 5, 116 68 Praha 1 47. SEMINÁŘ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupny pro spolehlvost k problematce Specfkace, alokace a optmalzace

Více

Posuzování výkonnosti projektů a projektového řízení

Posuzování výkonnosti projektů a projektového řízení Posuzování výkonnost projektů a projektového řízení Ing. Jarmla Ircngová Západočeská unverzta v Plzn, Fakulta ekonomcká, Katedra managementu, novací a projektů jrcngo@kp.zcu.cz Abstrakt V současnost je

Více

Jak se vyhnout sporům s finančním úřadem

Jak se vyhnout sporům s finančním úřadem Jak se vyhnout sporům s finančním úřadem Petr Toman, Senior Tax Manager 29. dubna 2009 TAX Spory s finančním úřadem v oblasti vozového parku Daň z přidané hodnoty uplatnění odpočtu DPH použití automobilu

Více

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH

VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH VOLBA HODNOTÍCÍCH KRITÉRIÍ VE VEŘEJNÝCH ZAKÁZKÁCH THE CHOICE OF EVALUATION CRITERIA IN PUBLIC PROCUREMENT Martn Schmdt Masarykova unverzta, Ekonomcko-správní fakulta m.schmdt@emal.cz Abstrakt: Článek zkoumá

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

Neřešené příklady k procvičení

Neřešené příklady k procvičení Vysoká škola báňská - Techncká unverzta Ostrava Fakulta elektrotechnky a nformatky Katedra aplkované matematky Neřešené příklady k procvčení Lenka Šmonová Ostrava, 2006 Následující sbírka neřešených příkladů

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

Fuzzy prediktor pro kinematicko silové řízení kráčejícího robota

Fuzzy prediktor pro kinematicko silové řízení kráčejícího robota Fuzzy pedikto po kinematicko silové řízení káčejícího obota Ing. Jan Kaule, Ph.D. Ing. Mioslav UHER VA Bno Kateda technické kybenetiky a vojenské obotiky, Kounicova 65, 6 00 Bno, Česká epublika Abstakt:

Více

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek

9.12.2009. Metody analýzy rizika. Předběžné hodnocení rizika. Kontrolní seznam procesních rizik. Bezpečnostní posudek 9.2.29 Bezpečnost chemckých výrob N Petr Zámostný místnost: A-72a tel.: 4222 e-mal: petr.zamostny@vscht.cz Analýza rzka Vymezení pojmu rzko Metody analýzy rzka Prncp analýzy rzka Struktura rzka spojeného

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

Řetězové transakce. 12. listopadu 2013. Erika Gorčíková

Řetězové transakce. 12. listopadu 2013. Erika Gorčíková Řetězové transakce 12. listopadu 2013 Erika Gorčíková Řetězové obchody znázornění a ZDPH transakce, kdy je zboží přeprodáváno několika subjekty mezi sebou, přičemž toto zboží je odesláno výrobcem, resp.

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

Bořka Leitla Bolometrie na tokamaku GOLEM

Bořka Leitla Bolometrie na tokamaku GOLEM Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2

Iterační výpočty. Dokumentace k projektu pro předměty IZP a IUS. 22. listopadu projekt č. 2 Dokumentace k projektu pro předměty IZP a IUS Iterační výpočty projekt č.. lstopadu 1 Autor: Mlan Setler, setl1@stud.ft.vutbr.cz Fakulta Informačních Technologí Vysoké Učení Techncké v Brně Obsah 1 Úvod...

Více

ESR, spinový hamiltonián a spektra

ESR, spinový hamiltonián a spektra ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností

Více

Ž Ú ď Č Ú ď Ž Š Ž ť Š Ž Ž ť Č Č Ž Ž ť Č ť Š Ý ŘÁ Ů ť Č Š Ž ť ď Č Ú ť ť ť ť Č Č Ů ť Ů Á ť Š Á ď Š ť Č Ó ť Ú Ž ť Ž Ú Č Ú ť É ť ť ť Ž Ž Ž ť Ž ÝČ Č ť Š ť ť ť Ž ť ť ď ť Ž ť ť Á Ž Ž Ž Ů Ž Ž Ú Ě Ý Č Ž Š Š Ř Ě

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

Termodynamika NANOsystémů

Termodynamika NANOsystémů Temodynamka NANOsystémů One nanomete s one bllonth of a mete. It s a magcal pont on the scale of length, fo ths s the pont whee the smallest man-made devces meet the atoms and molecules of the natual wold.

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH

ZÁKLADY GEOMETRIE KŘIVEK A PLOCH ZÁKLADY GEOMETRIE KŘIVEK A PLOCH Povzoní studní mateál - - Křvky v toozměném postou Úvod E - toozměný eukldovský posto s pevně zvolenou katézskou soustavou P e e V - eho zaměření D Nechť J R Zobazení X

Více

NUMERICKÝ MODEL TUHNUTÍ KRUHOVÉHO PŘEDLITKU PRO ON-LINE MONITORING NUMERICAL MODEL OF ROUND BLANK SOLIDIFICATION FOR

NUMERICKÝ MODEL TUHNUTÍ KRUHOVÉHO PŘEDLITKU PRO ON-LINE MONITORING NUMERICAL MODEL OF ROUND BLANK SOLIDIFICATION FOR METAL 8 3. 5. 5. 8, Hadec nad Moavcí NUMERICKÝ MODEL TUHNUTÍ KRUHOVÉHO PŘEDLITKU PRO ON-LINE MONITORING NUMERICAL MODEL OF ROUND BLANK SOLIDIFICATION FOR ON-LINE MONITORING Davd Dttel a René Pysko a Pavel

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

OBECNÉ METODY VYROVNÁNÍ

OBECNÉ METODY VYROVNÁNÍ OBECNÉ METODY VYROVNÁNÍ HYNČICOVÁ TEREZA, H2IGE1 2014 ÚVOD Z DŮVODU VYLOUČENÍ HRUBÝCH CHYB A ZVÝŠENÍ PŘESNOSTI NIKDY NEMĚŘÍME DANOU VELIČINU POUZE JEDNOU VÝSLEDKEM OPAKOVANÉHO MĚŘENÍ NĚKTERÉ VELIČINY JE

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

1. Agregátní nabídka AS :úhrn nabízených produkt pro finální užití (ne meziprodukty)

1. Agregátní nabídka AS :úhrn nabízených produkt pro finální užití (ne meziprodukty) Mak 3 : agregátní nabídka a otávka. Agregátní nabídka AS :úhrn nabízených rodukt ro fnální užtí (ne mezrodukty) 2. Determnanty AS : využtelné výrobní zdroje (ráce, katál, da) techncký okrok hos. oltka

Více

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B.

Jednotlivé mezivýsledky, získané v prbhu analýzy rozptylu, jsou prbžn a systematicky zaznamenávány v tabulce ANOVA. Prmrný tverec. volnosti SS B. Ing. Martna Ltschmannová Statsta I., cvení ANOVA Rozšíením dvouvýbrových test pro stední hodnoty je analýza rozptylu nebol ANOVA, terá umožuje srovnávat nol stedních hodnot nezávslých náhodných výbr. Analýza

Více

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19 34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz

Více

Grantový řád Vysoké školy ekonomické v Praze

Grantový řád Vysoké školy ekonomické v Praze Vysoké školy ekonomcké v Praze Strana / 6 Grantový řád Vysoké školy ekonomcké v Praze Anotace: Tato směrnce s celoškolskou působností stanoví zásady systému pro poskytování účelové podpory na specfcký

Více

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE USE OF FUGITY FOR HEDSPE METHODS VYUŽITÍ FUGITNÍ TEORIE PRO METODY HEDSPE Veronka Rppelová, Elška Pevná, Josef Janků Ústav cheme ochrany prostředí, Vysoká škola chemcko-technologcká v Praze, Techncká 5,

Více

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

Vykazování solventnosti pojišťoven

Vykazování solventnosti pojišťoven Vykazování solventnost pojšťoven Ing. Markéta Paulasová, Techncká unverzta v Lberc, Hospodářská fakulta marketa.paulasova@centrum.cz Abstrakt Pojšťovnctví je fnanční službou zabývající se přenosem rzk

Více

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08

Modely produkčních systémů. Plánování výroby. seminární práce. Autor: Jakub Mertl. Xname: xmerj08. Datum: ZS 07/08 Modely podukčních systémů Plánování výoby seminání páce Auto: Jakub Metl Xname: xmej08 Datum: ZS 07/08 Obsah Obsah... Úvod... 3 1. Výobní linky... 4 1.1. Výobní místo 1... 4 1.. Výobní místo... 5 1.3.

Více

Č É É Č ď Č ž ž Ž ď ě š ě š ě ě š ě ď ž ď šť ť ďš Č ď Č Č ě ž ž Í ě Č ě š ě š š Ž ě ě ť ě ž ě Č ě ž š Í Í ě ě ď ě ě ě ě Í ě ť ě ě ď ě ť ě ď ž ě ě š ě ť Č ě Ž Ž ě ž š š Ž ě Č Ž ě ě ě ě ě ě ě Ž ž ě ť É šš

Více

Společné zátěžové testy ČNB a vybraných pojišťoven

Společné zátěžové testy ČNB a vybraných pojišťoven Společné zátěžové testy ČNB a vybraných pojšťoven Zátěžových testů se účastní tuzemské pojšťovny které dohromady představují přblžně 90 % pojstného trhu. Výpočty provádějí samotné pojšťovny dle metodky

Více

Teorie elektrických ochran

Teorie elektrických ochran Teore elektrckých ochran Elektrcká ochrana zařízení kontrolující chod část energetckého systému (G, T, V) = chráněného objektu, zajstt normální provoz Chráněný objekt fyzkální zařízení pro přenos el. energe,

Více

ZNALECKÝ POSUDEK. č. 101-31/99. na dendrochronologický rozbor dřevěných stavebních konstrukcí domu Vračovice č.p.2, okr.

ZNALECKÝ POSUDEK. č. 101-31/99. na dendrochronologický rozbor dřevěných stavebních konstrukcí domu Vračovice č.p.2, okr. ZNALECKÝ POSUDEK č. 101-31/99 na dendrochronologcký rozbor dřevěných stavebních konstrukcí domu Vračovce č.p.2, okr. Ústí nad Orlcí Posudek s vyžádal: SOVAMM, společnost pro obnovu vesnce a malého města

Více

METODA HLAVNÍCH KOMPONENT V LABORATORNÍ PRAXI

METODA HLAVNÍCH KOMPONENT V LABORATORNÍ PRAXI MEODA HLANÍH KOMPONEN LABORAORNÍ PRAXI JIŘÍ MILIKÝ, Kateda tetlních ateálů, echncká unvesta v Lbec, Hálkova 6 46 7 Lbeec, e- al:.lky@vslb.cz Motto: ednoduchost e síla MILAN MELOUN, Kateda analytcké chee,

Více

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

IES, Charles University Prague

IES, Charles University Prague Insttute of Economc Studes, aculty of Socal Scences Charles Unversty n Prague Trh práce žen: Gender pay gap a jeho determnanty artna ysíková IES Workng Paper: 13/2007 Insttute of Economc Studes, aculty

Více