Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Rozměr: px
Začít zobrazení ze stránky:

Download "Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz."

Transkript

1 Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík

2 Obsah: Výběrová rozdělení Bodové a intervalové odhady Testování hypotéz

3 Výběrová rozdělení

4 Výběrové charakteristiky (opakování): číslné charakteristiky výběrového souboru výběrový průměr, výběrový rozptyl, relativní četnost,... náhodné veličiny (funkce pozorování)

5 Výběrové charakteristiky (opakování): číslné charakteristiky výběrového souboru výběrový průměr, výběrový rozptyl, relativní četnost,... náhodné veličiny (funkce pozorování) E[ X] = E[ 1 n n i=1 X i] = 1 n n E[X] = µ X D[ X] = D[ 1 n n i=1 X i] = 1 n D[X] = 1 n 2 n σ2 X centrální limitní věta: X ( ) N µ x, σ2 x n další aplikace CLV: rozdělení součtu náhodných veličin, rozdílu průměrů, rozdílu relativních četností,...

6 Výběrová rozdělení: rozdělení pravděpodobnosti důležitých výběrových charakteristik vyžití pro odhady parametrů, testování hypotéz,... 3 důležitá rozdělení: χ 2 -rozdělení Studentovo rozdělení Fisher-Snedecorovo rozdělení

7 χ 2 -rozdělení ( chí kvadrát ) Mějme Z 1, Z 2,..., Z n nezávislé náhodné veličiny s rozdělením N(0, 1). Označme X = n i=1 Z i 2. Potom X má rozdělení χ 2 s n stupni volnosti. Zapisujeme X χ 2 n. Důležitá vlastnost: Pro nezávislé X 1, X 2,..., X n N(µ, σ 2 ) platí kde S 2 je výběrový rozptyl, (n 1)S 2 S 2 = 1 n 1 σ 2 χ 2 n 1, n (X i X) 2. i=1

8 Studentovo (t) rozdělení Necht Z a X jsou nezávislé náhodné veličiny. Z N(0, 1) X χ 2 n Označme T = Z. X n Potom T má Studentovo t rozdělení s n stupni volnosti. Zapisujeme T t n. Důležitá vlastnost: Pro nezávislé X 1, X 2,..., X n N(µ, σ 2 ) platí X µ n tn 1. S

9 Fisher-Snedecorovo (F ) rozdělení Necht V a W jsou nezávislé náhodné veličiny. V χ 2 m W χ 2 n Označme F = V m W n. Potom F má Fisher-Snedecorovo rozdělení o m a n stupních volnosti. Zapisujeme F F m,n. Důležtá vlastnost: Pro nezávislé X 1, X 2,..., X m N(µ X, σ 2 X ) a Y 1, Y 2,..., Y n N(µ Y, σ 2 Y ) platí S 2 X m S 2 Y n F m 1,n 1.

10

11 Cílem odhadu je určení neznámého parametru rozdělení populace (náhodné veličiny X) na základě informace obsažené ve výběrovém souboru (realizacích náhodné veličiny, datech). Příklad: Hod nesymetrickou mincí lze modelovat jako Bernoulliovský pokus s alternativním (Bernoulliho) rozdělením. Parametrem rozdělení může být pravděpodobnost padnutí orla. Co můžeme říci o neznámém parametru, pokud při 10 hodech padne 3 krát orel?

12 Cílem odhadu je určení neznámého parametru rozdělení populace (náhodné veličiny X) na základě informace obsažené ve výběrovém souboru (realizacích náhodné veličiny, datech). Příklad: Hod nesymetrickou mincí lze modelovat jako Bernoulliovský pokus s alternativním (Bernoulliho) rozdělením. Parametrem rozdělení může být pravděpodobnost padnutí orla. Co můžeme říci o neznámém parametru, pokud při 10 hodech padne 3 krát orel? při 2 hodech orel nepadne ani jednou?

13 Cílem odhadu je určení neznámého parametru rozdělení populace (náhodné veličiny X) na základě informace obsažené ve výběrovém souboru (realizacích náhodné veličiny, datech). Příklad: Hod nesymetrickou mincí lze modelovat jako Bernoulliovský pokus s alternativním (Bernoulliho) rozdělením. Parametrem rozdělení může být pravděpodobnost padnutí orla. Co můžeme říci o neznámém parametru, pokud při 10 hodech padne 3 krát orel? při 2 hodech orel nepadne ani jednou? při 100 hodech padne 30 krát orel? při hodech padne orel? při 2 hodech nepadne ani jednou orel, přitom mince je běžná 1 Kč, jen lehce poškrábaná

14 Při odhadování se zajímáme o hodnotu odhadu (přibližnou hodnotu neznámého parametru), přesnost odhadu - odhad na základě konečného počtu dat bude vždy pouze přibližný.

15 Při odhadování se zajímáme o hodnotu odhadu (přibližnou hodnotu neznámého parametru), přesnost odhadu - odhad na základě konečného počtu dat bude vždy pouze přibližný. Rozlišujeme dva základní typy odhadu: Bodový odhad - neznámý parametr charakterizujeme jedinou hodnotou, pokud možno blízko skutečné hodnotě. Hodnota bodového odhadu nevypovídá nic o přesnosti odhadu. Intervalový odhad - neznámý parametr charakterizujeme intervalem, který s velkou pravděpodobností obsahuje skutečnou hodnotu. Délka intervalu vypovídá o přesnosti odhadu.

16 Bodový odhad

17 Bodový odhad Mějme X 1, X 2,..., X n náhodný výběr z neznámého rozdělení závislého na parametru Θ. Bodovým odhadem parametru Θ je obecně libovolná výběrová charakteristika (funkce náhodného výběru) T (X 1, X 1,..., X n ). Příklady T (X 1, X 2,..., X n ) = 1 n n i=1 X i

18 Bodový odhad Mějme X 1, X 2,..., X n náhodný výběr z neznámého rozdělení závislého na parametru Θ. Bodovým odhadem parametru Θ je obecně libovolná výběrová charakteristika (funkce náhodného výběru) T (X 1, X 1,..., X n ). Příklady T (X 1, X 2,..., X n ) = 1 n n i=1 X i (bodový odhad střední hodnoty) T (X 1, X 2,..., X n ) = 1 n n 1 i=1 (X i X) 2

19 Bodový odhad Mějme X 1, X 2,..., X n náhodný výběr z neznámého rozdělení závislého na parametru Θ. Bodovým odhadem parametru Θ je obecně libovolná výběrová charakteristika (funkce náhodného výběru) T (X 1, X 1,..., X n ). Příklady T (X 1, X 2,..., X n ) = 1 n n i=1 X i (bodový odhad střední hodnoty) T (X 1, X 2,..., X n ) = 1 n n 1 i=1 (X i X) 2 (bodový odhad rozptylu) T (X 1, X 2,..., X n ) = arctg(x 1 X 2... X n )

20 Bodový odhad Mějme X 1, X 2,..., X n náhodný výběr z neznámého rozdělení závislého na parametru Θ. Bodovým odhadem parametru Θ je obecně libovolná výběrová charakteristika (funkce náhodného výběru) T (X 1, X 1,..., X n ). Příklady T (X 1, X 2,..., X n ) = 1 n n i=1 X i (bodový odhad střední hodnoty) T (X 1, X 2,..., X n ) = 1 n n 1 i=1 (X i X) 2 (bodový odhad rozptylu) T (X 1, X 2,..., X n ) = arctg(x 1 X 2... X n ) (podle definice rovněž bodový odhad - mimo jiné čehokoliv)

21 Vlastnosti, které zaručují, že danný bodový odhad je v jistém smyslu dobrý: nestrannost (nevychýlenost) - odhad T ( ) parametru Θ je nestranný, jestliže E[T ] = Θ pro každé Θ

22 Vlastnosti, které zaručují, že danný bodový odhad je v jistém smyslu dobrý: nestrannost (nevychýlenost) - odhad T ( ) parametru Θ je nestranný, jestliže E[T ] = Θ pro každé Θ vydatnost, eficience - nejlepší nestranný (vydatný, eficientní)

23 Vlastnosti, které zaručují, že danný bodový odhad je v jistém smyslu dobrý: nestrannost (nevychýlenost) - odhad T ( ) parametru Θ je nestranný, jestliže E[T ] = Θ pro každé Θ vydatnost, eficience - nejlepší nestranný (vydatný, eficientní) konzistence - odhad T n (X 1,..., X n ) je konzistentní, pokud E[T n ] Θ a D[T n ] 0, tj.odhad se s rostoucím počtem dat zpřesňuje

24 Příklad: X 1, X 2,..., X n nezávislý náhodný výběr z rozdělení se stř. hodnotou µ a rozptylem σ 2. Snadno lze ukázat, že E[ 1 n n i=1 X i] = µ, E[ 1 n 1 n i=1 (X i X) 2 ] = σ 2. Odtud plyne, že výběrový průměr je nestranným odhadem střední hodnoty a výběrový rozptyl je nestranným odhadem rozptylu.

25 Intervalový odhad

26 Interval spolehlivosti (konfidenční interval) pro parametr θ se spolehlivostí 1 α, kde α 0, 1, je dvojice statistik (T D ( ), T H ( )) taková, že P(T D θ T H ) = 1 α. Poznámka: Meze intervalu spolehlivosti T D ( ), T H ( ) jsou náhodné veličiny

27 Interval spolehlivosti (konfidenční interval) pro parametr θ se spolehlivostí 1 α, kde α 0, 1, je dvojice statistik (T D ( ), T H ( )) taková, že P(T D θ T H ) = 1 α. Poznámka: Meze intervalu spolehlivosti T D ( ), T H ( ) jsou náhodné veličiny Intervalový odhad t D, t H je konkrétní realizace intervalu spolehlivosti.

28 Interval spolehlivosti (konfidenční interval) pro parametr θ se spolehlivostí 1 α, kde α 0, 1, je dvojice statistik (T D ( ), T H ( )) taková, že P(T D θ T H ) = 1 α. Poznámka: Meze intervalu spolehlivosti T D ( ), T H ( ) jsou náhodné veličiny Intervalový odhad t D, t H je konkrétní realizace intervalu spolehlivosti. Koeficient α nazýváme hladina významnosti.

29 Délka intervalového odhadu charakterizuje přesnost, kratší interval (při stejném α) představuje přesnější lokalizaci skutečné hodnoty parametru klesá s rostoucím počtem dat (odhad se zpřesňuje) roste s (1 α), vyšší spolehlivost vyžaduje širší interval

30 Délka intervalového odhadu charakterizuje přesnost, kratší interval (při stejném α) představuje přesnější lokalizaci skutečné hodnoty parametru klesá s rostoucím počtem dat (odhad se zpřesňuje) roste s (1 α), vyšší spolehlivost vyžaduje širší interval V praxi volíme α = 0.05 nebo α = 0.01 (při požadavku na vyšší spolehlivost).

31 Typy intervalových odhadů oboustranný P(θ < T D ) = P(θ T H ) = α 2 jednostranný - je-li pro nás důležitá pouze jedna mez levostranný P(T D θ) = 1 α pravostranný P(θ T H) = 1 α

32 Postup při tvorbě intervalového odhadu 1 Zvolíme vhodnou výběrovou charakteristiku T (X), jejíž rozdělení (závislé na θ) známe. 2 Určíme α 2 a (1 α 2 )-kvantily x α a x 1 α veličiny T Z podmínky x α T (X) x 1 α stanovíme meze pro θ Obdobně pro jednostranné odhady.

33 Příklad: Intervalový odhad střední hodnoty normálního rozdělění s neznámým rozptylem se spolehlivostí Máme vzorek velikosti n s výběrovým průměrem X a výběrovým rozptylem S 2. Statistika T (X) = X µ S n. Z vlastností Studentova rozdělení: T (X) t n 1. P ( t α X µ 2 S n t1 α 2 ) = 0.95 Úpravou nerovností dostaneme (využijeme t α = t 1 α ) 2 2 ( P X S t 1 α µ X + S ) t n 2 1 α = n 2

34 Výpočet intervalového odhadu Pro výpočet lze využít tabulky se vzorci (u zk. legální tahák), nejlépe však vhodný software (Statgraphics, R commander, applety ML,...). Nutný předpoklad pro získání smysluplného výsledku je správná volba typu odhadu a ověření předpokladů. Další odhady viz skripta a tabulky.

35 Testování hypotéz

36 Cílem testování hypotéz je ověřit, zda data nepopírají předpoklad (hypotézu), který jsme učinili o rozdělení populace před provedením testu. Terminologie: Statistická hypotéza - tvrzení o rozdělení náhodné veličiny Nulová hypotéza H 0 - výchozí (defaultní) stanovisko, které jsme ochotni akceptovat, pokud data nebudou mluvit výrazně proti; např: neexistuje závislost, systematická výchylka je 0,... Alternativní hypotéza H 1 (H A ) - popírá nulovou hypotézu Na základě výsledku testu pak bud zamítáme H 0, nebo nezamítáme H 0. H 0 nelze na základě testu potvrdit. Lze pouze říci, že data nesvědčí proti ní.

37 Typy testů Parametrické - tvrzení o parametru (parametrech) jedné, dvou, nebo více populací Neparametrické - tvrzení o jiné vlastnosti rozdělení populace - typ rozdělení, závislost mezi sledovanými znaky,...

38 Postup při testování hypotéz (klasický přístup) 1 Formulujeme nulovou H 0 a alternativní hypotézu H 1. 2 Zvolíme testovou statistiku. Rozdělení testové statistiky za předpokladu platnosti nulové hypotézy nazýváme nulové rozdělění. 3 Ověříme předpoklady testu! 4 Určíme kritický obor W, tj. množinu v níž se za předpokladu platnosti H 0 hodnoty testové statistiky vyskytují s velmi malou pravděpodobností. Doplňkem W je tzv. obor přijetí V. Hranici mezi W a V označujeme jako kritickou hodnotu t krit. 5 Na základě realizace výběru určíme pozorovanou hodnotu testové statistiky x OBS. 6 Na základě vztahu x OBS a t krit (tj. podle toho zda x OBS W nebo x OBS V ) rozhodujeme o výsledku testu (zamítnutí nebo nezamítnutí H 0 ).

39 V závislosti na platnosti H 0 a výsledku testu mohou nastat 4 situace: Nezamítáme H 0 Zamítáme H 0 Platí H 0 Správné rozhodnutí Chyba I. druhu: Pravděpodobnost: 1 α Pravděpodobnost: α Platí H 1 Chyba II. druhu Správné rozhodnutí Pravděpodobnost: β Pravděpodobnost: 1 β Chybám I. a II. druhu se z podstaty problému nelze vyhnout, protože rozhodujeme na základě náhodného výběru. α: hladina významnosti testu, v praxi volíme 0.05 nebo β: síla testu; nevolíme je určena hladinou významnosti a konstrukcí testu

40 Ideálně bychom chtěli testy s nízkou hladinou významnosti a vysokou sílou - protichůdné požadavky. Snížit α i β lze pouze zvýšením počtu dat.

41 Čistý test významnosti (pomocí p-hodnoty) 1 Formulace nulové a alternativní hypotézy. 2 Volba testové statistiky T (X). 3 Ověření předpokladů testu. 4 Výpočet pozorované hodnoty testové statistiky x OBS. 5 Výpočet p-hodnoty, tj. pravděpodobnosti alespoň tak extrémního výsledku jako x OBS za předpokladu nulové hypotézy.

42 tvar H 1 p-hodnota θ θ 0 p-hodnota = F 0 (x OBS ) θ θ 0 p-hodnota = 1 F 0 (x OBS ) θ θ 0 p-hodnota = 2min(F(x OBS ), 1 F 0 (x OBS )) Rozhodnutí o výsledku testu: p-hodnota Rozhodnutí p-hodnota < α Zamítáme H 0 ve prospěch H 1 p-hodnota > α Nezamítáme H 0 Výhodou čistého testu významnosti je, že rovnou vidíme, na jaké hladině významnosti lze ještě rozhodnout o zamítnutí H 0. Tento typ testu se v praxi používá častěji. Bývá výstupem statistického software.

43 Příklad: Spotřeba automobilu byla testována 11 řidiči s výsledky: 8,8; 8,9; 9,0; 8,7; 9,3; 9,0; 8,7; 8,8; 9,4; 8,6; 8,9 (l/100 km). Lze výrobcem udávanou spotřebu 8,8 l/100 km považovat za pravdivou? Náhodná veličina X... spotřeba l/100 km Předpokládáme: X N (µ, σ 2 ) Z dat vypočteme: X = 8.92, S 2 = H 0 : µ = 8.8 H 1 : µ > 8.8 T (X) = X µ S n, T t10 T OBS = 1.62 p-value: 2(1 F(T OBS )) = p-value > 0.05 na hladině významnosti 0.05 nezamítáme H 0. Nelze tvrdit, že spotřeba není rovna 8.8l.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .

Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) . Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

5 Parametrické testy hypotéz

5 Parametrické testy hypotéz 5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

STATISTICKÉ ZJIŠŤOVÁNÍ

STATISTICKÉ ZJIŠŤOVÁNÍ STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

STATISTICKÉ HYPOTÉZY

STATISTICKÉ HYPOTÉZY STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

7.1. Podstata testu statistické hypotézy

7.1. Podstata testu statistické hypotézy 7. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 7.1. Podstata testu statistické hypotézy Statistická hypotéza určitý předpoklad o parametrech nebo tvaru rozdělení zkoumaného st. znaku. Testování hypotéz proces ověřování

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Intervalové Odhady Parametrů II Testování Hypotéz

Intervalové Odhady Parametrů II Testování Hypotéz Parametrů II Testování Hypotéz Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

Zápočtová práce STATISTIKA I

Zápočtová práce STATISTIKA I Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

3 Bodové odhady a jejich vlastnosti

3 Bodové odhady a jejich vlastnosti 3 Bodové odhady a jejich vlastnosti 3.1 Statistika (Skripta str. 77) Výběr pořizujeme proto, abychom se (více) dověděli o souboru, ze kterého jsme výběr pořídili. Zde se soustředíme na situaci, kdy známe

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření

TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup

Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom

Více

Přednáška VII. Úvod do testování hypotéz

Přednáška VII. Úvod do testování hypotéz Přednáška VII. Úvod do testování hypotéz Principy a pojmy testování hypotéz, chyba I. a II. druhu P hodnota a její interpretace Síla testu a souvislost s velikostí vzorku Statistická versus klinická/biologická

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz

PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

5. Odhady parametrů. KGG/STG Zimní semestr

5. Odhady parametrů. KGG/STG Zimní semestr Základní soubor Výběr, výběrový (statistický) soubor Náhodný výběr Princip Odhad neznámých parametrů základního souboru na základz kladě charakteristik výběru. Přecházíme z části na celek, zevšeobec eobecňujeme

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost

Více

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA

PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ HELENA KOUTKOVÁ PRAVDĚPODOBNOST A MATEMATICKÁ STATISTIKA MODUL GA03 M4 ZÁKLADY TESTOVÁNÍ HYPOTÉZ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Bodové odhady a intervaly spolehlivosti Vilém Vychodil KMI/PRAS, Přednáška 10 Vytvořeno v rámci projektu 963/011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 10) Bodové odhady a intervaly

Více

Základy teorie odhadu parametrů bodový odhad

Základy teorie odhadu parametrů bodový odhad Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Odhady parametrů Úkolem výběrového šetření je podat informaci o neznámé hodnotě charakteristiky základního souboru

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.

jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina. Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

Přednáška X. Testování hypotéz o kvantitativních proměnných

Přednáška X. Testování hypotéz o kvantitativních proměnných Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.

Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj. Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.

Více

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)

Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů) VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p

Více

analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele

analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly

Více

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 10. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 10 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz

6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz 6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Jana Vránová, 3. lékařská fakulta UK

Jana Vránová, 3. lékařská fakulta UK Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace

Více

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty

Sever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích

Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Úvod do testování hypotéz

Úvod do testování hypotéz Úvod do testování hypotéz Tato kapitola se zabývá rozhodováním o platnosti statistických hypotéz na základě vybraného pravděpodobnostního modelu chování náhodné veličiny a pozorovaných dat. Statistické

Více