Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Teorie informace Obsah. Kybernetika. Radim Farana Podklady pro výuku"

Transkript

1 Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód. Přenosový řetězec. Kybernetika Wiener: Kybernetika je věda o řízení a sdělování v živých organismech a ve strojích. Wiener, Norbert * Columbia, Mo. USA Stockholm ale také: Kybernetika je věda o sběru, přenosu a zpracování. 1

2 Informatika Informatika je věda o zpracování, zejména za pomoci automatizovaných prostředků Shannon, Claude Elwood * Petoskey, Mich. USA Medford, Mas. USA raphy/shannon.html Kybernetika Informatika Informace Informací nazýváme abstraktní veličinu, která může být přechovávána v určitých objektech, předávána určitými objekty, zpracovávána v určitých objektech a použita k řízení určitých objektů. Jako objekt přitom chápeme živé organismy, technická zařízení nebo soustavy těchto prvků. také: Informace je sdělitelný poznatek, který má smysl a snižuje nejistotu. Jednotka Jednotka je takové množství, které získáme potvrzením, že nastala jedna ze dvou stejně pravděpodobných možností. svítí : nesvítí 50 : 50

3 Zavedla v roce 1998 celosvětová standardizační organizace IEC (International Electrotechnical Commission) Informační obsah zprávy Pravděpodobnost informační obsah P(x) = 0,5 => k(x) = 1 j. P(x) = 0,5 => k(x) = j. P(x) = 0,15 => k(x) = j. 1 j. P(x) = 1/[ k(x) ] k(x) = - log P(x) [j.] Zpráva A, B C, D, E 1 j. 1 j. A B C D, E 1 j. D E Jednotky Volba základu logaritmu je tedy pouze otázkou volby konstanty měrné jednotky (viz norma IEC/ISO 80000, Díl 1). U binárních logaritmů je jednotkou shannon [Sh]. U přirozených logaritmů jednotka nat [nat]. U dekadických logaritmů hartley, [Hart] 1 Sh 0,69 nat 0,01 Hart 1 nat 1,4 Sh 0,44 Hart 1 Hart, Sh,0 nat Násobky Oproti desítkové soustavě jsou násobky odvozeny od binární soustavy Násobek Předpona Symbol Celý název Odvozeno od 10 kilobinary: kibi Ki ( 10 ) 1 kilo: (10 ) 1 0 mebi Mi 0 gibi Gi 40 tebi Ti 50 pebi Pi 60 exbi Ei megabinary: ( 10 ) mega: (10 ) gigabinary: ( 10 ) giga: (10 ) terabinary: ( 10 ) 4 tera: (10 ) 4 petabinary: ( 10 ) 5 peta: (10 ) 5 exabinary: ( 10 ) 6 exa: (10 ) 6

4 Informace, zpráva, sdělení Zprávu chápeme jako relaci mezi zdrojem a odběratelem, při které dochází k přenosu Sdělení je vhodným způsobem upravená zpráva, zejména pro potřeby přenosu. Informační kanál Sdělení Zdroj Zpráva Příjemce Entropie zdroje Shannon, Wiener: představuje míru organizace, entropie míru neorganizovanosti H(z) = P(i).k(i) [Sh] Entropie Zpráva P(i) je střední k(i) P(i).k(i) hodnota Pro míry zdroj se shodnou potřebné A 0,50 k odstranění 0,500 neurčitosti, která je B 0,50 0,500 H(z) = n.[(1/n).log dána konečným počtem vzájemně se (n)] C 0,50 0,500 H(z) = log vylučujících D 0,15 jevů. 0,75 (n) E 0,15 0,75 H(z) =,50 pravděpodobností všech zpráv: pro n = 5 H(z) =, Informace, data, znalost Data jsou vyjádření skutečností formálním způsobem tak, aby je bylo možné přenášet nebo zpracovat. Znalost je to, co jednotlivec vlastní (ví) po osvojení dat a po jejich začlenění do souvislostí. Je výsledkem poznávacího procesu za předpokladu uvědomělé činnosti. 4

5 Kód Popis přiřazení kódových slov jednotlivým zprávám (kódová kniha). Kódové slovo je posloupnost znaků použité abecedy. Abeceda je množina znaků (binární abeceda Z = {0, 1}, jeden znak = bit) Minimální délka kódového slova: N * (x) = - log (P(x)) [bit] Pozn.: maximální informační obsah 1 bitu = 1 Sh. Charakteristiky kódu Střední délka kódového slova: L = P(i).N(i) [bit] Redundance R = L - H (protože L H, neboť N(i) N * (i)) Zpráva P(i) k(i) P(i).k(i) A B C D E 0,50 0,50 0,50 0,15 0,15 0,500 0,500 0,500 0,75 0,75 N(i) P(i).N(i) 1,000 1,000 1,50 0,750 0,875 H(z) =,50 L = 4,875 R =,65 Přenosový řetězec Zdroj Kódovací člen Vysílač Přenosový kanál Přijímač Dekódovací člen Příjemce zkreslení útlum šumy Přenosový kanál spojitý (analogový), diskrétní (v úrovni) neboli kvantovaný, číslicový (diskrétní v čase). Rychlost přenosu v p = k(x) / t [bit.s -1 ] 5

6 Vlastnosti přenosového kanálu P(0) P(0,0) 0 0 Přenosový kanál bezšumový, P(0,1) = P(1,0) = 0 šumový, podle výskytu chyb: bezpamětový (chyby jsou náhodné), paměťový (chyby jsou shlukové). šumový, podle vlivu šumu: symetrický, P(0,1) = P(1, 0), nesymetrický. P(1,0) = P(1) - P(1,1) P(0,1) = P(0) - P(0,0) P(1) 1 1 P(1,1) Teorie pravděpodobnosti Každému jevu A E (množina všech přípustných jevů, jistý jev) je přiřazeno jako pravděpodobnost číslo P(A), přičemž platí následující axiomy: pravděpodobnost je nezáporná, tj. P(A) 0; pravděpodobnost sjednocení konečně mnoha nebo spočetně mnoha vzájemně neslučitelných jevů A 1 E, A E,... je rovna součtu pravděpodobností těchto jevů, tj. P(A 1 A...) = P(A 1 ) + P(A ) +...; pravděpodobnost jistého jevu E je rovna 1, tj. P(E) = 1. 6

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku

Teorie informace 21.9.2014. Obsah. Kybernetika. Radim Farana Podklady pro výuku Teorie Radim Farana Podklady pro výuku Obsah Seznámení s problematikou a obsahem studovaného předmětu. Základní pojmy z Teorie, jednotka, informační obsah zprávy, střední délka zprávy, redundance. Kód.

Více

Automatizační technika. Obsah

Automatizační technika. Obsah 7.09.016 Akademický rok 016/017 Připravil: Radim Farana Automatizační technika Základy teorie Obsah Informace Jednotka Zdroj Kód Přenosový řetězec Prostředky sběru, zobrazování, přenosu, zpracování a úschovy

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2013/2014 Radim Farana. Obsah. Kybernetika 2 Podklady předmětu pro akademický rok 2013/2014 Radim Farana Obsah Základní pojmy z Teorie informace, jednotka informace, informační obsah zprávy, střední délka zprávy, redundance. Přenosový řetězec.

Více

Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat

Technická kybernetika. Obsah. Principy zobrazení, sběru a uchování dat. Měřicí řetězec. Principy zobrazení, sběru a uchování dat Akademický rok 2016/2017 Připravil: Radim Farana Technická kybernetika Principy zobrazení, sběru a uchování dat 2 Obsah Principy zobrazení, sběru a uchování dat strana 3 Snímač Měřicí řetězec Měřicí obvod

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance Data (jednotné číslo údaj) obvykle chápeme jako údaje, tj. číselné hodnoty, znaky, texty a další fakta zaznamenaná (a uložená v databázi) ve formě uspořádané posloupnosti

Více

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT

METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT METODY KÓDOVÁNÍ, ŠIFROVÁNÍ A BEZPEČNOSTI DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

Úvod do teorie informace

Úvod do teorie informace PEF MZLU v Brně 24. září 2007 Úvod Výměna informací s okolím nám umožňuje udržovat vlastní existenci. Proces zpracování informací je trvalý, nepřetržitý, ale ovlivnitelný. Zabezpečení informací je spojeno

Více

KÓDOVÁNÍ A KOMPRESE DAT

KÓDOVÁNÍ A KOMPRESE DAT KÓDOVÁNÍ A KOMPRESE DAT URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH RADIM FARANA ČÍSLO OPERAČNÍHO PROGRAMU: CZ..7 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST OPATŘENÍ:

Více

Informace, kódování a redundance

Informace, kódování a redundance Informace, kódování a redundance INFORMACE = fakt nebo poznatek, který snižuje neurčitost našeho poznání (entropii) DATA (jednotné číslo ÚDAJ) = kódovaná zpráva INFORAMCE = DATA + jejich INTERPRETACE (jak

Více

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz

Informace v počítači. Výpočetní technika I. Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz .. Informace v počítači Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelu.cz Osnova přednášky Úvod do teorie informace základní pojmy měření množství informace ve zprávě přenos a kódování

Více

ZÁKLADY INFORMATIKY 14ZINF. Číselné soustavy

ZÁKLADY INFORMATIKY 14ZINF. Číselné soustavy ZÁKLADY INFORMATIKY 14ZINF Číselné soustavy Data v číslicových počítačích I. nejčastěji počítače pracují s údaji vyjádřenými ve dvojkové soustavě, tedy pomocí číslic 0 a 1 důvod dvojkové soustavy byl ten,

Více

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat

Osnova přednášky. Informace v počítači. Interpretace dat. Údaje, data. Úvod do teorie informace. Výpočetní technika I. Ochrana dat Osnova přednášky 2/44 Informace v počítači Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně haluza@mendelucz základní pojmy měření množství informace ve zprávě přenos a kódování dat parita kontrolní

Více

Algoritmy komprese dat

Algoritmy komprese dat Algoritmy komprese dat Úvod do teorie informace Claude Shannon (1916 2001) 5.11.2014 NSWI072-7 Teorie informace Informace Co je to informace? Můžeme informaci měřit? Existují teoretické meze pro délku

Více

Základy počítačových sítí Úvod

Základy počítačových sítí Úvod Základy počítačových sítí Úvod Základy počítačových sítí Lekce 1 Ing. Jiří ledvina, CSc. Základy počítačových sítí (zimní semestr 2007) Přednášející: Ing. Jiří Ledvina, CSc. (ledvina@kiv.zcu.cz) UH:Po

Více

20. prosince 2011. Mgr. Krejčí Jan (UJEP) Opakování 20. prosince 2011 1 / 9

20. prosince 2011. Mgr. Krejčí Jan (UJEP) Opakování 20. prosince 2011 1 / 9 Opakování Mgr. Krejčí Jan 20. prosince 2011 Mgr. Krejčí Jan (UJEP) Opakování 20. prosince 2011 1 / 9 Osnova Mgr. Krejčí Jan (UJEP) Opakování 20. prosince 2011 2 / 9 Otázky od Alena Hnízdilová 1 Funkce

Více

Teorie informace: řešené příklady 2014 Tomáš Kroupa

Teorie informace: řešené příklady 2014 Tomáš Kroupa Teorie informace: řešené příklady 04 Tomáš Kroupa Kolik otázek je třeba v průměru položit, abychom se dozvěděli datum narození člověka (den v roce), pokud odpovědi jsou pouze ano/ne a tázaný odpovídá pravdivě?

Více

Úvod do počítačových sítí

Úvod do počítačových sítí Úvod do počítačových sítí ZČU Plzeň 2007 Úvod Přednášky EP-110 Pá 12.55 až 14.40 Ing. Jiří Ledvina, CSc (ledvina@kiv.zcu.cz, místnost UK420) Cvičení UL-402 Út 8.25 až 10.05 Ing. Petr Dvořák (dvop@kiv.zcu.cz)

Více

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008

Informatika Kódování. Obsah. Kód. Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Informatika Kódování Radim Farana Podklady předmětu Informatika pro akademický rok 27/28 Obsah Základy pojmy diskrétních kódů. Druhy kódů. Nejkratší kódy. Detekce chyb, Hammingova vdálenost. Kontrolní

Více

Úvod do počítačových sítí. Úvod. Úvod. ZČU Plzeň Přednášky EP-110 Pá až Ing. Jiří Ledvina, CSc místnost UK420)

Úvod do počítačových sítí. Úvod. Úvod. ZČU Plzeň Přednášky EP-110 Pá až Ing. Jiří Ledvina, CSc místnost UK420) Úvod do počítačových sítí ZČU Plzeň 2006 Úvod Přednášky EP-110 Pá 12.55 až 14.40 Ing. Jiří Ledvina, CSc (ledvina@kiv.zcu.cz, místnost UK420) Cvičení UL-402 Po 16.40 až 18.20 Ing. Marek Paška (paskam@kiv.zcu.cz)

Více

ČÍSELNÉ SOUSTAVY PŘEVODY

ČÍSELNÉ SOUSTAVY PŘEVODY ČÍSELNÉ SOUSTAVY V každodenním životě je soustava desítková (decimální, dekadická) o základu Z=10. Tato soustava používá číslice 0, 1, 2, 3, 4, 5, 6, 7, 8 a 9, není však vhodná pro počítače nebo číslicové

Více

Základní jednotky používané ve výpočetní technice

Základní jednotky používané ve výpočetní technice Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,

Více

Norbert Wiener Biokybernetika

Norbert Wiener Biokybernetika Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Norbert Wiener 26.11.1894-18.03.1964 Biokybernetika Obsah přednášky Kybernetika Kybernetické systémy Zpětná

Více

01 Úvod do informatiky

01 Úvod do informatiky Základy informatiky 01 Úvod do informatiky Michal Kačmařík (michal.kacmarik@vsb.cz) Materiál upraven z přednášek Daniely Szturcové a Pavla Děrgela Pojem informatika Informace jednotky přenášení, zabezpečení

Více

Základy informatiky. Úvod do informatiky. Daniela Szturcová Část převzata z přednášky P. Děrgela

Základy informatiky. Úvod do informatiky. Daniela Szturcová Část převzata z přednášky P. Děrgela Základy informatiky Úvod do informatiky Daniela Szturcová Část převzata z přednášky P. Děrgela Obsah přednášky Pojem informatika Informace jednotky přenášení, zabezpečení Kódování a šifrování informace

Více

ALGORITMIZACE A DATOVÉ STRUKTURY (14ASD) 1. cvičení

ALGORITMIZACE A DATOVÉ STRUKTURY (14ASD) 1. cvičení ALGORITMIZACE A DATOVÉ STRUKTURY (14ASD) 1. cvičení Lucie Krčálová Ústav aplikované informatiky v dopravě (K614) email: lkrcalova@fd.cvut.cz místnosti : F211, K109 (semestr - ČT), Horská budova A 4. patro

Více

KIS A JEJICH BEZPEČNOST I ZÁKLADY TEORIE INFORMACE DOC. ING. BOHUMIL BRECHTA, CSC.

KIS A JEJICH BEZPEČNOST I ZÁKLADY TEORIE INFORMACE DOC. ING. BOHUMIL BRECHTA, CSC. KIS A JEJICH BEZPEČNOST I ZÁKLADY TEORIE INFORMACE DOC. ING. BOHUMIL BRECHTA, CSC. Operační program Vzdělávání pro konkurenceschopnost Projekt: Vzdělávání pro bezpečnostní systém státu (reg. č.: CZ.1.01/2.2.00/15.0070)

Více

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE

25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE 25. DIGITÁLNÍ TELEVIZNÍ SIGNÁL A KABELOVÁ TELEVIZE Digitalizace obrazu a komprese dat. Uveďte bitovou rychlost nekomprimovaného číslicového TV signálu a jakou šířku vysílacího pásma by s dolním částečně

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5 Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy

Více

VY_32_INOVACE_IKTO2_0160 PCH

VY_32_INOVACE_IKTO2_0160 PCH VY_32_INOVACE_IKTO2_0160 PCH VÝUKOVÝ MATERIÁL V RÁMCI PROJEKTU OPVK 1.5 PENÍZE STŘEDNÍM ŠKOLÁM ČÍSLO PROJEKTU: CZ.1.07/1.5.00/34.0883 NÁZEV PROJEKTU: ROZVOJ VZDĚLANOSTI ČÍSLO ŠABLONY: III/2 DATUM VYTVOŘENÍ:

Více

Základy informačních technologií. Základy práce s tabulkovým procesorem MS Excel 2000. Základy práce s počítačovou sítí Internet.

Základy informačních technologií. Základy práce s tabulkovým procesorem MS Excel 2000. Základy práce s počítačovou sítí Internet. Laboratorní informační systém Ing. Radovan Metelka (KAlCh, č. dveří 355), učebna LE1 (3. patro) obor Klinická biologie a chemie, letní semestr 2003/2004 Základy informačních technologií. Základní pojmy

Více

Entropie. Tak vznikl (dříve v termodynamice) v informační teorii pojem ENTROPIE.

Entropie. Tak vznikl (dříve v termodynamice) v informační teorii pojem ENTROPIE. Entropie V polovině dvacátého století byl pojem INFORMACE již ve značné saturaci. CLAUDE ELWOOD SHANNON přemýšlel jak svou veličinu pojmenovat. Tehdy mu John von Neuman údajně řekl: You should call it

Více

RNDr. Krejčí Jan, Ph.D. 5. listopadu 2015. RNDr. Krejčí Jan, Ph.D. (UJEP) IT názvosloví 5. listopadu 2015 1 / 11

RNDr. Krejčí Jan, Ph.D. 5. listopadu 2015. RNDr. Krejčí Jan, Ph.D. (UJEP) IT názvosloví 5. listopadu 2015 1 / 11 IT názvosloví RNDr. Krejčí Jan, Ph.D. 5. listopadu 2015 RNDr. Krejčí Jan, Ph.D. (UJEP) IT názvosloví 5. listopadu 2015 1 / 11 Osnova 1 Terminologie v ICT Počítačové sítě Internetové názvosloví Ochrana

Více

Identifikátor materiálu: ICT-1-02

Identifikátor materiálu: ICT-1-02 Identifikátor materiálu: ICT-1-02 Předmět Informační a komunikační technologie Téma materiálu Data a informace Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí základní pojmy jako data,

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

PB169 Operační systémy a sítě

PB169 Operační systémy a sítě PB169 Operační systémy a sítě Řízení přístupu k médiu, MAC Marek Kumpošt, Zdeněk Říha Řízení přístupu k médiu Více zařízení sdílí jednu komunikační linku Zařízení chtějí nezávisle komunikovat a posílat

Více

Kompresní metody první generace

Kompresní metody první generace Kompresní metody první generace 998-20 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Stillg 20 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca / 32 Základní pojmy komprese

Více

Základy informatiky. 01 Úvod do informatiky. Kačmařík/Szturcová/Děrgel/Rapant

Základy informatiky. 01 Úvod do informatiky. Kačmařík/Szturcová/Děrgel/Rapant Základy informatiky 01 Úvod do informatiky Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky Pojem informatika Informace jednotky přenášení, zabezpečení Kódování a šifrování informace Uchovávání informací

Více

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání.

KOMPRESE OBRAZŮ. Václav Hlaváč, Jan Kybic. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. 1/25 KOMPRESE OBRAZŮ Václav Hlaváč, Jan Kybic Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda

ednáška a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda 2.předn ednáška Telefonní kanál a metody digitalizace telefonního signálu Ing. Bc. Ivan Pravda Telekomunikační signály a kanály - Při přenosu všech druhů telekomunikačních signálů je nutné řešit vztah

Více

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa

Teorie informace II: obtížnější řešené příklady 2014 Tomáš Kroupa Teorie informace II: obtížnější řešené příklady 204 Tomáš Kroupa. Máme n mincí, z nichž nejvýše jedna je falešná. Pozná se podle toho, že má jinou hmotnost než ostatní mince (ty váží všechny stejně). Mince

Více

Informatika I - 5. doc. Ing. Jan Skrbek, Dr. KIN. Spojení: Ing. Bc. Marian Lamr INN

Informatika I - 5. doc. Ing. Jan Skrbek, Dr. KIN. Spojení:    Ing. Bc. Marian Lamr INN Informatika I - 5 Sémiotický model informačních úrovní, signály modulace, přenosový kanál, znaky, datová úroveň informace, syntaxe. Kódy a kódování, číselné a znakové kódy. Přednáší: Konzultace: doc. Ing.

Více

Informatika Datové formáty

Informatika Datové formáty Informatika Datové formáty Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Datové formáty (datové typy). Textové formáty, vlastnosti zdroje zpráv. Číselné formáty, číselné

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 SPEC. 2.p 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace

Více

Neuronální kódování a přenos informace

Neuronální kódování a přenos informace Neuronální kódování a přenos informace Lubomír Košťál Fyziologický ústav AV ČR Matematické modely a aplikace, Podlesí 2013 Problém neuronálního kódování Problém neuronálního kódování čas [s] t i 1 t i

Více

VY_32_INOVACE_FY.01 FYZIKA - ZÁKLADNÍ POJMY

VY_32_INOVACE_FY.01 FYZIKA - ZÁKLADNÍ POJMY VY_32_INOVACE_FY.01 FYZIKA - ZÁKLADNÍ POJMY Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Fyzikální veličina je jakákoliv

Více

Teorie kódování aneb jak zhustit informaci

Teorie kódování aneb jak zhustit informaci Teorie kódování aneb jak zhustit informaci Jan Paseka Masarykova Univerzita Brno 13. února 2015 Cíl přednášky V této přednášce se pokusíme o stučný úvod do historie teorie kódování včetně teorie informace

Více

Název a označení sady: Člověk, společnost a IT technologie; VY_3.2_INOVACE_Ict.8.01 20

Název a označení sady: Člověk, společnost a IT technologie; VY_3.2_INOVACE_Ict.8.01 20 Název materiálu: INFORMACE Autor materiálu: Mgr. Irena Štaffová Zařazení materiálu: Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT (III/2) Název a označení sady: Člověk, společnost a IT technologie;

Více

cv3.tex. Vzorec pro úplnou pravděpodobnost

cv3.tex. Vzorec pro úplnou pravděpodobnost 3 cvičení - pravděpodobnost 2102018 18cv3tex n i=1 Vzorec pro úplnou pravděpodobnost Systém náhodných jevů nazýváme úplným, jestliže pro něj platí: B i = 1 a pro i k je B i B k = 0 Jestliže je (Ω, A, P

Více

Základy rádiové digitální komunikace. Doc. Dr. Ing. Pavel Kovář Katedra radioelektroniky K13137

Základy rádiové digitální komunikace. Doc. Dr. Ing. Pavel Kovář Katedra radioelektroniky K13137 Základy rádiové digitální komunikace Doc. Dr. Ing. Pavel Kovář Katedra radioelektroniky K13137 (Shannonovo) Schéma digitálního komunikačního řetězce Modeluje zpracování informace v digitálních komunikačních

Více

íta ové sít baseband narrowband broadband

íta ové sít baseband narrowband broadband Každý signál (diskrétní i analogový) vyžaduje pro přenos určitou šířku pásma: základní pásmo baseband pro přenos signálu s jednou frekvencí (není transponován do jiné frekvence) typicky LAN úzké pásmo

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 5 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2015, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

vede právě tímto směrem k pojmu entropie, známému z termodynamiky a statistické fyziky.

vede právě tímto směrem k pojmu entropie, známému z termodynamiky a statistické fyziky. Entropie a informace Entr-Inf4.tex J. Obdržálek předběžná verze, 2007-2-0 Úvod. Motivace Zavedli jsme entropii. V termodynamice měla všechny atributy nepořádku, chaosu apod.: v izolovaném systému samovolně

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky

Komprese dat. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky Komprese dat Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Statistické metody Jan Outrata (Univerzita Palackého v Olomouci) Komprese dat Olomouc, únor březen 2016 1 / 23 Tunstallův

Více

Úvod do teorie kódování

Úvod do teorie kódování Úvod do teorie kódování Matematické základy komprese a digitální komunikace Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ upravil Mirko Navara http://cmp.felk.cvut.cz/~navara/ 12. 1. 2017 Part I Úvod Teorie

Více

Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí.

Základní pojmy. Program: Algoritmus zapsaný v programovacím jazyce, který řeší nějaký konkrétní úkol. Jedná se o posloupnost instrukcí. Základní pojmy IT, číselné soustavy, logické funkce Základní pojmy Počítač: Stroj na zpracování informací Informace: 1. data, která se strojově zpracovávají 2. vše co nám nebo něčemu podává (popř. předává)

Více

KET/ZPI - Zabezpečení podnikových informací

KET/ZPI - Zabezpečení podnikových informací KET/ZPI - Zabezpečení podnikových informací Přednášející: Ing. František Steiner, Ph.D. Ing. František Steiner, Ph.D. EK417 Katedra technologií a měření mail: steiner@ket.zcu.cz tel: 377 634 535 Konzultace:

Více

Komprese dat (Komprimace dat)

Komprese dat (Komprimace dat) Komprese dat (Komprimace dat) Př.: zakódovat slovo ARARAUNA K K 2 četnost absolutní relativní A 4,5 N,25 R 2,25 U,25 kód K : kód K 2 :... 6 bitů... 4 bitů prefixový kód: žádné kódové slovo není prefixem

Více

Automatizační technika. Obsah

Automatizační technika. Obsah Akademický rok 2016/2017 Připravil: Radim Farana Automatizační technika Úvod do automatizace 2 Obsah Obsah předmětu Cíl předmětu Požadavk na absolvování Základní pojm z teorie sstémů Základní pojm z teorie

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra

kryptosystémy obecně další zajímavé substituční šifry klíčové hospodářství kryptografická pravidla Hillova šifra Vernamova šifra Knižní šifra kryptosystémy obecně klíčové hospodářství klíč K, prostor klíčů T K kryptografická pravidla další zajímavé substituční šifry Hillova šifra Vernamova šifra Knižní šifra klíč K různě dlouhá posloupnost znaků

Více

Informační a komunikační technologie

Informační a komunikační technologie Informační a komunikační technologie 2. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující

Více

Digitální signály a kódy

Digitální signály a kódy EVROPSKÝ SOCIÁLNÍ FOND Digitální signály a kódy PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Digitální signál

Více

transmitter Tx - vysílač receiver Rx přijímač (superheterodyn) duplexer umožní použití jedné antény pro Tx i Rx

transmitter Tx - vysílač receiver Rx přijímač (superheterodyn) duplexer umožní použití jedné antény pro Tx i Rx Lekce 2 Transceiver I transmitter Tx - vysílač receiver Rx přijímač (superheterodyn) duplexer umožní použití jedné antény pro Tx i Rx u mobilního telefonu pouze anténní přepínač řídící část dnes nejčastěji

Více

Elektrické parametry spojů v číslicových zařízeních

Elektrické parametry spojů v číslicových zařízeních Elektrické parametry spojů v číslicových zařízeních Co je třeba znát z teoretických základů? jak vyjádřit schopnost přenášet data jak ji správně chápat jak a v čem ji měřit čím je schopnost přenášet data

Více

DATOVÁ KOMUNIKACE. Ú vod do teorie informace a kódová ní. Prof. Ing. Dalibor Biolek, CSc. Ú STAV TELEKOMUNIKACÍ

DATOVÁ KOMUNIKACE. Ú vod do teorie informace a kódová ní. Prof. Ing. Dalibor Biolek, CSc. Ú STAV TELEKOMUNIKACÍ DATOVÁ KOMUNIKACE Ú vod do teorie informace a kódová ní Prof. Ing. Dalibor Biolek, CSc. Ú STAV TELEKOMUNIKACÍ PŘ EDMLUVA Skripta pokrý vají první cyklus přednášek předmě tu Datová komunikace, věnovaný

Více

Čísla, reprezentace, zjednodušené výpočty

Čísla, reprezentace, zjednodušené výpočty Čísla, reprezentace, zjednodušené výpočty Přednáška 4 A3B38MMP kat. měření, ČVUT - FEL, Praha J. Fischer A3B38MMP, 2014, J.Fischer, ČVUT - FEL, kat. měření 1 Čísla 4 bitová dec bin. hex. 0 0000 0 1 0001

Více

Základní komunikační řetězec

Základní komunikační řetězec STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Základní komunikační řetězec PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

Modulace analogových a číslicových signálů

Modulace analogových a číslicových signálů Modulace analogových a číslicových signálů - rozdělení, vlastnosti, způsob použití. Kódování na fyzické vrstvě komunikačního kanálu. Metody zabezpečení přenosu. Modulace analogových a číslicových signálů

Více

2. přednáška - PRAVDĚPODOBNOST

2. přednáška - PRAVDĚPODOBNOST 2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Osnova kurzu Elektrotechnika a elektronika

Osnova kurzu Elektrotechnika a elektronika Osnova kurzu Elektrotechnika a elektronika 1) Úvodní informace; zopakování nejdůležitějších vztahů 2) Základy teorie elektrických obvodů 1 3) Základy teorie elektrických obvodů 2 4) Základy teorie elektrických

Více

Nejvyšší řád čísla bit č. 7 bit č. 6 bit č.5 bit č. 4 bit č. 3 bit č. 2 bit č. 1 bit č. 0

Nejvyšší řád čísla bit č. 7 bit č. 6 bit č.5 bit č. 4 bit č. 3 bit č. 2 bit č. 1 bit č. 0 Číselné soustavy Cílem této kapitoly je sezn{mit se se z{kladními jednotkami používanými ve výpočetní technice. Poznat číselné soustavy, kódy a naučit se převody mezi číselnými soustavami. Klíčové pojmy:

Více

+ 1. doc. Ing. Jan Skrbek, Dr. - KIN. Konzultace: pondělí nebo dle dohody. Spojení:

+ 1. doc. Ing. Jan Skrbek, Dr. - KIN. Konzultace: pondělí nebo dle dohody. Spojení: Informatika I - 5 Sémiotický model informací Sémantická a pragmatická pravidla zpracování informací, znalosti, kompetence, hodnota informace, rozhodování. Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Konzultace:

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST

9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST 9. PRINCIPY VÍCENÁSOBNÉHO VYUŽITÍ PŘENOSOVÝCH CEST Modulace tvoří základ bezdrátového přenosu informací na velkou vzdálenost. V minulosti se ji využívalo v telekomunikacích při vícenásobném využití přenosových

Více

Tematická oblast: Informační a komunikační technologie (VY_32_INOVACE_09_1_IT) Autor: Ing. Jan Roubíček. Vytvořeno: červen až listopad 2013.

Tematická oblast: Informační a komunikační technologie (VY_32_INOVACE_09_1_IT) Autor: Ing. Jan Roubíček. Vytvořeno: červen až listopad 2013. Tematická oblast: Informační a komunikační (VY_32_INOVACE_09_1_IT) Autor: Ing. Jan Roubíček Vytvořeno: červen až listopad 2013 Anotace: Digitální učební materiály slouží k seznámení se základy informačních

Více

Historie SI. SI Mezinárodní soustava jednotek - Systéme International d Unités

Historie SI. SI Mezinárodní soustava jednotek - Systéme International d Unités Soustava SI 1 Historie SI SI Mezinárodní soustava jednotek - Systéme International d Unités Vznik 1960 6 základních jednotek 1971 doplněna o 7 základ. jednotku mol 7.1.1974 zavedení SI v ČR Od 1.1.1980

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti

Více

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23

Obsah. I. Objektivní pravděpodobnosti. 1. Pravděpodobnost a relativní četnosti... 23 Obsah Předmluva... 15 I. Objektivní pravděpodobnosti 1. Pravděpodobnost a relativní četnosti... 23 1.1 Úvod... 23 1.2 Základy frekvenční interpretace... 24 1.2.1 Pravděpodobnost a hromadné jevy... 24 1.2.2

Více

Struktura a architektura počítačů (BI-SAP) 5

Struktura a architektura počítačů (BI-SAP) 5 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 5 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Fyzická úroveň. Teoretický základ datových komunikací. Fourierova analýza Signály limitované šířkou pásma Maximální přenosová rychlost kanálem

Fyzická úroveň. Teoretický základ datových komunikací. Fourierova analýza Signály limitované šířkou pásma Maximální přenosová rychlost kanálem Fyzická úroveň Úvod do počítačových sítí Lekce 03 Ing. Jiří ledvina, CSc. Teoretický základ datových komunikací Fourierova analýza Signály limitované šířkou pásma Maximální přenosová rychlost kanálem 3.10.2008

Více

Teorie informace. Mirko Navara. katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a navara/psi 3. 1.

Teorie informace. Mirko Navara. katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a   navara/psi 3. 1. Teorie informace Mirko Navara Centrum strojového vnímání katedra kbernetik FEL ČVUT Karlovo náměstí, budova G, místnost 4a http://cmp.felk.cvut.cz/ navara/psi.. 7 Obsah Informace Entropie. Entropie jako

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

1. OBSAH, METODY A VÝZNAM FYZIKY -

1. OBSAH, METODY A VÝZNAM FYZIKY - IUVENTAS - SOUKROMÉ GYMNÁZIUM A STŘEDNÍ ODBORNÁ ŠKOLA 1. OBSAH, METODY A VÝZNAM FYZIKY - STUDIJNÍ TEXTY Frolíková Martina Augustynek Martin Adamec Ondřej OSTRAVA 2006 Budeme rádi, když nám jakékoliv případné

Více

264/2000 Sb. VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. července 2000,

264/2000 Sb. VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. července 2000, Vyhl. č. 264/2000 Sb., stránka 1 z 7 264/2000 Sb. VYHLÁŠKA Ministerstva průmyslu a obchodu ze dne 14. července 2000, o základních měřicích jednotkách a ostatních jednotkách a o jejich označování Ministerstvo

Více

Akademický rok 2018/2019 Připravil: Radim Farana Řídicí technika Obsah Obsah předmětu Poř. Datum Obsah

Akademický rok 2018/2019 Připravil: Radim Farana Řídicí technika Obsah Obsah předmětu Poř. Datum Obsah Akademický rok 2018/2019 Připravil: Radim Farana Řídicí technika Základní princip teorie řízení 2 Obsah Obsah předmětu Cíl předmětu Požadavk na absolvování Základní pojm z teorie sstémů Základní pojm z

Více

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. září 2018 Teorie pravděpodobnosti Teorie pravděpodobnosti je odvětvím matematiky, které studuje matematické modely náhodných pokusu, tedy zabývá se

Více