Základy teorie množin

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Základy teorie množin"

Transkript

1 Základy teorie množin Teorie Výběr základních pojmů: Množina Podmnožina Prázdná množina Označení běžně používaných množin Množinová algebra (sjednocení, průnik, rozdíl) Doplněk množiny Potenční množina Kartézský součin Kartézská mocnina N-nární relace, binární relace, inverzní relace Zobrazení (na, do, z na, z do) N-nární operace Výběr teorie: 1. Inkluze. Odlišení a X Y říkáme, že X je podmnožinou nebo částí množiny Y jestliže ( u)(u X u Y) X Y říkáme, že X je vlastní podmnožinou nebo vlastní částí množiny Y jestliže platí (X Y) (X Y) Obecně o vlastnostech operací Zde si všimneme obecných vlastností operací aplikovaných na algebru množin. Reflexivita...A A, A = A,. pro a = Symetrie...A = B a B = A,.. pro = Tranzitivita...(X Y) & (Y Z) (X Z), (X Y) & (Y Z) (X Z), pro, Komutativnost... X Y= Y X, X Y= Y X,. pro a Asociativnost... (X Y) Z = X (Y Z),. pro, možné i pro Distributivnost... X (Y Z) = (X Y) (X Z), pro vazbu mezi a X (Y Z) = (X Y) (X Z) N nární relace Buď n přirozené číslo, A 1, A 2,, A n množiny. Relací R mezi množinami A 1, A 2,, A n nazýváme každou podmnožinu R A 1 x A 2 x x A n. Jestliže platí ( i)a i = A, pak relaci R A n nazýváme n-nární relací na A. Buďte X, Y neprázdné množiny. Binární relací R mezi množinami X, Y (v tomto pořadí) nazveme každou podmnožinu kartézského součinu X x Y. Binární relace se mohou vyznačovat následujícími vlastnostmi (ověřit na =, <, >, v Z):

2 Symetrické a antisymetrické relace Binární relace R na množině A je symetrická, jestliže R R -1, tj. a,b A (arb bra) Binární relace R na množině A je antisymetrická, jestliže platí a,b A (arb bra a = b ) Vlastnosti: 1. Sjednocení, průnik a součin symetrických binárních relací na A je opět symetrická binární relace na A (důkaz indukcí). Př. 1. Relace na Z je symetrická Relace dělitelnosti na N je antisymetrická (ale ne na Z). 3. Relace <,, >, na Z + jsou antisymetrické. Tranzitivní relace Tranzitivní binární relace na A jsou relace pro které platí: a,b,c A (arb brc arc ). Vlastnosti: 1. Binární relace na A je tranzitivní, právě když inverzní binární relace R -1 je tranzitivní. Př. Jaké vlastnosti má binární relace < na množině Z? Buďte a, b, c Z, potom: a < a není pravdivé...relace není reflexivní (a < a) platí-li a < b potom b < a neplatí...relace není symetrická (a < b) (b < a) je-li a < b, b < c potom je a < c...relace je tranzitivní (a < b) (b < c) (a < c ) Dichotomické/souvislé relace Binární relace R na množině A se nazývá dichotomická (souvislá) jestliže pro ni platí R R -1 = A 2. To je totéž jako a,b A (arb bra) Vlastnosti: 1. R je dichotomická, právě když R -1 je dichotomická. 2. každá dichotomická binární relace je reflexivní. Př. 1. Úplná množina na A je dichotomická. 2. Relace, jsou na Z, Q, R dichotomické. 3. Průnik dichotomických relací nemusí být dichotomický. Např. pro R 1 ={(a,a), (a,b), (b,b)} R 2 = {(a,a), (b,a), (b,b)} to platí. R 1 R 2 = {{(a,a), (b,b)} Ekvivalence Každá reflexivní, symetrická a tranzitivní binární relace na A se nazývá ekvivalencí na A. a A platí ara, a,b A (arb bra), a,b,c A (arb brc arc ).

3 Zobrazením f množiny X do množiny Y nazýváme každou relaci f X x Y, pro kterou platí: každému prvku x X je přiřazen nejvýše jeden takový prvek y Y, že uspořádaná dvojice (x,y) f. Významově je tato definice plně v souladu s definicí na začátku kapitoly, definice se postavila nad relacemi. Pochopitelně, jestliže je zaručeno, že v zobrazení do každému prvku y množiny Y náleží prvek x množiny X takový, že (x,y) f, potom se jedná o zobrazení X Y. Zobrazením f z množiny X do množiny Y nazýváme každou relaci f X x Y, pro kterou platí: existuje alespoň jeden takový prvek x X ke kterému je přiřazen prvek y Y tak, že uspořádaná dvojice (x,y) f. Poznámka: 1. Zobrazení f z množiny X do množiny Y můžeme zapsat jako f: X Y. 2. Jestliže při zobrazení f : X Y je každému prvku x X přiřazen právě jeden prvek y Y, přechází toto zobrazení na zobrazení X do Y, tedy X Y. 3. V zobrazení f : X Y ne každý prvek y Y má v X přiřazen alespoň jeden vzor. Nechť pro množiny X,Y platí f: X Y. Jestliže každému prvku y Y náleží alespoň jeden vzor x X, potom mluvíme o zobrazení z množiny X na množinu Y a zapisujeme ve tvaru f : X Y. Poznámka: 1. Je zřejmé, že ne každý prvek x X má v množině Y svůj obraz. 2. Jestliže při zobrazení f: X Y je každému prvku x X přiřazen právě jeden prvek y Y a každý prvek y Y má alespoň jeden vzor x X, mluvíme o zobrazení X Y. 3. Zobrazení f: X Y a X Y se nazývají surjekcí (nakrytí). 4. Zobrazení f se nazývá prosté nebo injekcí (injekce vložení), jestliže každé dva různé vzory x 1 x 2 mají různé obrazy f(x 1 ) f(x 2 ) 5. Prosté zobrazení X Y se nazývá bijektivní (vzájemně jednoznačné, jedno-jedno korespodentní) zobrazení (bijekce je injekce a surjekce zároveň). 6. Zobrazení do a na mezi množinami X,Y je zvláštním případem binární relace mezi množinami X, Y. N nární operace Buď A množina a n přirozené číslo. Zobrazení f: A n A nazýváme n ární algebraickou operací na množině A. Číslo n N nazýváme četností operace. Pro n = 0 definujeme nulární operaci na A jako zvolení určitého prvku v množině A. Příkladem unární operace (n = 1) v množině Z je (-a), kde a Z. Tato unární operace je převodem celého čísla a na opačné. Další operace poskytuje algebra množin. Příkladem binární operace f: Z 2 Z na Z jsou operace "sčítání, násobení, odčítání, dělení, " Tyto operace mají dva operandy a píšou se ve tvaru a 1 a 2, kde je symbol obecné binární operace (+, -, ).

4 Příklady: Podmnožiny, operace nad množinami 1. Zapište všechny podmnožiny množin {2,7}, {5,7,9}, {0}, φ 2. Napište všechny podmnožiny množiny A = {-3, 0, 0.5, 1}, které jsou současně podmnožinou množiny N Z {x R ; x < 1} 3. Zjistěte, které z následujících množin se rovnají {x Z ; x > 0}, {x R ; x 0}, {x N ; x-2 < 2}, N, {0}, {1,2,3}, {x R ; 3 3 x = x}, {x R ; x 0} 4. Určete doplněk množiny B v množině A, když: A = N, B ={x N ; x > 2} A = Z, B = {x Z ; x > 2} 2 A = R, B = {x R ; x = - x} A = R, B = {x R ; x-1 < 0} A = R, B = {x R ; x-2 0} 5. Stanovte průnik a sjednocení množin X, Y X = {-2,0,5,7}, Y = {-3,-1,0,4,7,9} X = {x Z ; x < -5} Y = {x Z ; x -1} X = N, Y = {x Z ; x < 3} X = N, Y = {x Z ; x <1} 6. Specifikujte kdy je: A B=A, A B=A, B ' A=A, B ' A=φ, A B= A B 7. Nalezněte všechny množiny X pro které je A X = B, jestliže A = {x N ; x 2}, B = { x N ; x <4} A = φ, B = {1,2} A = {1}, B = {2,3} 8. Stanovte rozdíly A-B pro následující případy: A = {-3,-1,0,5}, B = {-1,0,1} A = { x Z ; x -2}, B = { x Z ; x <-7} A = Z, B = N A = N, B = { x Z ; x 2} A = Z -, B = { x Z ; x-1 <3} 9. Definujte: sjednocení množin kartézský součin množin symetrickou relaci ekvivalenci injektivní zobrazení 10. Rozhodněte, zda platí 1. A (B C) = (A B) C 2. (A B) C = (B A) C 3. A (B C) = (A B) (A C) 4. A (B C) = (A B) (A C) 5. A (B C) = (A B) (A C)

5 6. 7. P( ) 8. (, ) { } { } 9. { } {{ }} 10. P( ) = 1 Kartézský součin a relace 1. Nalezněte kartézský součin A x B x C, kde A = {1, /, <}, b = {+, -,?, *}, C = {0, 1, 2, 3}. 2. Navrhněte algoritmus, pomocí kterého snadno vypočtete úplný kartézský součin množin A 1, A 2,, A n. 3. Uveďte případy unárních a binárních operací v množině N. 4. Uveďte případy binárních relací v množině R. 5. Je dána entita oddělení = (název, budova, číslo posch., krestni_ved, prijmeni_ved ) svou populací. Napište kartézský součin jehož je populace podmnožinou. oddělení: název budova čís. posch. krestni_ved prijmeni_ved Ryby 1 1 Jan Moudrý Obuv 1 2 Petr Spálený Hračky 2 1 Ivan Hlína Potraviny 2 2 Oldřich Vrtkavý Oblečení 3 1 Tomáš Smutný Řešení: 1. A x B x C = {(x,y,z) x A, z B, y C} = {. } 2. Jde o postupný výpočet n-tic (a 1, a 2, a n ) pomocí trojúhelníkového přístupu. Začne se první pozicí a 1. Na tuto pozici dám první prvek množiny A 1. Na druhou pozici v n-tici dám první prvek druhé množiny,, až na poslední pozici a n dám první prvek množiny A n. Vynikne tak první n-tice. Teď začnu postupovat od a n. Na pozici a n dám postupně další prvky množiny A n. Vznikne tak dalších n-1 n-tic. V každé z těchto n-tic měním na předposlední pozici zbývající prvky množiny A n-1. Postup dál směrem k A 1 je již zřejmý. 3. -, +, *, / 4. =, <, >,.. 5. Nejdříve stanovíme definiční obory jednotlivých atributů: Dnázev = {Ryby, Obuv, Hračky, Potraviny, Oblečení} Dbudova = { } Dčís. posch. = { } Dkrestní_ved = { } Dprijmení_ved = { } Potom platí, že oddělení [ Dnázev x Dbudova x Dčís. posch x Dkrestní_ved x Dprijmení_ved ] Binární relace 1. Udělejte formální zápis dělitelnosti celých čísel a b, kterou čteme. a dělí b beze zbytku, jako binární relace na Z. R Z x Z R={(a,b) a,b Z c Z (b = c.a)}

6 2. Jaké vlastnosti má relace na množině Z? a a...je pravdivé relace je reflexivní platí-li a b potom b a platí...relace je symetrická (a b) (b a) je-li a b, b c potom je a c relace je tranzitivní (a b) (b c) (a c ) 3. Zdůvodněte vlastnosti dvojic binárních relací z množiny <, >,,, =, na Z. < a < a >, a = a < a =. n-nární relace 1. Na základě pochopení definice n-nární relace popište co jsou procedury pro třídění posloupnosti celých čísel. 2. Jak se dá klasifikovat tabulka Oddělení v konfrontaci s definicí n-nární relace? Není to náhodou n-nární relace, n=5? Zdůvodněte. Řešení 1. Procedura třídění zpracovává každou výchozí n-tici celých čísel (x 1, x 2,, x n ) Z x Z x Z = Z n a transformuje tuto n-tici do setříděné n-tice (x' 1, x' 2,, x' n ), která je opět z množiny Z n. Jelikož je množina setříděných n-tic podmnožinou množiny Z n, je jasné, že zřizuje jistou n-nární relaci "R-Procedura setřídění". 2. Ano, tabulka Oddělení prezentuje jistou n-nární relaci, protože je podmnožinou součinu D název x D budova x D čís. posch x D krestní_ved x D prijmení_ved. Takto vytvořená tabulka je populací entity Oddělení (klasický přístup k modelování reality), a tak je vlastně prezentována Db-relace 1 v Coddově algebře ( Coddova algebra je postavena na nosiči, kterým je množina Db-relací). Zobrazení: 1. Zdůvodněte, že funkce y = x 2 pro D x =R není prosté zobrazení. Určete definiční obor tak, aby vzniklo prosté zobrazení a nalezněte k němu inverzní zobrazení. 2. Určete D x pro zobrazení y = x. Rozhodněte, zda je toto zobrazení prosté. 3. Pomocí formálního jazyka teorie množin zapište operace A B, A-B, A B. 4. Graficky znázorněte následující typy zobrazení: z množiny A do množiny B množiny A do množiny B z množiny A na množinu B množiny A na množinu B 5. Definujte následující pojmy: kartézská mocnina, potence množiny, mohutnost kartézského součinu. Nechť A, B, C jsou neprázdné množiny o mohutnostech A = m, B = n, C = k, kolik prvků mají následující množiny: A x B x C; A x B x C; A x B x C x A; P(A) x P(B); 1 Db-relace je vlastně databázová relace

7 P(A x B). Řešení 1. Funkce není prosté zobrazení, ačkoliv je to zobrazení na, protože (x) a (-x) mají stejný obraz. Prosté bude v D x = (-,0) a (0, + ). V druhém případě (žlutě) k zobrazení existuje inverzní zobrazení 2 y = x. 2. Pro D x =R není prosté. 3. A B= {x (x A) (x B)} A-B ={x (x A) (x B)} A B ={x (x A) (x B)} závorky je možno vynechat 4. Operace lze zakreslit následovně: z do do z na na N-Nární operace 1. Uveďte případy unárních a binárních operací na množině N. 1. Nechť je pro a, b, k, z Z dána běžně používaná funkce Mod (a,b) = z, kde z je dáno vztahy: a = k.b + z, 0 z < b (z je tzv. nejmenší nezáporný zbytek). Vysvětlete, že Mod je binární operace. 2. Výběr podřetězce y z řetězce x je zapsán notací Mid(i,j,x), kde i je pozice zleva od níž se začne vybírat, j je počet vybraných znaků x je řetězec z něhož zleva se vybírá. Co je Mid(i,j,x), když i,j Z a x Σ *? Je to operace nebo relace? Σ je abeceda řetězců, Σ* je množina všech řetězců definovaných nad abecedou Σ. 3. Buďte A,B,C čtvercové matice o rozměru n. Je procedura Součet (A,B,C,n) 3-nární operací? Řešení Výsledkem operace Mod je nezáporný zbytek z Z. Mod je skutečně binární operací, protože: jde o zobrazení f: Z x Z Z, tedy Z 2 Z, kde f: (a, b, k, z Z) ( a = k.b + z, 0 z < b )

8 3. Především je to zobrazení Z x Z x Σ * Σ * Současně je to 3-nární operace nad množinami Z a Σ *. Není to relace podle definice Ano, je. Jestliže je M množinou všech čtvercových matic o rozměru n N, potom f: C=A+B: M 3 M je 3-nární operace v množině M. Použité zdroje: Přednášky z předmětu Teoretické základy informatiky (prof. RNDr. Milan Mišovič, CSc.) Metodická elektronická podpora do předmětu TZI Doporučené zdroje: Přednášky z předmětu Teoretické základy informatiky (prof. RNDr. Milan Mišovič, CSc.) Metodická elektronická podpora do předmětu TZI (dostupná pod kartou předmětu v UIS)!!! Internetové zdroje (výběr v adresáři tohoto dokumentu)

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Olomouc

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. 1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat

Více

Množiny, základní číselné množiny, množinové operace

Množiny, základní číselné množiny, množinové operace 2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás

Více

3 Množiny, Relace a Funkce

3 Množiny, Relace a Funkce 3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík

B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu. Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška šestá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

ZÁKLADY ARITMETIKY A ALGEBRY I

ZÁKLADY ARITMETIKY A ALGEBRY I 1 ZÁKLADY ARITMETIKY A ALGEBRY I (Cvičení) 1. Úvod, jazyk matematiky V učebnici Lineární algebra pročítejte definice a věty, uvědomujte si jejich strukturu, i když prozatím neznáte a nechápete (aaniprozatímchápatnemůžete)jejichmatematický

Více

RELACE, OPERACE. Relace

RELACE, OPERACE. Relace RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}.

Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}. 2 Množiny a intervaly lgebraické výrazy 2.1 Množiny Chápání množiny lze shrnout takto: Množinou rozumíme každé shrnutí určitých a navzájem různých předmětů m našeho nazírání nebo myšlení (které nazýváme

Více

1. Základy matematiky

1. Základy matematiky 1. Základy matematiky 1A. Výroková logika 1. Základy matematiky 1A. Výroková logika Logika se v češtině běžně používá ve smyslu myšlenková cesta, která vede k určitým závěrům. Logika patří k základům matematiky.

Více

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.

M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y. Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje

Více

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad 1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Aplikovaná matematika I, NMAF071

Aplikovaná matematika I, NMAF071 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Obsah. Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání

Obsah. Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání Obsah Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání lgebry lgebry s jednou operací lgebry se dvěma operacemi Svazy 2 Teorie

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

Teorie grup 1 Příklad axiomatické teorie

Teorie grup 1 Příklad axiomatické teorie Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

ÚVOD DO ARITMETIKY. Michal Botur

ÚVOD DO ARITMETIKY. Michal Botur ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů):

I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): 1. Všechna prvočísla větší než 2 jsou lichá. Je-li prvočíslo větší než 2, pak je liché.

Více

Výroková a predikátová logika - II

Výroková a predikátová logika - II Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

DISKRÉTNÍ MATEMATIKA I

DISKRÉTNÍ MATEMATIKA I Fakulta pedagogická, Technická univerzita v Liberci DISKRÉTNÍ MATEMATIKA I Doc. RNDr. Miroslav Koucký, CSc. Prof. RNDr. Bohdan Zelinka, DrSc. Liberec, 4 Obsah Kap. Základní poznatky o množinách 7. Pojem

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera. 1. Operace a Ω-algebry

ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera. 1. Operace a Ω-algebry ZÁKLADY UNIVERZÁLNÍ ALGEBRY Radan Kučera 1. Operace a Ω-algebry Úvod. V průběhu přednášky z algebry jsme studovali řadu algebraických struktur: grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor 2 Předmluva (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor Výpočetní technika na Elektrotechnické fakultě ČVUT. Jak název napovídá, hlavním cílem

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics

Komutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics Komutativní a nekomutativní polookruhy ve školské matematice Drahomíra Holubová Resume Polookruhy, které nejsou okruhy, mají významné zastoupení ve školské matematice. Tento příspěvek uvádí příklady komutativních

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

text ke studiu matematiky v oboru učitelství pro první stupeň základní školy zejména jako opora pro kombinované studium

text ke studiu matematiky v oboru učitelství pro první stupeň základní školy zejména jako opora pro kombinované studium UNIVERZITA JANA EVANGELISTY PURKYNĚ Pedagogická fakulta Binární relace text ke studiu matematiky v oboru učitelství pro první stupeň základní školy zejména jako opora pro kombinované studium Doc. Paed

Více

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu

Více

Matematické symboly a značky

Matematické symboly a značky Matematické symboly a značky Z Wikipedie, otevřené encyklopedie Matematický symbol je libovolný znak, používaný v. Může to být znaménko pro označení operace s množinami, jejich prvky, čísly či jinými objekty,

Více

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC

2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC 22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0.

Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0. Kapitola 4 Booleovy algebry 4.1 Definice Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí x y = 1, x y = 0. Představu o

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

6.1.2 Operace s komplexními čísly

6.1.2 Operace s komplexními čísly 6.. Operace s komplexními čísly Předpoklady: 60 Komplexním číslem nazýváme výraz ve tvaru a + bi, kde a, b jsou reálná čísla a i je číslo, pro něž platí i =. V komplexním čísle a + bi se nazývá: číslo

Více

Ukázka knihy z internetového knihkupectví www.kosmas.cz

Ukázka knihy z internetového knihkupectví www.kosmas.cz Ukázka knihy z internetového knihkupectví www.kosmas.cz (tištěná ISBN 978-80-247-7512-8 (elektronická verze ve formátu verze) PDF) Grada Publishing, a.s. 2012 U k á z k a k n i h y z i n t e r n e t o

Více

Algebra II pro distanční studium

Algebra II pro distanční studium Algebra II pro distanční studium (1) Předmluva................... 3 I. Struktury s jednou binární operací........ 5 1. Základní vlastnosti grup.......... 5 2. Podgrupy................ 22 3. Grupy permutací.............

Více

1. Základy logiky a teorie množin

1. Základy logiky a teorie množin . Základy logiky a teorie množin Studijní text. Základy logiky a teorie množin A. Logika Matematická logika vznikla v 9. století. Jejím zakladatelem byl anglický matematik G. Boole (85 864). Boole prosadil

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

1. Pologrupy, monoidy a grupy

1. Pologrupy, monoidy a grupy Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2002/2003 Michal Marvan 1. Pologrupy, monoidy a grupy Algebra dvacátého století je nauka o algebraických strukturách.

Více