Lineární diskriminační funkce. Perceptronový algoritmus.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární diskriminační funkce. Perceptronový algoritmus."

Transkript

1 Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12

2 Binární klasifikace Diskriminační : příklady Druhy diskriminační P. Pošík c 2012 Artificial Intelligence 2 / 12

3 Úloha binární klasifikace (dichotomie) Binární klasifikace Diskriminační : příklady Druhy diskriminační Mějme trénovací sadu dat (x 1, y 1 ),...,(x m, y m ): každý objekt x je popsán vektorem reálných příznaků (x 1, x 2,..., x D ) každý objekt x je označen správným štítkem y {+1, 1} Diskriminační je, která umožňuje rozlišit, do které třídy objekt patří. Binární klasifikace objektů x (klasifikace do 2 tříd, dichotomie): Stačí 1 Pravidlo: f(x i ) > 0 y i = +1 f(x i ) < 0 y i = 1 neboli y i = sign( f(x)) P. Pošík c 2012 Artificial Intelligence 3 / 12

4 Diskriminační : příklady Binární klasifikace Diskriminační : příklady Druhy diskriminační f(x) x P. Pošík c 2012 Artificial Intelligence 4 / 12

5 Diskriminační : příklady Binární klasifikace Diskriminační : příklady Druhy diskriminační f(x) x P. Pošík c 2012 Artificial Intelligence 4 / 12

6 Druhy Binární klasifikace Diskriminační : příklady Druhy diskriminační Diskriminační může mít podobu: jakékoli matematické (lineární, kvadratická, polynomiální,... ), matematického modelu v jiné formě (uvnitř neuronové sítě, v rámci support vector machine,... ), atd. Lineární: f(x) = w 1 x 1 + w 2 x w D x D + w 0 (1) Vektorově: f(x) = w T x+w 0 x = (x 1, x 2,..., x D ) T w = (w 1, w 2,..., w D ) T Vektorově (homogenní souřadnice): f(x) = w T x x = (x 1, x 2,..., x D, 1) T w = (w 1, w 2,..., w D, w 0 ) T P. Pošík c 2012 Artificial Intelligence 5 / 12

7 Binární klasifikace Diskriminační : příklady Druhy diskriminační 1. Jak získat predikce, když známe model? 2. Jak získat model, když známe trénovací data? P. Pošík c 2012 Artificial Intelligence 6 / 12

8 Binární klasifikace Diskriminační : příklady Druhy diskriminační 1. Jak získat predikce, když známe model? 2. Jak získat model, když známe trénovací data? 1. Jak učit lineární diskr. funkci z trénovacích dat? Perceptronový algoritmus Optimální rozdělující nadplocha 2. Když lineární nestačí... Rozšíření báze Support vector machine AdaBoost P. Pošík c 2012 Artificial Intelligence 6 / 12

9 Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: P. Pošík c 2012 Artificial Intelligence 7 / 12

10 Perceptronový algoritmus Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Perceptron [Ros62]: jednoduchý model neuronu lineární klasifikátor (klasifikátor s lineární diskriminační funkcí) perceptronový algoritmus je jeden z mnoha algoritmů učení lineární diskr. (další jsou např. lineární diskr. analýza, Fisherova diskr. analýza, SVM s lineárním jádrem,... ) Algoritmus 1: Perceptronový algoritmus Vstup: Lineárně separabilní množina ohodnocených trénovacích bodů: {x i, y i }, x i R D+1 (homogenní souřadnice), y i {+1, 1} Výstup: Váhový vektor w takový, že w T x i > 0 iff y i = +1 a w T x i < 0 iff y i = 1 1 begin 2 Inicializuj váhový vektor, např. w = 0. 3 Invertuj body ve 2. třídě: x i = x i pro všechna i, kde y i = 1. 4 Najdi špatně zaklasifikovaný trénovací vektor, tj. najdi j, pro které w T x j 0, např. nejhůře zaklasifikovaný vektor: x j = arg min xi (w T x i ). 5 if neexistuje špatně zaklasifikovaný bod then 6 Vektor w je řešením. Konec. 7 else 8 Uprav váhový vektor: w = w+x j Pokračuj krokem 4. [Ros62] Frank Rosenblatt. Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms. Spartan Books, Washington, D.C., P. Pošík c 2012 Artificial Intelligence 8 / 12

11 Demo: perceptron Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Iteration P. Pošík c 2012 Artificial Intelligence 9 / 12

12 Vlastnosti perceptronového algoritmu Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Věta o konvergenci perceptronu [Nov62]: Perceptronový algoritmus nalezne lineární nadplochu oddělující dvě třídy bodů za předpokladu, že taková nadplocha existuje. Věta o zacyklení perceptronu: Pokud oddělující nadplocha neexistuje, algoritmus nemusí konvergovat (a bude iterovat donekonečna). Možná řešení: Pocket algorithm - sledovat chybu, jakou perceptron v každé iteraci dělá, a udržovat váhy s nejmenší dosud nalezenou chybou v oddělené paměti. K učení lineárního klasifikátoru použít algoritmus, který najde alespoň přibližné řešení, pokud třídy lineárně separovatelné nejsou. [Nov62] Albert B. J. Novikoff. On convergence proofs for perceptrons. In Proceedings of the Symposium on Mathematical Theory of Automata, volume 12, Brooklyn, New York, P. Pošík c 2012 Artificial Intelligence 10 / 12

13 Nadplocha nalezená perceptronem Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Perceptronový algoritmus pro lineárně separabilní data najde rozdělující nadplochu, pokud existuje pokud existuje jedna nadplocha, existuje jich nekonečně mnoho najde jakoukoliv rozdělující nadplochu! Která z nekonečného množství rozdělujících nadploch je optimální? P. Pošík c 2012 Artificial Intelligence 11 / 12

14 Příště: Perceptron Demo: perceptron Vlastnosti perceptronového algoritmu Nadplocha nalezená perceptronem Příště: Optimální rozdělující nadplocha Co když lineární hranice nestačí? Rozšíření báze Kernel trik Adaboost Dotazy? P. Pošík c 2012 Artificial Intelligence 12 / 12

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

Obr. 1 Biologický neuron

Obr. 1 Biologický neuron 5.4 Neuronové sítě Lidský mozek je složen asi z 10 10 nervových buněk (neuronů) které jsou mezi sebou navzájem propojeny ještě řádově vyšším počtem vazeb [Novák a kol.,1992]. Začněme tedy nejdříve jedním

Více

Klasifikace předmětů a jevů

Klasifikace předmětů a jevů Klasifikace předmětů a jevů 1. Úvod Rozpoznávání neboli klasifikace je základní znak lidské činnosti. Rozpoznávání (klasifikace) předmětů a jevů spočívá v jejich zařazování do jednotlivých tříd. Třídou

Více

Vytěžování znalostí z dat

Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2011, Cvičení 9 1/16 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Základy vytěžování dat

Základy vytěžování dat Základy vytěžování dat předmět A7Bb36vyd Vytěžování dat Filip Železný, Miroslav Čepek, Radomír Černoch, Jan Hrdlička katedra kybernetiky a katedra počítačů ČVUT v Praze, FEL Evropský sociální fond Praha

Více

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ

ZÍSKÁVÁNÍ ZNALOSTÍ Z DATABÁZÍ metodický list č. 1 Dobývání znalostí z databází Cílem tohoto tematického celku je vysvětlení základních pojmů z oblasti dobývání znalostí z databází i východisek dobývání znalostí z databází inspirovaných

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?]

Optimalizace obecný úvod. [proč optimalizovat?] Formalizace problému. [existují podobné problémy?] Optimalizace obecný úvod 1 Optimalizace obecný úvod Motivace optimalizačních úloh [proč optimalizovat?] Formalizace problému [jak obecně popsat optimalizační úlohu?] Klasifikace optimalizačních problémů

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky. Automatická klasifikace textových dokumentů

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky. Automatická klasifikace textových dokumentů Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra informatiky a výpočetní techniky Bakalářská práce Automatická klasifikace textových dokumentů Plzeň 2012 Veronika Černá Prohlášení Prohlašuji,

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Rozhodovací stromy Doc. RNDr. Iveta Mrázová, CSc.

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

dokumentu: Proceedings of 27th International Conference Mathematical Methods in

dokumentu: Proceedings of 27th International Conference Mathematical Methods in 1. Empirical Estimates in Stochastic Optimization via Distribution Tails Druh výsledku: J - Článek v odborném periodiku, Předkladatel výsledku: Ústav teorie informace a automatizace AV ČR, v. v. i., Dodavatel

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Efektivní hledání nejkratších cest v sítích hromadné přepravy osob

Efektivní hledání nejkratších cest v sítích hromadné přepravy osob DIPLOMOVÁ PRÁCE Efektivní hledání nejkratších cest v sítích hromadné přepravy osob Autor: Vladislav Martínek Vedoucí: RNDr. Michal Žemlička, Ph.D. Motivace Jak se co nejrychleji dostat z bodu A do bodu

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Man s relationship to the scientific and technological progress

Man s relationship to the scientific and technological progress Man s relationship to the scientific and technological progress Man s relationship to the scientific and technological progress VY_32_INOVACE_03_02_01 Seznámení se základními poznatky o tematickém okruhu

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat

Více

Evoluční algoritmy a umělý život

Evoluční algoritmy a umělý život Evoluční algoritmy a umělý život Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Olomouc, červen 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělý život Odkazy: Steven Levy: Artificial

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘÍCÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

Robust 2014, 19. - 24. ledna 2014, Jetřichovice

Robust 2014, 19. - 24. ledna 2014, Jetřichovice K. Hron 1 C. Mert 2 P. Filzmoser 2 1 Katedra matematické analýzy a aplikací matematiky Přírodovědecká fakulta, Univerzita Palackého, Olomouc 2 Department of Statistics and Probability Theory Vienna University

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita

Samoopravné kódy. Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Katedra matematiky a Institut teoretické informatiky Západočeská univerzita Seminář pro učitele středních a vysokých škol, Plzeň, 30. března 2012 jsou všude Některé oblasti využití: CD přehrávače mobilní

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

TECHNOLOGIE FUZZY-BAYESOVSKÉ KLASIFIKACE RASTROVÝCH OBRAZŮ

TECHNOLOGIE FUZZY-BAYESOVSKÉ KLASIFIKACE RASTROVÝCH OBRAZŮ TECHNOLOGIE FUZZY-BAYESOVSKÉ KLASIFIKACE RASTROVÝCH OBRAZŮ ÚVOD Technologie fuzzy-bayesovské klasifikace rastrových obrazů je realizována v rámci webové aplikace Waclass. Tato webová aplikace provádí řízenou

Více

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ

MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ MODELOVÁNÍ BONITY OBCÍ POMOCÍ KOHONENOVÝCH SAMOORGANIZUJÍCÍCH SE MAP A LVQ NEURONOVÝCH SÍTÍ Vladimír Olej, Petr Hájek Univerzita Pardubice, Fakulta ekonomicko-správní, informatiky Ústav systémového inženýrství

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci)

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci) ..! POSSIBILISTIC Laboratoř pro analýzu INFORMATION: a modelování dat Vědecký tutoriál, část I A Tutorial Vilém Vychodil (Univerzita Palackého v Olomouci) George J. Klir State University of New York (SUNY)

Více

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev

Více

Jednotlivé historické modely neuronových sítí

Jednotlivé historické modely neuronových sítí Jednotlivé historické modely neuronových sítí Tomáš Janík Vícevrstevná perceptronová síť opakování Teoretický model obsahue tři vrstvy perceptronů; každý neuron první vrstvy e spoen s každým neuronem z

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Vysoka škola ekonomická v Praze Fakulta informatiky a statistiky. Rozpoznávání znaků z reálných scén pomocí neuronových sítí

Vysoka škola ekonomická v Praze Fakulta informatiky a statistiky. Rozpoznávání znaků z reálných scén pomocí neuronových sítí Vysoka škola ekonomická v Praze Fakulta informatiky a statistiky Obor: informační a znalostní inženýrství Diplomová práce Rozpoznávání znaků z reálných scén pomocí neuronových sítí Diplomant: Bc. Petr

Více

Projekt do NEU Dokumentace

Projekt do NEU Dokumentace Projekt do NEU Dokumentace Vypracoval: Zbyně k Křivka (xkrivk01) Datum: 10. 12. 2003 Zadání: Demonstrace využ ití neuronovésítě typu BP a RCE při analýze jazyků v teoretické informatice. Analý za problé

Více

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291

vzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291 Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS KOEVOLUCE KARTÉZSKÝCH

Více

Informatika Ochrana dat

Informatika Ochrana dat Informatika Ochrana dat Radim Farana Podklady předmětu Informatika pro akademický rok 2007/2008 Obsah Kryptografické systémy s veřejným klíčem, výměna tajných klíčů veřejným kanálem, systémy s veřejným

Více

Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informačních technologií

Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informačních technologií Univerzita Hradec Králové Fakulta informatiky a managementu Katedra informačních technologií Aplikace strojového učení v oblasti e-komerce Diplomová práce Autor: Pavel Vraný Studijní obor: aplikovaná informatika

Více

Data Envelopment Analysis (Analýza obalu dat)

Data Envelopment Analysis (Analýza obalu dat) Data Envelopment Analysis (Analýza obalu dat) Martin Branda Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra pravděpodobnosti a matematické statistiky Optimalizace s aplikací ve financích

Více

Diagnostika stavu součástí helikoptéry

Diagnostika stavu součástí helikoptéry Diagnostika stavu součástí helikoptéry Petr Sládek , CTU FEE id: sladep1 (C) Copyright 1983-2006 Petr Sládek, www.smishek.com 1. Úvod do problematiky 1.1 stručný popis: 8 senzorů vibrací

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

Automaticka klasikace dokumentu s podobnym obsahem

Automaticka klasikace dokumentu s podobnym obsahem Zapadoceska univerzita v Plzni Fakulta aplikovanych ved Katedra informatiky a vypocetn techniky Diplomova prace Automaticka klasikace dokumentu s podobnym obsahem Plzen, 2012 Michal Hrala Poděkování Děkuji

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Bootkity v teorii a praxi. Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz

Bootkity v teorii a praxi. Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz Bootkity v teorii a praxi Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz Definice Pod pojmem bootkit budeme rozumět software, který začíná být aktivní během procesu startu počítače ještě

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

IBM SPSS Modeler Professional

IBM SPSS Modeler Professional IBM SPSS Modeler Professional 16 IBM SPSS Software IBM SPSS Modeler Professional Včasné rozhodnutí díky přesným informacím Metodami data miningu získáte detailní přehled o svém současném stavu i jasnější

Více

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl

Optimalizace úvěrových nabídek. EmbedIT 7.11.2013 Tomáš Hanžl Optimalizace úvěrových nabídek EmbedIT 7.11.2013 Tomáš Hanžl Obsah Spotřebitelský úvěr Popis produktu Produktová definice v HC Kalkulace úvěru Úloha nalezení optimálního produktu Shrnutí Spotřebitelský

Více

4.8 Jak jsme na tom v porovnání s jinými přístupy

4.8 Jak jsme na tom v porovnání s jinými přístupy Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73)

Vybrané partie z obrácených úloh. obrácených úloh (MG452P73) Vybrané partie z obrácených úloh obrácených úloh (MG452P73) Obsah přednášky Klasifikace obrácených úloh a základní pojmy Lineární inverzní problém, prostor parametrů a dat Gaussovy transformace, normální

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

2) SILNIČNÍ VOZIDLA (SIV)

2) SILNIČNÍ VOZIDLA (SIV) 2) SILNIČNÍ VOZIDLA (SIV) 1. Motorová paliva a maziva 2. Skutečný oběh čtyřdobého zážehového spalovacího motoru 3. Pevné části PSM 4. Klikové ústrojí PSM 5. Rozvodové ústrojí PSM 6. Palivová soustava zážehového

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz http://robotika.cz/guide/umor07/cs 14. listopadu 2007 1 Diferenciální 2 Motivace Linearizace Metoda Matematický model Global Positioning System - Diferenciální 24 navigačních satelitů

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

APLIKACE UMĚLÉ INTELIGENCE V EKONOMICKÉ OBLASTI THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE FIELD OF ECONOMICS

APLIKACE UMĚLÉ INTELIGENCE V EKONOMICKÉ OBLASTI THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE FIELD OF ECONOMICS APLIKACE UMĚLÉ INTELIGENCE V EKONOMICKÉ OBLASTI THE APPLICATION OF ARTIFICIAL INTELLIGENCE IN THE FIELD OF ECONOMICS Jiří Šťastný, Martin Pokorný, Arnošt Motyčka Mendelova zemědělská a lesnická univerzita

Více

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která

Více

Historie matematiky a informatiky

Historie matematiky a informatiky Evropský sociální fond Investujeme do vaší budoucnosti Historie matematiky a informatiky 2014 Doc. RNDr. Alena Šolcová, Ph.D. Katedra aplikované matematiky FIT ČVUT v Praze 1 Co je matematika? Matematika

Více

Závěrečná zpráva projektu Experimentální výpočetní grid pro numerickou lineární algebru

Závěrečná zpráva projektu Experimentální výpočetní grid pro numerickou lineární algebru Závěrečná zpráva projektu Experimentální výpočetní grid pro numerickou lineární algebru Ing. Ivan Šimeček Ph.D., Zdeněk Buk xsimecek@fit.cvut.cz, bukz1fel.cvut.cz Červen, 2012 1 Zadání Paralelní zpracování

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Research infrastructure in the rhythm of BLUES. More time and money for entrepreneurs

Research infrastructure in the rhythm of BLUES. More time and money for entrepreneurs Research infrastructure in the rhythm of BLUES More time and money for entrepreneurs 1 I. What is it? II. How does it work? III. References Where to find out more? IV. What is it good for? 2 I. What is

Více

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky

Modely vyhledávání informací 4 podle technologie. 1) Booleovský model. George Boole 1815 1864. Aplikace booleovské logiky Modely vyhledávání informací 4 podle technologie 1) Booleovský model 1) booleovský 2) vektorový 3) strukturní 4) pravděpodobnostní a další 1 dokumenty a dotazy jsou reprezentovány množinou indexových termů

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

Metody řešení problematiky neúplných dat

Metody řešení problematiky neúplných dat Metody řešení problematiky neúplných dat Ing. David Pejčoch, DiS. Katedra informačního a znalostního inženýrství Fakulta informatiky a statistiky Vysoká škola ekonomická Nám. W. Churchilla 4 130 00 Praha

Více

Využití strojového učení k identifikaci protein-ligand aktivních míst

Využití strojového učení k identifikaci protein-ligand aktivních míst Využití strojového učení k identifikaci protein-ligand aktivních míst David Hoksza, Radoslav Krivák SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Scia Engineer 2011.1 a 2012

Scia Engineer 2011.1 a 2012 Tractebel Engineering - Musée des Confluences - Lyon, France - image isochrom.com Novinky ve verzích Scia Engineer 2011.1 a 2012 Radim Blažek Program semináře Přednášky 1 www.nemetschek-engineering.com

Více

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY

ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY ROZPOZNÁVÁNÍ S MARKOVSKÝMI MODELY Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/ hlavac 1/31 PLÁN PŘEDNÁŠKY

Více

Shluková analýza vícerozměrných dat v programu R

Shluková analýza vícerozměrných dat v programu R Shluková analýza vícerozměrných dat v programu R - příklad použití metod PAM, CLARA a fuzzy shlukové analýzy http://data.tulipany.cz Úvodní poznámky a popis dat Pro analýzu vícerozměrných dat existují

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Splněno ANO/NE/hodnota

Splněno ANO/NE/hodnota část 1 - software pro přípravu interaktivních výukových hodin postavený na aktivní účasti žáků základní specifikace: autorský objektově orientovaný výukový software v českém jazyce s implementovanou galerií

Více

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU

NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU NÁVRH A REALIZACE TRADING STRATEGIÍ NA BÁZI STROJOVÉHO UČENÍ S POMOCÍ MATLABU RNDr. Miroslav Pavelka, PhD m.pavelka@sh.cvut.cz Ing. Jan Hovad jan@hovad.cz OBSAH Obchodování a strojové učení Specifika prediktivního

Více

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice)

Kapitola 7: Návrh relačních databází. Nástrahy relačního návrhu. Příklad. Rozklad (dekompozice) - 7.1 - Kapitola 7: Návrh relačních databází Nástrahy návrhu relačních databází Dekompozice (rozklad) Normalizace použitím funkčních závislostí Nástrahy relačního návrhu Návrh relačních databází vyžaduje

Více

Minimalizace nehladké funkce Minimization of nonsmooth function

Minimalizace nehladké funkce Minimization of nonsmooth function VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra aplikované matematiky Minimalizace nehladké funkce Minimization of nonsmooth function 2009 Martin Hasal Místopřísežné prohlášení

Více