Interpolace Lagrangeovy polynomy. 29. října 2012

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Interpolace Lagrangeovy polynomy. 29. října 2012"

Transkript

1 Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012

2 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) představme si, že jsme provedli n měření hodnot nějakých dvou veličin. Mezi těmito veličinami může být určitý funkční vztah my jej neznáme, ale můžeme se pokusit neznámou funkci nějakým způsobem aproximovat (přibližně vyjádřit). Pro účely aproximace spojitých funkcí jsou vhodnou (a současně nejjednodušší) volbou funkce polynomické.

3 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) představme si, že jsme provedli n měření hodnot nějakých dvou veličin. Mezi těmito veličinami může být určitý funkční vztah my jej neznáme, ale můžeme se pokusit neznámou funkci nějakým způsobem aproximovat (přibližně vyjádřit). Pro účely aproximace spojitých funkcí jsou vhodnou (a současně nejjednodušší) volbou funkce polynomické.

4 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) představme si, že jsme provedli n měření hodnot nějakých dvou veličin. Mezi těmito veličinami může být určitý funkční vztah my jej neznáme, ale můžeme se pokusit neznámou funkci nějakým způsobem aproximovat (přibližně vyjádřit). Pro účely aproximace spojitých funkcí jsou vhodnou (a současně nejjednodušší) volbou funkce polynomické.

5 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ) představme si, že jsme provedli n měření hodnot nějakých dvou veličin. Mezi těmito veličinami může být určitý funkční vztah my jej neznáme, ale můžeme se pokusit neznámou funkci nějakým způsobem aproximovat (přibližně vyjádřit). Pro účely aproximace spojitých funkcí jsou vhodnou (a současně nejjednodušší) volbou funkce polynomické.

6 Weierstrassova věta o aproximaci funkce polynomem Věta (Weierstrass): Předpokládejme, že f je definovaná a spojitá na intervalu a, b. Potom pro libovolné ɛ > 0 existuje takový polynom P (x), že f(x) P (x) < ɛ pro všechna x a, b. Věta nám říká, že pro libovolnou spojitou funkci můžeme nalézt polynom, který ji v daném intervalu aproximuje s libovolnou předem danou přesností. Problémem ale zůstává, jak takový polynom nalézt. Taylorovy polynomy nejsou pro tento účel vhodné aproximují funkci pouze v blízkém okolí nějakého pevně zvoleného bodu, dále od tohoto bodu mohou být hodnoty funkce a polynomu dosti rozdílné.

7 Weierstrassova věta o aproximaci funkce polynomem Věta (Weierstrass): Předpokládejme, že f je definovaná a spojitá na intervalu a, b. Potom pro libovolné ɛ > 0 existuje takový polynom P (x), že f(x) P (x) < ɛ pro všechna x a, b. Věta nám říká, že pro libovolnou spojitou funkci můžeme nalézt polynom, který ji v daném intervalu aproximuje s libovolnou předem danou přesností. Problémem ale zůstává, jak takový polynom nalézt. Taylorovy polynomy nejsou pro tento účel vhodné aproximují funkci pouze v blízkém okolí nějakého pevně zvoleného bodu, dále od tohoto bodu mohou být hodnoty funkce a polynomu dosti rozdílné.

8 Weierstrassova věta o aproximaci funkce polynomem Věta (Weierstrass): Předpokládejme, že f je definovaná a spojitá na intervalu a, b. Potom pro libovolné ɛ > 0 existuje takový polynom P (x), že f(x) P (x) < ɛ pro všechna x a, b. Věta nám říká, že pro libovolnou spojitou funkci můžeme nalézt polynom, který ji v daném intervalu aproximuje s libovolnou předem danou přesností. Problémem ale zůstává, jak takový polynom nalézt. Taylorovy polynomy nejsou pro tento účel vhodné aproximují funkci pouze v blízkém okolí nějakého pevně zvoleného bodu, dále od tohoto bodu mohou být hodnoty funkce a polynomu dosti rozdílné.

9 Weierstrassova věta o aproximaci funkce polynomem Věta (Weierstrass): Předpokládejme, že f je definovaná a spojitá na intervalu a, b. Potom pro libovolné ɛ > 0 existuje takový polynom P (x), že f(x) P (x) < ɛ pro všechna x a, b. Věta nám říká, že pro libovolnou spojitou funkci můžeme nalézt polynom, který ji v daném intervalu aproximuje s libovolnou předem danou přesností. Problémem ale zůstává, jak takový polynom nalézt. Taylorovy polynomy nejsou pro tento účel vhodné aproximují funkci pouze v blízkém okolí nějakého pevně zvoleného bodu, dále od tohoto bodu mohou být hodnoty funkce a polynomu dosti rozdílné.

10 Lagrangeovy polynomy Představme si pro začátek, že známe hodnoty neznámé spojité funkce f ve dvou bodech x 0 a x 1, tj. víme, že f(x 0 ) = y 0 a f(x 1 ) = y 1.

11 Lagrangeovy polynomy Představme si pro začátek, že známe hodnoty neznámé spojité funkce f ve dvou bodech x 0 a x 1, tj. víme, že f(x 0 ) = y 0 a f(x 1 ) = y 1. Naším úkolem je nalézt polynom P prvního stupně, který má v bodech x 0 a x 1 stejné hodnoty jako neznámá funkce, tj. P (x 0 ) = y 0 a P (x 1 ) = y 1.

12 Lagrangeovy polynomy Představme si pro začátek, že známe hodnoty neznámé spojité funkce f ve dvou bodech x 0 a x 1, tj. víme, že f(x 0 ) = y 0 a f(x 1 ) = y 1. Naším úkolem je nalézt polynom P prvního stupně, který má v bodech x 0 a x 1 stejné hodnoty jako neznámá funkce, tj. P (x 0 ) = y 0 a P (x 1 ) = y 1. Budeme postupovat tak, že nejprve definujeme funkce L 0 (x) = x x 1 x 0 x 1, L 1 (x) = x x 0 x 1 x 0.

13 Lagrangeovy polynomy Představme si pro začátek, že známe hodnoty neznámé spojité funkce f ve dvou bodech x 0 a x 1, tj. víme, že f(x 0 ) = y 0 a f(x 1 ) = y 1. Naším úkolem je nalézt polynom P prvního stupně, který má v bodech x 0 a x 1 stejné hodnoty jako neznámá funkce, tj. P (x 0 ) = y 0 a P (x 1 ) = y 1. Budeme postupovat tak, že nejprve definujeme funkce L 0 (x) = x x 1 x 0 x 1, L 1 (x) = x x 0 x 1 x 0. Všimněte se, že L 0 (x 0 ) = 1, L 0 (x 1 ) = 0, L 1 (x 0 ) = 0, L 1 (x 1 ) = 1.

14 Lagrangeovy polynomy Všimněte se, že L 0 (x 0 ) = 1, L 0 (x 1 ) = 0, L 1 (x 0 ) = 0, L 1 (x 1 ) = 1. Nyní definujeme polynom P (x) = L 0 (x)f(x 0 ) + L 1 (x)f(x 1 ).

15 Lagrangeovy polynomy Všimněte se, že L 0 (x 0 ) = 1, L 0 (x 1 ) = 0, L 1 (x 0 ) = 0, L 1 (x 1 ) = 1. Nyní definujeme polynom P (x) = L 0 (x)f(x 0 ) + L 1 (x)f(x 1 ). Všimněte se, že P (x 0 ) = 1 f(x 0 ) + 0 f(x 1 ) = f(x 0 ) = y 0, a P (x 1 ) = 0 f(x 0 ) + 1 f(x 1 ) = f(x 1 ) = y 1.

16 Lagrangeovy polynomy příklad

17 Lagrangeovy polynomy příklad Příklad: Známe hodnoty neznámé spojité funkce f(2) = 3 a f(6) = 5.

18 Lagrangeovy polynomy příklad Příklad: Známe hodnoty neznámé spojité funkce f(2) = 3 a f(6) = 5. Máme tedy x 0 = 2, y 0 = f(x 0 ) = 3 a x 1 = 6, y 1 = f(x 1 ) = 5. Interpolační polynom má tvar P (x) = L 0 (x)f(x 0 ) + L 1 (x)f(x 1 ) = x x 1 x 0 x 1 f(x 0 ) + x x 0 x 1 x 0 f(x 1 ) = = x x = 1 2 x + 2.

19 Lagrangeovy polynomy Nyní zobecníme předchozí postup. Představme si, že známe hodnoty neznámé spojité funkce f v n + 1 bodech x 0, x 1,..., x n, tj. víme, že f(x 0 ) = y 0, f(x 1 ) = y 1,..., f(x n ) = y n.

20 Lagrangeovy polynomy Nyní zobecníme předchozí postup. Představme si, že známe hodnoty neznámé spojité funkce f v n + 1 bodech x 0, x 1,..., x n, tj. víme, že f(x 0 ) = y 0, f(x 1 ) = y 1,..., f(x n ) = y n. Naším úkolem je nalézt polynom P nejvýše n-tého stupně, který má v bodech x 0, x 1,..., x n stejné hodnoty jako neznámá funkce, tj. P (x 0 ) = y 0, P (x 1 ) = y 1,..., P (x n ) = y n.

21 Lagrangeovy polynomy Nyní zobecníme předchozí postup. Představme si, že známe hodnoty neznámé spojité funkce f v n + 1 bodech x 0, x 1,..., x n, tj. víme, že f(x 0 ) = y 0, f(x 1 ) = y 1,..., f(x n ) = y n. Naším úkolem je nalézt polynom P nejvýše n-tého stupně, který má v bodech x 0, x 1,..., x n stejné hodnoty jako neznámá funkce, tj. P (x 0 ) = y 0, P (x 1 ) = y 1,..., P (x n ) = y n. Budeme postupovat tak, že nejprve definujeme polynomy L 0 (x) = (x x 1)(x x 2 )(x x 3 ) (x x n ) (x 0 x 1 )(x 0 x 2 )(x 0 x 3 ) (x 0 x n ) L 1 (x) = (x x 0)(x x 2 )(x x 3 ) (x x n ) (x 1 x 0 )(x 1 x 2 )(x 1 x 3 ) (x 1 x n ) L 2 (x) = (x x 0)(x x 1 )(x x 3 ) (x x n ) (x 2 x 0 )(x 2 x 1 )(x 2 x 3 ) (x 2 x n )... L n (x) = (x x 0)(x x 1 )(x x 3 ) (x x n 1 ) (x n x 0 )(x n x 1 )(x n x 3 ) (x n x n 1 )

22 Lagrangeovy polynomy Všimněte se, že například L 0 (x 0 ) = 1, L 0 (x 1 ) = 0, L 0 (x 2 ) = 0,..., L 0 (x n ) = 0.

23 Lagrangeovy polynomy Všimněte se, že například L 0 (x 0 ) = 1, L 0 (x 1 ) = 0, L 0 (x 2 ) = 0,..., L 0 (x n ) = 0. Obecně L k (x k ) = 1 a L k (x j ) = 0 pro j k.

24 Lagrangeovy polynomy Budeme postupovat tak, že nejprve definujeme polynomy L 0 (x) = (x x 1)(x x 2 )(x x 3 ) (x x n ) (x 0 x 1 )(x 0 x 2 )(x 0 x 3 ) (x 0 x n ) L 1 (x) = (x x 0)(x x 2 )(x x 3 ) (x x n ) (x 1 x 0 )(x 1 x 2 )(x 1 x 3 ) (x 1 x n ) L 2 (x) = (x x 0)(x x 1 )(x x 3 ) (x x n ) (x 2 x 0 )(x 2 x 1 )(x 2 x 3 ) (x 2 x n )... L n (x) = (x x 0)(x x 1 )(x x 3 ) (x x n 1 ) (x n x 0 )(x n x 1 )(x n x 3 ) (x n x n 1 ) Nyní definujeme tzv. Lagrangeův interpolační polynom P n (x) = L 0 (x)f(x 0 ) + L 1 (x)f(x 1 ) + L 2 (x)f(x 2 ) + + L n (x)f(x n ).

25 Lagrangeův interpolační polynom Je-li dáno n + 1 různých čísel x 0, x 1,..., x n a neznámá funkce f, jejíž hodnoty pro x 0, x 1,..., x n jsou známy, potom polynom P n má pro x 0, x 1,..., x n tytéž hodnoty jako funkce f.

26 Lagrangeovy polynomy příklad Příklad: Použijte čísla (uzly) x 0 = 2, x 1 = 2,5 a x 2 = 4 pro nalezení Lagrangeova interpolačního polynomu druhého stupně pro funkci f(x) = 1/x.

27 Lagrangeovy polynomy příklad Příklad: Použijte čísla (uzly) x 0 = 2, x 1 = 2,5 a x 2 = 4 pro nalezení Lagrangeova interpolačního polynomu druhého stupně pro funkci f(x) = 1/x. Nejprve vyjádříme L 0 (x) = L 1 (x) = L 2 (x) = (x 2,5)(x 4) (2 2,5)(2 4) = x2 6,5x + 10 (x 2)(x 4) (2,5 2)(2,5 4) = x2 6x + 8 0, 75 (x 2)(x 2,5) (4 2)(4 2,5) = x2 4,5x + 5 3

28 Lagrangeovy polynomy příklad Protože f(x 0 ) = f(2) = 0,5, f(x 1 ) = f(2,5) = 0,4 a f(x 2 ) = f(4) = 0,25 obdržíme P 2 (x) = L 0 (x)f(x 0 ) + L 1 (x)f(x 1 ) + L 2 (x)f(x 2 ) = = 0,5(x 2 6,5x + 10) + 0,4 x2 6x + 8 0, 75 = 0,05x 2 0,425x + 1, ,25 x2 4,5x =

29 Lagrangeovy polynomy příklad Ukázka aproximace funkce f(x) = 1/x Lagrangeovým polynomem P 2 (x) = 0,05x 2 0,425x + 1,15 s uzly x 0 = 2, x 1 = 2,5 a x 2 = 4.

30 Praktické problémy Lagrangeovy interpolace Mějme data v podobě n uspořádaných dvojic (x 0, y 0 ), (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ), přičemž mezi veličinami x a y je nějaký funkční vztah daný funkcí f. Paradoxní (na první pohled) je, že nejlepší aproximaci funkce f v určitém bodě nezískáme vždy použitím Lagrangeova polynomu P n (x), ale mnohdy použitím Lagrangeova polynomu nižšího stupně než n například P n 1 (x), nebo P n 2 (x), nebo i nižšího. Pro určení například Lagrangeova polynomu P n 1 (x) nám ale stačí pouze n 1 uspořádaných dvojic (tedy jednu uspořádanou dvojici nevyužijeme otázka je kterou). Podobně pro určení P n 2 (x) nám stačí pouze n 2 uspořádaných dvojic (tedy dvě uspořádané dvojici nevyužijeme otázka je které).

31 Praktické problémy Lagrangeovy interpolace Mějme data v podobě n uspořádaných dvojic (x 0, y 0 ), (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ), přičemž mezi veličinami x a y je nějaký funkční vztah daný funkcí f. Paradoxní (na první pohled) je, že nejlepší aproximaci funkce f v určitém bodě nezískáme vždy použitím Lagrangeova polynomu P n (x), ale mnohdy použitím Lagrangeova polynomu nižšího stupně než n například P n 1 (x), nebo P n 2 (x), nebo i nižšího. Pro určení například Lagrangeova polynomu P n 1 (x) nám ale stačí pouze n 1 uspořádaných dvojic (tedy jednu uspořádanou dvojici nevyužijeme otázka je kterou). Podobně pro určení P n 2 (x) nám stačí pouze n 2 uspořádaných dvojic (tedy dvě uspořádané dvojici nevyužijeme otázka je které).

32 Praktické problémy Lagrangeovy interpolace Mějme data v podobě n uspořádaných dvojic (x 0, y 0 ), (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ), přičemž mezi veličinami x a y je nějaký funkční vztah daný funkcí f. Paradoxní (na první pohled) je, že nejlepší aproximaci funkce f v určitém bodě nezískáme vždy použitím Lagrangeova polynomu P n (x), ale mnohdy použitím Lagrangeova polynomu nižšího stupně než n například P n 1 (x), nebo P n 2 (x), nebo i nižšího. Pro určení například Lagrangeova polynomu P n 1 (x) nám ale stačí pouze n 1 uspořádaných dvojic (tedy jednu uspořádanou dvojici nevyužijeme otázka je kterou). Podobně pro určení P n 2 (x) nám stačí pouze n 2 uspořádaných dvojic (tedy dvě uspořádané dvojici nevyužijeme otázka je které).

33 Praktické problémy Lagrangeovy interpolace Mějme data v podobě n uspořádaných dvojic (x 0, y 0 ), (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ), přičemž mezi veličinami x a y je nějaký funkční vztah daný funkcí f. Paradoxní (na první pohled) je, že nejlepší aproximaci funkce f v určitém bodě nezískáme vždy použitím Lagrangeova polynomu P n (x), ale mnohdy použitím Lagrangeova polynomu nižšího stupně než n například P n 1 (x), nebo P n 2 (x), nebo i nižšího. Pro určení například Lagrangeova polynomu P n 1 (x) nám ale stačí pouze n 1 uspořádaných dvojic (tedy jednu uspořádanou dvojici nevyužijeme otázka je kterou). Podobně pro určení P n 2 (x) nám stačí pouze n 2 uspořádaných dvojic (tedy dvě uspořádané dvojici nevyužijeme otázka je které).

34 Praktické problémy Lagrangeovy interpolace Mějme data v podobě n uspořádaných dvojic (x 0, y 0 ), (x 1, y 1 ), (x 2, y 2 ),..., (x n, y n ), přičemž mezi veličinami x a y je nějaký funkční vztah daný funkcí f. Paradoxní (na první pohled) je, že nejlepší aproximaci funkce f v určitém bodě nezískáme vždy použitím Lagrangeova polynomu P n (x), ale mnohdy použitím Lagrangeova polynomu nižšího stupně než n například P n 1 (x), nebo P n 2 (x), nebo i nižšího. Pro určení například Lagrangeova polynomu P n 1 (x) nám ale stačí pouze n 1 uspořádaných dvojic (tedy jednu uspořádanou dvojici nevyužijeme otázka je kterou). Podobně pro určení P n 2 (x) nám stačí pouze n 2 uspořádaných dvojic (tedy dvě uspořádané dvojici nevyužijeme otázka je které).

35 Praktické problémy Lagrangeovy interpolace V praxi se většinou postupuje tak, že pro daných n uspořádaných dvojic (uzlových bodů) se postupně vypočítají Lagrangeovy polynomy určené dvěma uzlovými body, dále třemi uzlovými body, atd. Pro tyto polynomy se přitom zkoumá, jak dobře aproximují hodnotu funkce f v daném bodě. S výpočtem každého Lagrangeova polynomu je ale spojeno nezanedbatelné množství práce (s rostoucím n roste kvadraticky složitost výpočtu každého jednotlivého Lagrangeova polynomu, navíc je potřeba vypočítat více polynomů. Proto bylo snahou nalézt efektivnější postup, který by nám alespoň část práce (a tím i času) ušetřil.

36 Praktické problémy Lagrangeovy interpolace V praxi se většinou postupuje tak, že pro daných n uspořádaných dvojic (uzlových bodů) se postupně vypočítají Lagrangeovy polynomy určené dvěma uzlovými body, dále třemi uzlovými body, atd. Pro tyto polynomy se přitom zkoumá, jak dobře aproximují hodnotu funkce f v daném bodě. S výpočtem každého Lagrangeova polynomu je ale spojeno nezanedbatelné množství práce (s rostoucím n roste kvadraticky složitost výpočtu každého jednotlivého Lagrangeova polynomu, navíc je potřeba vypočítat více polynomů. Proto bylo snahou nalézt efektivnější postup, který by nám alespoň část práce (a tím i času) ušetřil.

37 Praktické problémy Lagrangeovy interpolace V praxi se většinou postupuje tak, že pro daných n uspořádaných dvojic (uzlových bodů) se postupně vypočítají Lagrangeovy polynomy určené dvěma uzlovými body, dále třemi uzlovými body, atd. Pro tyto polynomy se přitom zkoumá, jak dobře aproximují hodnotu funkce f v daném bodě. S výpočtem každého Lagrangeova polynomu je ale spojeno nezanedbatelné množství práce (s rostoucím n roste kvadraticky složitost výpočtu každého jednotlivého Lagrangeova polynomu, navíc je potřeba vypočítat více polynomů. Proto bylo snahou nalézt efektivnější postup, který by nám alespoň část práce (a tím i času) ušetřil.

38 Praktické problémy Lagrangeovy interpolace V praxi se většinou postupuje tak, že pro daných n uspořádaných dvojic (uzlových bodů) se postupně vypočítají Lagrangeovy polynomy určené dvěma uzlovými body, dále třemi uzlovými body, atd. Pro tyto polynomy se přitom zkoumá, jak dobře aproximují hodnotu funkce f v daném bodě. S výpočtem každého Lagrangeova polynomu je ale spojeno nezanedbatelné množství práce (s rostoucím n roste kvadraticky složitost výpočtu každého jednotlivého Lagrangeova polynomu, navíc je potřeba vypočítat více polynomů. Proto bylo snahou nalézt efektivnější postup, který by nám alespoň část práce (a tím i času) ušetřil.

39 Rekurzivní výpočet Lagrangeových polynomů Představme si opět, že známe hodnoty neznámé spojité funkce f v n + 1 bodech x 0, x 1,..., x n, tj. víme, že f(x 0 ) = y 0, f(x 1 ) = y 1,..., f(x n ) = y n.

40 Rekurzivní výpočet Lagrangeových polynomů Představme si opět, že známe hodnoty neznámé spojité funkce f v n + 1 bodech x 0, x 1,..., x n, tj. víme, že f(x 0 ) = y 0, f(x 1 ) = y 1,..., f(x n ) = y n. Nechť m 1, m 2,..., m k je k různých celých čísel vybraných z posloupnosti 0, 1, 2,..., n. Lagrangeův polynom, který má v bodech x m1, x m2,..., x mk stejné hodnoty jako funkce f budeme značit P m1,m 2,...,m k (x). Při tomto značení můžeme vyjádřit:

41 Rekurzivní výpočet Lagrangeových polynomů Představme si opět, že známe hodnoty neznámé spojité funkce f v n + 1 bodech x 0, x 1,..., x n, tj. víme, že f(x 0 ) = y 0, f(x 1 ) = y 1,..., f(x n ) = y n. Nechť m 1, m 2,..., m k je k různých celých čísel vybraných z posloupnosti 0, 1, 2,..., n. Lagrangeův polynom, který má v bodech x m1, x m2,..., x mk stejné hodnoty jako funkce f budeme značit P m1,m 2,...,m k (x). Při tomto značení můžeme vyjádřit: P 0,1,...,k (x) = (x x j)p 0,1,...,j 1,j+1,...,k (x) (x x i )P 0,1,...,i 1,i+1,...,k (x) x i x j, kde x i a x j jsou libovolná dvě čísla z množiny {x 0, x 1,..., x n } (1)

42 Aitkenovo-Nevillovo schéma S pomocí vzorce (1) můžeme postupně sestavit následující schéma: x 0 x 1 Q 0,0 x 2 Q 1,0 Q 1, x n 1 Q n 1,0 Q n 1,1... Q n 1,n 1 x n Q n,0 Q n,1... Q n,n 1 Q n,n Použili jsme označení Q i,j = P i j,i j+1,i j+2,...,i 1,i.

43 Aitkenovo-Nevillovo schéma příklad Příklad: V tabulce jsou uvedeny hodnoty funkce f v pěti různých bodech. Aproximujte hodnotu f(1,5) pomocí Lagrangeových polynomů z Aitkenova-Nevillova schématu. x f(x) 1,0 0, ,3 0, ,6 0, ,9 0, ,2 0,

44 Aitkenovo-Nevillovo schéma příklad Příklad: V tabulce jsou uvedeny hodnoty funkce f v pěti různých bodech. Aproximujte hodnotu f(1,5) pomocí Lagrangeových polynomů z Aitkenova-Nevillova schématu. Řešení: Nejprve označíme x f(x) 1,0 0, ,3 0, ,6 0, ,9 0, ,2 0, x f(x) x 0 = 1,0 0, = Q 0,0 x 1 = 1,3 0, = Q 1,0 x 2 = 1,6 0, = Q 2,0 x 3 = 1,9 0, = Q 3,0 x 4 = 2,2 0, = Q 4,0

45 Aitkenovo-Nevillovo schéma příklad x f(x) x 0 = 1,0 0, = Q 0,0 x 1 = 1,3 0, = Q 1,0 x 2 = 1,6 0, = Q 2,0 x 3 = 1,9 0, = Q 3,0 x 4 = 2,2 0, = Q 4,0

46 Aitkenovo-Nevillovo schéma příklad x f(x) x 0 = 1,0 0, = Q 0,0 x 1 = 1,3 0, = Q 1,0 Q 1,1 = 0, x 2 = 1,6 0, = Q 2,0 x 3 = 1,9 0, = Q 3,0 x 4 = 2,2 0, = Q 4,0 Nyní pomocí vzorce (1) určíme Q 1,1 (1,5) = (1,5 x 0)Q 1,0 (1,5 x 1 )Q 0,0 x 1 x 0 = = (1,5 1,0)Q 1,0 (1,5 1,3)Q 0,0 = 1,3 1,0 0,5 0, ,2 0, = = 0, ,3

47 Aitkenovo-Nevillovo schéma příklad Podobně vypočteme x f(x) x 0 = 1,0 0, = Q 0,0 x 1 = 1,3 0, = Q 1,0 Q 1,1 = 0, x 2 = 1,6 0, = Q 2,0 Q 2,1 = 0, x 3 = 1,9 0, = Q 3,0 x 4 = 2,2 0, = Q 4,0 Q 2,1 (1,5) = (1,5 x 1)Q 2,0 (1,5 x 2 )Q 1,0 x 2 x 1 = = (1,5 1,3)Q 2,0 (1,5 1,6)Q 1,0 = 1,6 1,3 0,2 0, ( 0,1) 0, = = 0, , 0,3

48 Aitkenovo-Nevillovo schéma příklad x f(x) x 0 = 1,0 0, = Q 0,0 x 1 = 1,3 0, = Q 1,0 Q 1,1 = 0, x 2 = 1,6 0, = Q 2,0 Q 2,1 = 0, x 3 = 1,9 0, = Q 3,0 Q 3,1 = 0, x 4 = 2,2 0, = Q 4,0 Q 4,1 = 0, Podobně vypočteme Q 3,1 (1,5) = 0, a Q 4,1 (1,5) = 0,

49 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 Q 0,0 = 0, x 1 = 1,3 Q 1,0 = 0, Q 1,1 = 0, x 2 = 1,6 Q 2,0 = 0, Q 2,1 = 0, x 3 = 1,9 Q 3,0 = 0, Q 3,1 = 0, x 4 = 2,2 Q 4,0 = 0, Q 4,1 = 0,

50 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 Q 0,0 = 0, x 1 = 1,3 Q 1,0 = 0, Q 1,1 = 0, x 2 = 1,6 Q 2,0 = 0, Q 2,1 = 0, x 3 = 1,9 Q 3,0 = 0, Q 3,1 = 0, x 4 = 2,2 Q 4,0 = 0, Q 4,1 = 0, Pokračujeme dalším sloupcem ve schématu. Opět pomocí vzorce (1) určíme: Q 2,2 (1,5) = (1,5 x 0)Q 2,1 (1,5 x 2 )Q 1,1 x 2 x 0 = = (1,5 1,0)Q 2,1 (1,5 1,6)Q 1,1 = 1,6 1,0 0,5 0, ( 0,1) 0, = = 0, , 0,6

51 Aitkenovo-Nevillovo schéma příklad Podobně vypočteme x 0 = 1,0 Q 0,0 = 0, x 1 = 1,3 Q 1,0 = 0, Q 1,1 = 0, x 2 = 1,6 Q 2,0 = 0, Q 2,1 = 0, x 3 = 1,9 Q 3,0 = 0, Q 3,1 = 0, x 4 = 2,2 Q 4,0 = 0, Q 4,1 = 0, Q 3,2 (1,5) = (1,5 x 1)Q 3,1 (1,5 x 3 )Q 2,1 x 3 x 1 = = (1,5 1,3)Q 3,1 (1,5 1,9)Q 2,1 = 1,9 1,3 0,2 0, ( 0,4) 0, = = 0, , 0,6

52 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 Q 0,0 = 0, x 1 = 1,3 Q 1,0 = 0, Q 1,1 = 0, x 2 = 1,6 Q 2,0 = 0, Q 2,1 = 0, x 3 = 1,9 Q 3,0 = 0, Q 3,1 = 0, x 4 = 2,2 Q 4,0 = 0, Q 4,1 = 0, Podobně se vypočte Q 4,2 (1,5) = 0,

53 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 0, x 1 = 1,3 0, , x 2 = 1,6 0, , Q 2,2 (1,5) = 0, x 3 = 1,9 0, , Q 3,2 (1,5) = 0, x 4 = 2,2 0, , Q 4,2 (1,5) = 0,

54 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 0, x 1 = 1,3 0, , x 2 = 1,6 0, , Q 2,2 (1,5) = 0, x 3 = 1,9 0, , Q 3,2 (1,5) = 0, x 4 = 2,2 0, , Q 4,2 (1,5) = 0, Pokračujeme dále ve schématu: Q 3,3 (1,5) = (1,5 1,0)Q 3,2 (1,5 1,9)Q 2,2 = 1,9 1,0 0,5 0, ( 0,4) 0, = = 0, , 0,9

55 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 0, x 1 = 1,3 0, , x 2 = 1,6 0, , Q 2,2 (1,5) = 0, x 3 = 1,9 0, , Q 3,2 (1,5) = 0, x 4 = 2,2 0, , Q 4,2 (1,5) = 0, Pokračujeme dále ve schématu: Q 3,3 (1,5) = (1,5 1,0)Q 3,2 (1,5 1,9)Q 2,2 = 1,9 1,0 0,5 0, ( 0,4) 0, = = 0, , 0,9 Q 4,3 (1,5) = (1,5 1,3)Q 4,2 (1,5 2,2)Q 3,2 = 2,2 1,3 0,2 0, ( 0,7) 0, = = 0, ,9

56 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 0, x 1 = 1,3 0, , x 2 = 1,6 0, , , x 3 = 1,9 0, , , Q 3,3 (1,5) = 0, x 4 = 2,2 0, , , Q 4,3 (1,5) = 0,

57 Aitkenovo-Nevillovo schéma příklad x 0 = 1,0 0, x 1 = 1,3 0, , x 2 = 1,6 0, , , x 3 = 1,9 0, , , Q 3,3 (1,5) = 0, x 4 = 2,2 0, , , Q 4,3 (1,5) = 0, Nyní poslední sloupec (poslední hodnota) schématu: Q 4,4 (1,5) = (1,5 1,0)Q 4,3 (1,5 2,2)Q 3,3 = 2,2 1,0 0,5 0, ( 0,7) 0, = = 0, ,2

58 Aitkenovo-Nevillovo schéma příklad Kompletní Aitkenovo-Nevillovo schéma pro 5 uzlů: 1,0 0, ,3 0, , ,6 0, , , ,9 0, , , , ,2 0, , , , ,

59 Aitkenovo-Nevillovo schéma příklad Kompletní Aitkenovo-Nevillovo schéma pro 5 uzlů: 1,0 0, ,3 0, , ,6 0, , , ,9 0, , , , ,2 0, , , , , Představme si nyní, že jsme dodatečně získali další hodnotu funkce f. Nechť například f(2,5) = 0, Potom se můžeme pokusit dále zpřesnit aproximaci neznámé hodnoty f(1,5).

60 Aitkenovo-Nevillovo schéma příklad Kompletní Aitkenovo-Nevillovo schéma pro 5 uzlů: 1,0 0, ,3 0, , ,6 0, , , ,9 0, , , , ,2 0, , , , , Představme si nyní, že jsme dodatečně získali další hodnotu funkce f. Nechť například f(2,5) = 0, Potom se můžeme pokusit dále zpřesnit aproximaci neznámé hodnoty f(1,5). V Aitkenově-Nevillově schématu stačí pro dopočítání hodnot dalších Lagrangeových polynomů přidat další řádek: x 5 Q 5,0 Q 5,1 Q 5,2 Q 5,3 Q 5,4 Q 5,0

61 Aitkenovo-Nevillovo schéma příklad Kompletní Aitkenovo-Nevillovo schéma pro 5 uzlů: 1,0 0, ,3 0, , ,6 0, , , ,9 0, , , , ,2 0, , , , , Představme si nyní, že jsme dodatečně získali další hodnotu funkce f. Nechť například f(2,5) = 0, Potom se můžeme pokusit dále zpřesnit aproximaci neznámé hodnoty f(1,5). V Aitkenově-Nevillově schématu stačí pro dopočítání hodnot dalších Lagrangeových polynomů přidat další řádek: x 5 Q 5,0 Q 5,1 Q 5,2 Q 5,3 Q 5,4 Q 5,0 Po vyčíslení získáme tyto hodnoty: 2,5-0, , , , , ,

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012

Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Michal Čihák 26. listopadu 2012 Metoda nejmenších čtverců Matematicko-statistická metoda používaná zejména při zpracování nepřesných dat (typicky experimentálních empirických

Více

úloh pro ODR jednokrokové metody

úloh pro ODR jednokrokové metody Numerické metody pro řešení počátečních úloh pro ODR jednokrokové metody Formulace: Hledáme řešení y = y() rovnice () s počáteční podmínkou () y () = f(, y()) () y( ) = y. () Smysl: Analyticky lze spočítat

Více

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0.

Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice. sin x + x 2 2 = 0. A 9 vzorové řešení Př. 1. Libovolnou z probraných metod najděte s přesností na 3 desetinná místa kladný kořen rovnice Počítejte v radiánech, ne ve stupních! sin x + x 2 2 = 0. Rovnici lze upravit na sin

Více

Diferenciál a Taylorův polynom

Diferenciál a Taylorův polynom Diferenciál a Taylorův polynom Základy vyšší matematiky lesnictví LDF MENDELU c Simona Fišnarová (MENDELU) Diferenciál a Taylorův polynom ZVMT lesnictví 1 / 11 Aproximace funkce v okoĺı bodu Danou funkci

Více

Newtonova metoda. 23. října 2012

Newtonova metoda. 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné Newtonova metoda Michal Čihák 23. října 2012 Newtonova metoda (metoda tečen) využívá myšlenku, že tečna v daném bodě grafu funkce nejlépe aproximuje graf funkce

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Interpolace, aproximace

Interpolace, aproximace 11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Numerická matematika Banka řešených příkladů

Numerická matematika Banka řešených příkladů Numerická matematika Banka řešených příkladů Radek Kučera, Pavel Ludvík, Zuzana Morávková Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava K D M G ISBN 978-80-48-894-6

Více

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL

APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL APROXIMACE KŘIVEK V MATLABU NEWTONŮV INTERPOLAČNÍ POLYNOM CURVE FITTING IN MATLAB NEWTON INTERPOLATION POLYNOMIAL Jiří Kulička 1 Anotace: Článek se zabývá odvozením, algoritmizací a popisem konstrukce

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

1 Diference a diferenční rovnice

1 Diference a diferenční rovnice 1 Diference a diferenční rovnice Nechť je dána ekvidistantní síť uzlů x 0, x 1,..., x n tj. h R, h > 0 takové, že x i = x 0 + ih, i = 0, 1,..., n. Číslo h se nazývá krok. Někdy můžeme uvažovat i nekonečnou

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda sečen Michal Čihák 23. října 2012 Opakování rovnice přímky Úloha: Určete rovnici přímky procházející body A[a, f(a)] a B[b, f(b)], kde f je funkce spojitá

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Téma je podrobně zpracováno ve skriptech [1], kapitola

Téma je podrobně zpracováno ve skriptech [1], kapitola Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 6. Základní aproximační úlohu lze popsat následovně: Jsou dány body [x 0, y 0 ], [x 1, y 1 ],..., [x n, y n

Více

1 Duální simplexová metoda

1 Duální simplexová metoda 1 Duální simplexová metoda Autor: Markéta Popelová Datum: 8.5.2011 Předmět: Základy spojité optimalizace Zadání Mějme matici A R m n a primární úlohu lineárního programování v normálním tvaru (P) a k ní

Více

SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování

SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování KATEDRA ANALYTICKÉ CHEMIE FAKULTY CHEMICKO TECHNOLOGICKÉ UNIVERSITA PARDUBICE - Licenční studium chemometrie LS96/1 SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování Praha, leden 1999 0 Úloha

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

metoda Regula Falsi 23. října 2012

metoda Regula Falsi 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda Regula Falsi Michal Čihák 23. října 2012 Metoda Regula Falsi hybridní metoda je kombinací metody sečen a metody půlení intervalů předpokladem je (podobně

Více

NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí.

NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. NUMERICKÉ METODY. Problematika num. řešení úloh, chyby, podmíněnost, stabilita algoritmů. Aproximace funkcí. RNDr. Radovan Potůček, Ph.D., K-15, FVT UO, KŠ 5B/11, Radovan.Potucek@unob.cz, tel. 443056 -----

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

4 Numerické derivování a integrace

4 Numerické derivování a integrace Břetislav Fajmon, UMAT FEKT, VUT Brno Téma je podrobně zpracováno ve skriptech [1], kapitola 7, strany 85-94. Jedná se o úlohu výpočtu (první či druhé) derivace či o výpočet určitého integrálu jinými metodami,

Více

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012

Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Hledání kořenů rovnic jedné reálné proměnné metoda půlení intervalů Michal Čihák 23. října 2012 Problém hledání kořenů rovnice f(x) = 0 jeden ze základních problémů numerické matematiky zároveň i jeden

Více

MODEL TVÁŘECÍHO PROCESU

MODEL TVÁŘECÍHO PROCESU MODEL TVÁŘECÍHO PROCESU Zkouška tlakem na válcových vzorcích 2 Vyhodnocení tlakové zkoušky Síla F způsobí změnu výšky H a průměru D válce. V každém okamžiku při stlačování je přetvárný odpor definován

Více

Statistika I (KMI/PSTAT)

Statistika I (KMI/PSTAT) Statistika I (KMI/PSTAT) Cvičení druhé aneb Kvantily, distribuční funkce Statistika I (KMI/PSTAT) 1 / 1 Co se dnes naučíme Po absolvování této hodiny byste měli být schopni: rozumět pojmu modus (modální

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt Automatický výpočet chyby nepřímého měření František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009 Abstrakt Pro správné vyhodnocení naměřených dat je třeba také vypočítat chybu měření. Pokud je neznámá

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Binární vyhledávací stromy pokročilé partie

Binární vyhledávací stromy pokročilé partie Binární vyhledávací stromy pokročilé partie KMI/ALS lekce Jan Konečný 30.9.204 Literatura Cormen Thomas H., Introduction to Algorithms, 2nd edition MIT Press, 200. ISBN 0-262-5396-8 6, 3, A Knuth Donald

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace

BAKALÁŘSKÁ PRÁCE. Numerické metody jednorozměrné minimalizace UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Numerické metody jednorozměrné minimalizace Vedoucí bakalářské práce: RNDr. Horymír

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Řešení diferenciálních rovnic

Řešení diferenciálních rovnic Projekt M3 Řešení diferenciálních rovnic 1. Zadání A. Stanovte řešení dané diferenciální rovnice popřípadě soustavy rovnic. i) Pro úlohy M3.1 až M3.12: uveďte matematický popis použité metody sestavte

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů

Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Figurální čísla, Pascalův trojúhelník, aritmetické posloupnost vyšších řádů Jaroslav Zhouf, PedF UK, Praha Úvod Pascalův trojúhelník je schéma přirozených čísel, která má své využití např. v binomické

Více

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.

Algebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu. Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu:

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ. Matematika 3. RNDr. Břetislav Fajmon, PhD. Autoři textu: FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Matematika 3 Garant předmětu: RNDr. Břetislav Fajmon, PhD Autoři textu: Mgr. Irena Růžičková RNDr. Břetislav Fajmon, PhD

Více

Zimní semestr akademického roku 2015/ ledna 2016

Zimní semestr akademického roku 2015/ ledna 2016 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Zimní semestr akademického roku 015/016 5. ledna 016 Obsah Cvičení Předmluva iii

Více

3 Množiny, Relace a Funkce

3 Množiny, Relace a Funkce 3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli

Více

Aplikovaná numerická matematika

Aplikovaná numerická matematika Aplikovaná numerická matematika 6. Metoda nejmenších čtverců doc. Ing. Róbert Lórencz, CSc. České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových systémů Příprava studijních

Více

8. Okrajový problém pro LODR2

8. Okrajový problém pro LODR2 8. Okrajový problém pro LODR2 A. Základní poznatky o soustavách ODR1 V kapitole 6 jsme zavedli pojem lineární diferenciální rovnice n-tého řádu, která je pro n = 2 tvaru A 2 (x)y + A 1 (x)y + A 0 (x)y

Více

Řešení nelineárních rovnic

Řešení nelineárních rovnic Řešení nelineárních rovnic Metody sečen (sekantová a regula falsi) Máme dva body x 1 a x mezi nimiž se nachází kořen Nový bod x 3 volíme v průsečíku spojnice bodů x 1, f x 1 a x, f x (sečny) s osou x ERRBISPAS

Více