2. Pilotážní přístroje a Navigační systémy. Pavel Kovář

Rozměr: px
Začít zobrazení ze stránky:

Download "2. Pilotážní přístroje a Navigační systémy. Pavel Kovář"

Transkript

1 2. Pilotážní přístroje a Navigační systémy Pavel Kovář kovar@fel.cvut.cz

2 Obsah Základní pojmy Letecké mapy Pilotážní přístroje Světelné majáky Principy rádiové navigace Rádiové navigační systémy Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 2

3 Definice pojmů Navigace Vedení prostředku po stanovené trati pomocí navigačních prostředků se vyhodnocuje odchylka od stanovené trati a provádí se korekce, tzv. pilotáž Určování polohy Stanovení polohy (zeměpisných souřadnic) prostředku (uživatele) Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 3

4 Způsoby navigace Pilotáž (Map Matching - porovnávání s mapou) Odchylka trasy se určuje porovnáním význačných bodů v terénu s navigační mapou. Za nepříznivých povětrnostních podmínek obtížná nebo nemožná Deduced reckoning (let nebo jízda naslepo) Trasa letu je stanovena předem (kurzy, rychlosti, letové doby) Odchylka od stanovené trasy se neurčuje! Je nutné počítat s faktoru ovlivňující trajektorii letu (jízdy) směr a rychlost větru směr a rychlost mořských proudů přesnost vedení prostředku v daném kurzu atd. Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 4

5 Branné cvičení 80. léta 20. století (příklad deduced reckoning navigace) Úkol č. 5 Jděte z výchozího bodu po trase kurs vzdálenost m m m m m Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 5

6 Základní pojmy Navigace podle vidu (visual navigation) omezena na denní světlo a dobré povětrnostní podmínky Pilotáž (deduced reckoning) řízení letadla podle mapy porovnání okolí s mapou Let naslepo (dead reckoning) let po předem připraveném kursu Kurs (course, ground track) Boční větry (crosswinds) Korekční úhel na boční vítr (crosswind correction angle) Letecké mapy Různá měřítka 1: oblastní mapa - sectional charts 1: světová mapa - world aeronautical charts (WACs) Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 6

7 Letecké mapy 1: oblastní mapa - sectional charts 1: světová mapa - world aeronautical charts (WACs) Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 7

8 Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 8

9 Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 9

10 Pilotážní přístroje Umožňují řídit letadlo bez viditelnosti země magnetický kompas směrový indikátor umělý horizont zatáčkoměr rychloměr variometr barometrický výškoměr Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 10

11 Magnetický kompas měří natočení osy letadla vzhledem k magnetickému severu Úhlový rozdíl mezi opravdovým severem a magnetickým severem variace (variation) Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 11

12 Deviace kompasu způsobena narušením magnetického pole v okolí kompasu Korekční tabulka magnetické deviace korekce kompasu - je jí vybaveno každé letadlo Další chyby kompasu chyba způsobená zrychlením chyba při zatáčení letadla Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 12

13 Směrový indikátor pracuje na gyroskopickém principu před letem musí být nastaven netrpí problémy magnetického kompasu trpí driftem musí být průběžně za letu kontrolován, zda ukazuje správně Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 13

14 Pilotážní přístroje Umělý horizont (altitude indicator) umožňuje let bez viditelnosti pracuje na principu gyroskopu Zatáčkoměr (Turn coordinator) Barometrický výškoměr (Altimeter) Rychloměr (Airspeed indicator) Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 14

15 Rychloměr (uzly + km/h) Výškoměr (stopy) Variometr (stopy/min) Umělý horizont Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 15

16 Světelný otočný maják vyznačení letišť vyznačení letových tras 10 otáček za min. záblesky viditelné do 40 mil. bílá-zelená zelená-zelená bílá - žlutá žlutá - žlutá zelená bílá bílá zelená žlutá - bílá pozemní letiště pozemní letiště letiště na vodě letiště na vodě vojenské letiště vojenské letiště Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 16

17 Základy rádiové navigace Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 17

18 Základy rádiové navigace Poloha resp. odchylka od trasy se vyhodnocuje na základě zpracování rádiových signálů AoA Angle of Arrival - směr příchodu signálu SS Signal Strength - síla signálu ToA Time of Arrival - čas příchodu signálu TDoA Time Difference of Arrival - rozdíl časů příchodu signálů DS Doppler shift - Dopplerův posuv kmitočtu nosné vlny Elektronické vyznačení trasy Elektronické vyznačení bodu Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 18

19 AoA směr příchodu signálu Aplikace sever φ uživatel maják Směrové antény Radiokompas DF Automatický radiokompas ADF Radar Dopplerovský směrový zaměřovač VHF Direction Finder (VKV směrový zaměřovač letadel) Zaměřování ukradených vozidel Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 19

20 Určování polohy Určí se kurs ke dvěma všesměrovým majákům NDB Poloha se určí jako průsečík příslušných radiál v navigační mapě Přesnost závisí na přesnosti měření kurs k NDB1 kurs k NDB2 NDB1 NDB2 sever Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 20

21 Dopplerovský směrový zaměřovač y rotující anténa Ω φ n směr příchodu signálu Souřadnice rotující antény x t R t ( ) = sin ( Ω ) ( ) = cos( Ω ) rychlost dx( t ) ( ) y t R t ( ) vx t = = RΩ cos Ωt dt dy ( t ) vy ( t ) = = RΩ sin Ωt dt ( ) R Rotační pohyb antény způsobí, že v důsledku Dopplerova jevu bude přijímaný signál kmitočtově modulovaný harmonickým signálem s periodou otáčení antén. Fáze modulačního signálu závisí na směru φ příchodu signálu. x Dopplerův posuv kmitočtu způsobuje vzájemná rychlost antén ( ) = ( ) cosϕ + ( ) sinϕ = R ( t ) ϕ R ( t ) R sin ( t ϕ ) v t v t v t n y x = Ω sin Ω cos + Ω cos Ω sinϕ = = Ω Ω Kmitočet přijímaného signálu c + vn fc frx = fc = fc RΩsin( Ωt ϕ ) c c kmitočtová modulace fáze závisí na směru příchodu signálu Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 21

22 Dopplerovský směrový zaměřovač Rotující anténu lze nahradit přepínáním antén rozmístěných po kružnici Ω Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 22

23 SS síla signálu Měří vzdálenost od majáku na základě úrovně přijímaného signálu Uživatel se nachází na kružnici resp. na povrchu koule o poloměru R Při použití více majáků lze určit polohu jako průsečík příslušných kruhů resp. koulí P Radiokomunikační rovnice λ = P G G 4π R dp v v p 2 Aplikace měření vzdálenosti k prahu vzletové a přistávací dráhy u systému ILS (nepoužívá se) R maják pokusy s navigací uvnitř budov uživatel Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 23

24 ToA čas příchodu signálu Měří vzdálenost od majáku na základě doby šíření signálu Uživatel se nachází na kružnici resp. na povrchu koule o poloměru R Při použití více majáků lze určit polohu jako průsečík příslušných kruhů resp. koulí uživatel R = ct z maják vysílaný signál časové značky t přijímaný signál t z t zpoždění signálu způsobené šířením Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 24

25 ToA čas příchodu signálu Rádiově aktivní systémy (uživatel vysílá rádiové signály) Pasivní odraz primární radar rádiový výškoměr ct R = z 2 odraz od cíle Dotazovač odpovídač dálkoměr DME sekundární radar Rádiově pasivní systémy (uživatel pouze přijímá signály majáků) Družicové navigační systémy Signál radaru je vysílán směrovou anténou, což dovoluje určit směr cíle (kombinace AoA a ToA) S Pv G = 4π R Pasivní odraz od cíle a 2 plošná hustota výkonu Schopnost cíle odrážet rádiové vlny se popisuje pomocí efektivní odrazné plochy A ef. Cíl se chová jako izotropní zářič. P O = SA odražený výkon od cíle ef Radarová rovnice 2 2 λ 2 λ = pd O a = v ef a 3 4 P P G P A G 4π R 4 Výkon přijímaného signál klesá se čtvrtou mocninou vzdálenosti cíle!!! Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 25 ( π ) R

26 ToA čas příchodu signálu Rádiově aktivní systémy (uživatel vysílá rádiové signály) Pasivní odraz primární radar rádiový výškoměr Dotazovač odpovídač dálkoměr DME sekundární radar Rádiově pasivní systémy (uživatel pouze přijímá signály majáků) Družicové navigační systémy odraz od terénu cτ z h = 2 Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 26

27 ToA čas příchodu signálu Rádiově aktivní systémy (uživatel vysílá rádiové signály) Pasivní odraz primární radar rádiový výškoměr Dotazovač odpovídač dálkoměr DME sekundární radar tz t R= c 2 p kódovaný dotaz kódovaná odpověď dotazovač Rádiově pasivní systémy (uživatel pouze přijímá signály majáků) Družicové navigační systémy odpovídač t p - doba zpracování signálu v odpovídači Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 27

28 ToA čas příchodu signálu Rádiově aktivní systémy (uživatel vysílá rádiové signály) Pasivní odraz primární radar rádiový výškoměr Dotazovač odpovídač dálkoměr DME sekundární radar tz t R= c 2 p kódovaný dotaz kódovaná odpověď odpovídač Rádiově pasivní systémy (uživatel pouze přijímá signály majáků) Družicové navigační systémy odpovídač t p - doba zpracování signálu v odpovídači Signál radaru je vysílán směrovou anténou, což dovoluje určit směr cíle (kombinace AoA a ToA) Sekundární radar řeší nevýhodnou energetickou bilanci primárního radaru. Cíl musí být vybaven rádiově aktivním odpovídačem sekundárního radaru. Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 28

29 ToA čas příchodu signálu Rádiově aktivní systémy (uživatel vysílá rádiové signály) Pasivní odraz primární radar rádiový výškoměr Dotazovač odpovídač dálkoměr DME sekundární radar R = ct z značky v přesně definovaných časech Rádiově pasivní systémy (uživatel pouze přijímá signály majáků) Družicové navigační systémy t z t zpoždění signálu způsobené šířením Problém Maják a uživatel musí mít synchronizovanou časovou základnu. Chyba 1µs představuje chybu ve vzdálenosti 300m. Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 29

30 TDoA rozdíl časů příchodu signálů Řeší problém přesnosti časové základny uživatele u systémů ToA Signál vysílán dvěma nebo více synchronizovanými majáky Uživatel vyhodnocuje rozdíl časů příchodu signálu od majáků maják2 maják1 uživatel Aplikace Loran C Omega Deca Tamara a její nástupci maják3 Hyperbola křivka s konstantním rozdílem vzdálenosti (zpoždění) mezi ohnisky Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 30

31 DS Dopplerův posuv kmitočtu nosné vlny Měří vzájemnou rychlost uživatele a majáku v1 vd1 P1 (x1,y1,z1) Aplikace Transit GNSS stanovení vektoru rychlosti uživatel (x,y,z) dráha družice Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 31

32 Elektronické vyznačení trasy A-N range vznikl v 20 letech, sloužil do 50 let pracuje na khz výkon vysílače 1500 W 2 vertikální rámové antény 1 anténa vysílá morse A (tečka čárka) 2 anténa vysílá morse N (čárka tečka) A elektronický paprsek Aplikace A-N Range VOR ILS TACAN N N A elektronický paprsek Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 32

33 Elektronické vyznačení bodu Aplikace Marker maják Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 33

34 Rádiové navigační systémy Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 34

35 Marker Slouží k označení místa přeletu při přeletu Markeru pilot uslyší kódovaný signál NDB maják Maják pracuje v pásmu khz, vysílá všesměrově. Letadlo určuje směr příchodu signálu vzhledem k ose letadla. Přijímač DF (Direction Finder) ADF (Autonatic Direction Finder) Radiokompas Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 35

36 Radiokompas Zaměření kurzu k radiomajáku pomocí směrové antény Rámová magnetická anténa Radiomajáky DV, SV rozhlasové vysílače Speciální všesměrové majáky NDB Konstrukce antény několik kruhových závitů v kovové trubce, na vrcholu rozřízlé, aby netvořila závit nakrátko Kombinace rámové a všesměrové antény vyzařovací charakteristika - kardioida - jedno minimum Vyzařovací charakteristika v horizontální rovině -osmičková -zaměřuje se na minimum -2 minima - problém s neurčitostí + anténa radiokompasu Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 36

37 Navigace letová trasa je vyznačena všesměrovými radiomajáky NDB letadlo letí od majáku k majáku problém s bočním větrem NDB1 skutečná dráha letu (psí křivka) rychlost vzhledem k zemskému povrchu zamýšlená dráha letu rychlost větru rychlost vzhledem k atmosféře Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 37

38 Rádiová navigace Four-Course Radio Range (A-N range) vznikl v 20 letech, sloužil do 50 let pracuje na khz výkon vysílače 1500 W 2 vertikální rámové antény 1 anténa vysílá morse A (tečka čárka) 2 anténa vysílá morse N (čárka tečka) Když se letadlo nachází v kursu, pilot slyší ve sluchátkách nepřetržitý tón. V opačném případě by slyšel morse A nebo morse N, podle toho ve které oblasti se od vyznačeného kursu nachází. Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 38

39 VAR - Visual aural range Pracuje na stejném principu jako Four-Course Radio Range, ale v pásmu VKV. vyřešen problém s orientací menší problém s odrazy dosah na viditelnost Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 39

40 VOR VHF Omni directional range umožňuje let po jakékoliv radiále k majáku VOR vznikl v 1937 první instalace 1944 mezinárodní standard 1949 pracuje v pásmu VKV Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 40

41 Kategorie VOR TVOR Terminal VOR malý výkon, dosah 25 námořních mil Low-altitude VOR dosah 40 námořních mil zóna bez interferencí je garantována do feet High-altitude VOR pro letadla ve výškách feet dosah 200 námořních mil Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 41

42 Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 42

43 Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 43

44 Kolem majáku VOR musí být volný prostor, jinak dojde k narušení vlastností signálu nepoužitelné radiály. Problém částečněřeší Doppler VOR signál má stejné vlastnosti, ale jeho generace v majáku je jiná Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 44

45 MEA (minimum en route altitude) letová výška, nad kterou je garantován signál VOR stanovuje se pro každou letovou trasu kontroluje se měřením MOCA (minimum obstruction clearance altitude) letová výška pro danou trasu, ve které se nenacházejí překážky signál VOR je garantován do 22 námořních mil Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 45

46 Určování polohy pomocí VOR Změří se radiály na kterých se nachází letoun ke dvěma VOR majákům. Poloha je dána průsečíkem radiál. Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 46

47 DME Rádiový dálkoměr měří vzdálenost letadla k majáku spolu s VOR umožňuje rho-theta určování polohy pracuje kolem 1 GHz. na palubě dotazovač, na zemi odpovídač vzdálenost měřena na základě zpoždění odpovědi Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 47

48 DME DME měří šikmou vzdálenost Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 48

49 TACAN Vojenský VOR pracuje na 1 GHz přesnější než VOR - dokonalejší signál koaxiální instalace s VOR = VORTAC Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 49

50 Prostorová navigace Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 50

51 RNAV CLC course-line computer Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 51

52 LORAN A, LORAN C Hyperbolický navigační systém měří se rozdíl doby přijmu rádiových pulsů od několika synchronizovaných majáků Loran A pracoval na khz Loran C pracuje na 100 khz Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 52

53 Dostupnost signálu LORAN C Šíření signálu LORAN C Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 53

54 Navigační přijímač LORAN C Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 54

55 GPS družicový dálkoměrný navigační systém 3D poloha se počítá na základě změření vzdáleností min. ke 3 resp. 4 družicím. (3 družice lze použít jen v případě, že máme přesnou informaci o čase, v opačném případě je nutno použít 4 družice.) Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 55

56 WAAS Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 56

57 Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 57

58 Historie řízení letového provozu a letectví Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 58

59 Řízení letového provozu 2. Pilotážní přístroje a Navigační systémy 59

Základy rádiové navigace

Základy rádiové navigace Základy rádiové navigace Obsah Definice pojmů Způsoby navigace Principy rádiové navigace Pozemské navigační systémy Družicové navigační systémy Definice pojmů Navigace Vedení prostředku po stanovené trati

Více

POROVNÁNÍ JEDNOTLIVÝCH SYSTÉMŮ

POROVNÁNÍ JEDNOTLIVÝCH SYSTÉMŮ RUP 01b POROVNÁNÍ JEDNOTLIVÝCH SYSTÉMŮ Časoměrné systémy: Výhody: Vysoká přesnost polohy (metry) (díky vysoké přesnosti měření časového zpoždění signálů), nenáročné antény, nízké výkony vysílačů Nevýhoda:

Více

Leoš Liška.

Leoš Liška. Leoš Liška 1) Tvar a rozměry zeměkoule, rovnoběžky a poledníky. 2) Zeměpisná šířka a délka, druhy navigace při létání. 3) Časová pásma na zemi, používání času v letectví, UTC, SEČ, SELČ. 4) Východ a západ

Více

11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky

11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky Specializovaný kurs U3V Současný stav a výhledy digitálních komunikací 11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky 7.4.2016 Jiří Šebesta Ústav radioelektroniky

Více

1. Historie ŘLP. Pavel Kovář

1. Historie ŘLP. Pavel Kovář 1. Historie ŘLP Pavel Kovář kovar@fel.cvut.cz Historie ŘLP 1903 první let bratři Wrightové doba experimentů, letadla neprocházela žádným testováním, piloti bez licence 1914 1918 první světová válka rozvoj

Více

KONTROLNÍ SEZNAM STRAN PŘEDPIS O CIVILNÍ LETECKÉ TELEKOMUNIKAČNÍ SLUŽBĚ SVAZEK I RADIONAVIGAČNÍ PROSTŘEDKY (L 10/I) Strana Datum Strana Datum

KONTROLNÍ SEZNAM STRAN PŘEDPIS O CIVILNÍ LETECKÉ TELEKOMUNIKAČNÍ SLUŽBĚ SVAZEK I RADIONAVIGAČNÍ PROSTŘEDKY (L 10/I) Strana Datum Strana Datum KONTROLNÍ SEZNAM STRAN PŘEDPIS O CIVILNÍ LETECKÉ TELEKOMUNIKAČNÍ SLUŽBĚ SVAZEK I RADIONAVIGAČNÍ PROSTŘEDKY (L 10/I) Strana Datum Strana Datum i / ii 23.11.2006 Změna č. 81 iii / iv 8.11.2018 v 10.11.2016

Více

3.3 Seznamte se s principem systému ADS-B a ovládáním přijímače odpovědí ADS-B Kinetic Avionic SBS-1.

3.3 Seznamte se s principem systému ADS-B a ovládáním přijímače odpovědí ADS-B Kinetic Avionic SBS-1. MRAR-L ZADÁNÍ Č. úlohy 3 Navigační systémy pro civilní letectví 3.1 Seznamte se s navigačními službami řízení letového provozu. 3.2 Sledujte provoz hlasových služeb ŘLP Brno - Tuřany. 3.3 Seznamte se s

Více

NAVIGACE V LETECKÉ DOPRAVĚ S VYUŽITÍM MLAT SYSTÉMŮ AIR TRAFFIC NAVIGATION USING MULTILATERATION SYSTEMS

NAVIGACE V LETECKÉ DOPRAVĚ S VYUŽITÍM MLAT SYSTÉMŮ AIR TRAFFIC NAVIGATION USING MULTILATERATION SYSTEMS NAVIGACE V LETECKÉ DOPRAVĚ S VYUŽITÍM MLAT SYSTÉMŮ AIR TRAFFIC NAVIGATION USING MULTILATERATION SYSTEMS Marcela Ujcová 1 Anotace: Článek popisuje prostorovou navigaci a využití multilateračních systémů

Více

Novinky v letecké navigaci a komunikaci, přechod na novou kanálovou rozteč

Novinky v letecké navigaci a komunikaci, přechod na novou kanálovou rozteč Novinky v letecké navigaci a komunikaci, přechod na novou kanálovou rozteč Ing. Jiří Valenta Ministerstvo dopravy Odbor civilního letectví RADIOKOMUNIKACE 2014 1 Letecké radiokomunikační služby Letecká

Více

ÚVODNÍ ČÁST PŘEDPIS L 8168

ÚVODNÍ ČÁST PŘEDPIS L 8168 ÚVODNÍ ČÁST PŘEDPIS L 8168 OBSAH KONTROLNÍ SEZNAM STRAN ÚVODNÍ USTANOVENÍ ÚČINNOST PŘEDPISU, ZMĚN A OPRAV OBSAH i ii iii ČÁST I LETOVÉ POSTUPY VŠEOBECNĚ I-1-1-1 Díl 1 Definice, zkratky a akronymy I-1-1-1

Více

Sponzorem úlohy je společnost

Sponzorem úlohy je společnost MRAR-L Č. úlohy 3 Navigační systémy pro civilní letectví Sponzorem úlohy je společnost ZADÁNÍ 3.1 Seznamte se s navigačními službami řízení letového provozu. 3.2 Sledujte provoz hlasových služeb ŘLP Brno

Více

PŘÍSTROJOVÉ VYBAVENÍ PRO RNAV ONBOARD EQUIPMENT FOR RNAV

PŘÍSTROJOVÉ VYBAVENÍ PRO RNAV ONBOARD EQUIPMENT FOR RNAV PŘÍSTROJOVÉ VYBAVENÍ PRO RNAV ONBOARD EQUIPMENT FOR RNAV Marcela Ujcová 1 Anotace: Článek popisuje princip prostorové navigace (Area Navigation RNAV) a její výhody při využívání vzdušného prostoru. Dále

Více

HLAVA 7 - TRAŤOVÁ MAPA - ICAO

HLAVA 7 - TRAŤOVÁ MAPA - ICAO HLAVA 7 PŘEDPIS L4 HLAVA 7 - TRAŤOVÁ MAPA - ICAO 7.1 Účel Tato mapa musí poskytovat letovým posádkám informace pro usnadnění vedení letadla na tratích ATS v souladu s postupy letových provozních služeb.

Více

Global Positioning System

Global Positioning System Písemná příprava na zaměstnání Navigace Global Positioning System Popis systému Charakteristika systému GPS GPS (Global Positioning System) je PNT (Positioning Navigation and Timing) systém vyvinutý primárně

Více

Principy GPS mapování

Principy GPS mapování Principy GPS mapování Irena Smolová GPS GPS = globální družicový navigační systém určení polohy kdekoliv na zemském povrchu, bez ohledu na počasí a na dobu, kdy se provádí měření Vývoj systému GPS původně

Více

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu: Zdroje dat GIS Primární Sekundární Geodetická měření GPS DPZ (RS), fotogrametrie Digitální formy tištěných map Kartografické podklady (vlastní nákresy a měření) Vstup dat do GISu: Data přímo ve potřebném

Více

LETECKÉ MAPY. Přednášející: LUKAS WÜNSCH

LETECKÉ MAPY. Přednášející: LUKAS WÜNSCH LETECKÉ MAPY Přednášející: LUKAS WÜNSCH LICENCE SOUKROMÉHO PILOTA, ZKOUŠKY DOPRAVNÍHO PILOTA KLUZÁKY (VĚTRONĚ) OD ROKU 1989, UL LETOUNY, MOTOROVÉ LETOUNY AEROKLUB ROUDNICE NAD LABEM 2003-2014 ČESKÉ AEROLINIE

Více

14. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky

14. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky Specializovaný kurs U3V Současný stav a výhledy digitálních komunikací 14. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky 5.5.2016 Jiří Šebesta Ústav radioelektroniky

Více

GPS. Uživatelský segment. Global Positioning System

GPS. Uživatelský segment. Global Positioning System GPS Uživatelský segment Global Positioning System Trocha 3D geometrie nikoho nezabije opakování Souřadnice pravoúhlé a sférické- opakování Souřadnice sférické- opakování Pro výpočet délky vektoru v rovině

Více

ČÁST I DÍL 6 - HLAVA 1 PŘEDPIS L 8168

ČÁST I DÍL 6 - HLAVA 1 PŘEDPIS L 8168 ČÁST I DÍL 6 - HLAVA 1 PŘEDPIS L 8168 DÍL 6 POSTUPY VYČKÁVÁNÍ HLAVA 1 KRITÉRIA VYČKÁVÁNÍ 1.1 VŠEOBECNĚ 1.1.1 Aby bylo zajištěno, že letadlo zůstane v ochranných prostorech vyčkávání, musí pilot použít

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

Ochranné pásmo leteckých VHF vysílačů a přijímačů Přijímací a vysílací středisko Kopec Praha. Seznam příloh a technická zpráva GENERÁLNÍ PROJEKTANT:

Ochranné pásmo leteckých VHF vysílačů a přijímačů Přijímací a vysílací středisko Kopec Praha. Seznam příloh a technická zpráva GENERÁLNÍ PROJEKTANT: 02 01 / 2015 Ing. P. Hodík Ing. P. Hodík Ing. M. Šulc Zapracování připomínek OVL MO Č. REVIZE DATUM VYPRACOVAL KONTROLOVAL SCHVÁLIL POZNÁMKA INVESTOR: ŘLP ČR s.p. Navigační č.p. 787, 252 61 Jeneč tel:

Více

Nové trendy v zabezpečení rozsáhlých areálů

Nové trendy v zabezpečení rozsáhlých areálů Nové trendy v zabezpečení rozsáhlých areálů Tomáš Semerád Siemens, s. r. o. divize Building Technologies Page 1 Nové trendy v zabezpečení rozsáhlých areálů Obsah Termovize RADAR Page 2 Nové trendy v zabezpečení

Více

PŘÍLOHA. nařízení Komise v přenesené pravomoci,

PŘÍLOHA. nařízení Komise v přenesené pravomoci, EVROPSKÁ KOMISE V Bruselu dne 12.10.2015 C(2015) 6823 final ANNEX 1 PART 9/11 PŘÍLOHA nařízení Komise v přenesené pravomoci, kterým se mění nařízení Rady (ES) č. 428/2009, kterým se zavádí režim Společenství

Více

RÁDIOVÉ URČOVÁNÍ POLOHY

RÁDIOVÉ URČOVÁNÍ POLOHY Přehled témat: UP 1a ÁDIOVÉ UČOVÁNÍ POLOHY 1. Úvod. Princiy rádiového určování olohy, tyy systémů určování olohy, alikace. 2. Časoměrné a fázoměrné systémy určování olohy, rinci měření časového zoždění,

Více

PRAVIDLA RC MODELŮ KLUZÁKŮ S AEROVLEKEM

PRAVIDLA RC MODELŮ KLUZÁKŮ S AEROVLEKEM PRAVIDLA RC MODELŮ KLUZÁKŮ S AEROVLEKEM Definice soutěže Při soutěži RC modelů kluzáků s aerovlekem se létá jediná disciplína, kterou je úloha na čas, zakončená přistáním do vyhrazeného prostoru. Kluzák

Více

PRAVIDLA RC POLOMAKET VĚTROŇŮ S AEROVLEKEM

PRAVIDLA RC POLOMAKET VĚTROŇŮ S AEROVLEKEM PRAVIDLA RC POLOMAKET VĚTROŇŮ S AEROVLEKEM Definice soutěže Při soutěži polomaket větroňů s aerovlekem se létá jediná disciplína, kterou je úloha na čas, zakončená přistáním do vyhrazeného prostoru. Větroň

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

5. Vzdušný prostor. Pavel Kovář Řízení letového provozu 1. Úvod do ŘLP 1

5. Vzdušný prostor. Pavel Kovář Řízení letového provozu 1. Úvod do ŘLP 1 5. Vzdušný prostor Pavel Kovář kovar@fel.cvut.cz Řízení letového provozu 1. Úvod do ŘLP 1 Rozdělení vzdušného prostoru Členění Letové oblasti - řídí ACC Koncové řízené oblasti řídí APP Řízené okrsky, okrsky

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením. Na čem závisí účinnost vedení? účinnost vedení závisí na činiteli útlumu β a na činiteli odrazu

Více

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017

Fakulta biomedic ınsk eho inˇzen yrstv ı Teoretick a elektrotechnika Prof. Ing. Jan Uhl ıˇr, CSc. L eto 2017 Fakulta biomedicínského inženýrství Teoretická elektrotechnika Prof. Ing. Jan Uhlíř, CSc. Léto 2017 7 1. Elektromagnetismus 1 Základní pojmy a veličiny Vektor magnetické indukce B charakterizuje silové

Více

ERA a.s. Pardubice. Prezentující: Ing. Vojtěch STEJSKAL, Ph.D.

ERA a.s. Pardubice. Prezentující: Ing. Vojtěch STEJSKAL, Ph.D. ERA a.s. Pardubice Prezentující: Ing. Vojtěch STEJSKAL, Ph.D. Profil firmy ERA a.s. ERA a.s. Akciová společnost, založena v roce 1994 se sídlem v Pardubicích. Zabýváme se vývojem, výrobou a prodejem pasivních

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Registrační číslo projektu: CZ.1.07/1.5.00/34.0553 Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost Projekt je realizován v rámci Operačního programu Vzdělávání pro konkurence

Více

Komunikace procedury - frazeologie

Komunikace procedury - frazeologie Komunikace procedury - frazeologie Bezpečnost letového provozu závisí na spolehlivém a jasném spojení mezi piloty a řídícími letového provozu. Každá instrukce, procedura nebo příkaz volno k zajištění rozestupů

Více

Elektromagnetické vlny

Elektromagnetické vlny Elektromagnetické vlny 151 Dlouhé půlvlné vedení v harmonickém ustáleném stavu se sinusovým buzením a otevřeným koncem l = λ/2 Ẑ vst = Ẑ z, Ẑ z stojatá vlna napětí dipól λ/2. vedení s otevřeným koncem

Více

GPS - Global Positioning System

GPS - Global Positioning System Vysoká škola báňská - Technická univerzita Ostrava 20. února 2011 GPS Družicový pasivní dálkoměrný systém. Tvoří sít družic, kroužících na přesně specifikovaných oběžných drahách. Pasivní znamená pouze

Více

Globální polohové a navigační systémy

Globální polohové a navigační systémy Globální polohové a navigační systémy KGI/APGPS RNDr. Vilém Pechanec, Ph.D. Univerzita Palackého v Olomouci Univerzita Palackého v Olomouci I NVESTICE DO ROZVOJE V ZDĚLÁVÁNÍ Environmentální vzdělávání

Více

HLAVA 1 PŘEDPIS L 10/I

HLAVA 1 PŘEDPIS L 10/I HLAVA PŘEDPIS L 0/I HLAVA - DEFINICE Poznámka : Všechny odvolávky na Radiokomunikační řád se týkají Radiokomunikačního řádu publikovaného Mezinárodní telekomunikační unií (ITU). Radiokomunikační řád je

Více

ČÁST I DÍL 4 - HLAVA 8 PŘEDPIS L 8168

ČÁST I DÍL 4 - HLAVA 8 PŘEDPIS L 8168 HLAVA 8 ZOBRAZENÍ V MAPÁCH/LETECKÁ INFORMAČNÍ PŘÍRUČKA (AIP) 8.1 VŠEOBECNĚ Materiál týkající se publikování map je obsažen v předpisu L 4 následovně: a) Mapa standardních přístrojových příletových tratí

Více

ω JY je moment setrvačnosti k ose otáčení y

ω JY je moment setrvačnosti k ose otáčení y ZÁKLADNÍ USPOŘÁDÁNÍ MECHANICKÝCH GYROSKOPŮ POUŽITÝCH NA LETADLE 3 2 1 ω 3 2 1 ω 3 ω Kardanův ávěs ω a) 4 Groskop se dvěma stupni volnosti 3 b) Groskop se třemi stupni volnosti Groskop se otáčí úhlovou

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

N Á V R H. OPATŘENÍ OBECNÉ POVAHY ze dne 2005, o rozsahu požadovaných údajů v žádosti o udělení oprávnění k využívání rádiových kmitočtů

N Á V R H. OPATŘENÍ OBECNÉ POVAHY ze dne 2005, o rozsahu požadovaných údajů v žádosti o udělení oprávnění k využívání rádiových kmitočtů N Á V R H OPATŘENÍ OBECNÉ POVAHY ze dne 2005, o rozsahu požadovaných údajů v žádosti o udělení oprávnění k využívání rádiových kmitočtů Český telekomunikační úřad vydává podle 108 odst. 1 písm. b) zákona

Více

Totální stanice řady Trimble 5600 DR Direct Reflex se servem, vysoce produktivní měřický systém rozšiřitelný na Autolock a Robotic.

Totální stanice řady Trimble 5600 DR Direct Reflex se servem, vysoce produktivní měřický systém rozšiřitelný na Autolock a Robotic. Totální stanice řady Trimble 5600 DR se servem, vysoce produktivní měřický systém rozšiřitelný na Autolock a Robotic. K dispozici jsou tři DR dálkoměry Možnost rozšíření na Autolock a Robotic Čtyřrychlostní

Více

Návrh. VYHLÁŠKA ze dne 2004, kterou se stanoví rozsah údajů, které musí obsahovat žádost o udělení oprávnění k využívání rádiových kmitočtů

Návrh. VYHLÁŠKA ze dne 2004, kterou se stanoví rozsah údajů, které musí obsahovat žádost o udělení oprávnění k využívání rádiových kmitočtů Návrh VYHLÁŠKA ze dne 2004, kterou se stanoví rozsah údajů, které musí obsahovat žádost o udělení oprávnění k využívání rádiových kmitočtů Český telekomunikační úřad stanoví podle 149 odst. 5 zákona č..../2004

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Měření vzdáleností, určování azimutu, práce s buzolou.

Měření vzdáleností, určování azimutu, práce s buzolou. Měření vzdáleností, určování azimutu, práce s buzolou. Měření vzdáleností Odhadem Vzdálenost lze odhadnout pomocí rozlišení detailů na pozorovaných objektech. Přesnost odhadu závisí na viditelnosti předmětu

Více

OPTIMALIZACE ILS NA LKVO VODOCHODY OPTIMIZATION ILS IN LKVO VODOCHODY

OPTIMALIZACE ILS NA LKVO VODOCHODY OPTIMIZATION ILS IN LKVO VODOCHODY OPTIMALIZACE ILS NA LKVO VODOCHODY OPTIMIZATION ILS IN LKVO VODOCHODY Markéta Čapková 1 Anotace: Příspěvek se zabývá problematikou přesného přibližovacího zařízení na letišti LKVO Vodochody. Součástí příspěvku

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek

SEBELOKALIZACE MOBILNÍCH ROBOTŮ. Tomáš Jílek SEBELOKALIZACE MOBILNÍCH ROBOTŮ Tomáš Jílek Sebelokalizace Autonomní určení pozice a orientace robotu ve zvoleném souřadnicovém systému Souřadnicové systémy Globální / lokální WGS-84, ETRS-89 globální

Více

Letadlo Letecká dopravní cesta Letiště Mezinárodní veřejná Ostatní Všeobecné letectví letecké práce, letecké innosti pro pot eby státu, letecké

Letadlo Letecká dopravní cesta Letiště Mezinárodní veřejná Ostatní Všeobecné letectví letecké práce, letecké innosti pro pot eby státu, letecké Letadlo (podle Zákona o civilním letectví) se letadlem rozumí zařízení schopné vyvozovat síly nesoucí jej v atmosféře z reakcí vzduchu, které nejsou reakcemi vůči zemskému povrchu. Pro účely tohoto zákona

Více

PŘIBLÍŽENÍ PODLE PŘÍSTROJŮ APPROACH PROCEDURE

PŘIBLÍŽENÍ PODLE PŘÍSTROJŮ APPROACH PROCEDURE PŘIBLÍŽENÍ PODLE PŘÍSTROJŮ APPROACH PROCEDURE Markéta Čapková 1 Anotace: Příspěvek se zabývá postupy přiblížení podle přístrojů v letecké dopravě. Součástí příspěvku jsou obecné charakteristiky jednotlivých

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008 Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ VOŠ a SŠS Vysoké Mýto leden 2008 METODY MĚŘENÍ DÉLEK PŘÍMÉ (měřidlo klademe přímo do měřené

Více

1. Rozdělení kmitočtového pásma

1. Rozdělení kmitočtového pásma Příloha č. 22/11.2004 pro kmitočtové pásmo 87,5 146 MHz k plánu využití kmitočtového spektra Plánem využití kmitočtového spektra, zveřejněným v částce 12/2001 Telekomunikačního věstníku ze dne 17. prosince

Více

DPZ10 Radar, lidar. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava

DPZ10 Radar, lidar. Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava DPZ10 Radar, lidar Doc. Dr. Ing. Jiří Horák Institut geoinformatiky VŠB-TU Ostrava RADAR SRTM Shuttle Radar Topography Mission. Endeavour, 2000 Dobrovolný Hlavní anténa v nákladovém prostoru, 2. na stožáru

Více

Modelování blízkého pole soustavy dipólů

Modelování blízkého pole soustavy dipólů 1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento

Více

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218

KINEMATIKA. 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost. Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 KINEMATIKA 18. ROVNOMĚRNÝ POHYB PO KRUŽNICI III. Úhlová rychlost Mgr. Jana Oslancová VY_32_INOVACE_F1r0218 Úkol 1: Roztřiď do dvou sloupců, které veličiny, popisující pohyb, jsou u všech bodů otáčejícího

Více

ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168

ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168 ČÁST I DÍL 4 - HLAVA 5 PŘEDPIS L 8168 HLAVA 5 ÚSEK KONEČNÉHO PŘIBLÍŽENÍ 5.1 VŠEOBECNĚ 5.1.1 Účel Toto je úsek, kde se provádí vyrovnání do směru a klesání na přistání. Konečné přiblížení může být provedeno

Více

DIPLOMOVÁ PRÁCE DAVID HAROK. ŽILINSKÁ UNIVERZITA V ŽILINĚ Elektrotechnická fakulta Katedra telekomunikací a multimédií. Studijní obor: TELEKOMUNIKACE

DIPLOMOVÁ PRÁCE DAVID HAROK. ŽILINSKÁ UNIVERZITA V ŽILINĚ Elektrotechnická fakulta Katedra telekomunikací a multimédií. Studijní obor: TELEKOMUNIKACE Navržení optimální frekvence vysílacího pásma navigačních prostředků letecké dopravy v souvislosti s výstavbou nové paralelní vzletové a přistávací dráhy na letišti Praha-Ruzyně DIPLOMOVÁ PRÁCE DAVID HAROK

Více

Univerzita Pardubice Dopravní fakulta Jana Pernera

Univerzita Pardubice Dopravní fakulta Jana Pernera Univerzita Pardubice Dopravní fakulta Jana Pernera Zavádění systémů přesného přístrojového přiblížení na bázi GPS Bc. Aleš Svoboda Diplomová práce 2010 Prohlašuji: Tuto práci jsem vypracoval samostatně.

Více

Historie sledování EOP (rotace)

Historie sledování EOP (rotace) Historie sledování EOP (rotace) 1895 IAG > ILS, 7 ZT na 39 s.š., stejné hvězdy, stejné přístroje. 1962 IPMS (Mizusawa, JPN), až 80 přístrojů. FK4, různé metody, různé přístroje, i jižní polokoule. 1921

Více

Měření délek. Přímé a nepřímé měření délek

Měření délek. Přímé a nepřímé měření délek Měření délek Přímé a nepřímé měření délek Délkou rozumíme vzdálenost mezi dvěma body vyjádřenou v délkových jednotkách - vodorovné délky - šikmé délky Pro další účely se délky redukují do nulového horizontu

Více

Letadlové radiolokátory MO. SRD Bezdrátové místní sítě Letadlové radiolokátory MO ISM MEZIDRUŽICOVÁ POHYBLIVÁ RADIOLOKAČNÍ

Letadlové radiolokátory MO. SRD Bezdrátové místní sítě Letadlové radiolokátory MO ISM MEZIDRUŽICOVÁ POHYBLIVÁ RADIOLOKAČNÍ 59,3 61 Letadlové radiolokátory Bezdrátové místní sítě Letadlové radiolokátory 61 62 SRD Bezdrátové místní sítě Letadlové radiolokátory ISM SRD Bezdrátové místní sítě Letadlové radiolokátory ISM 62 64

Více

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole

Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole Fyzika 1 - rámcové příklady Kinematika a dynamika hmotného bodu, gravitační pole 1. Určete skalární a vektorový součin dvou obecných vektorů AA a BB a popište, jak závisí výsledky těchto součinů na úhlu

Více

Poznámka: UV, rentgenové a gamma záření se pro bezdrátovou komunikaci nepoužívají především pro svou škodlivost na lidské zdraví.

Poznámka: UV, rentgenové a gamma záření se pro bezdrátovou komunikaci nepoužívají především pro svou škodlivost na lidské zdraví. BEZDRÁTOVÉ SÍTĚ Bezdrátová síť 1 je typ počítačové sítě, ve které je spojení mezi jednotlivými zařízeními realizováno prostřednictvím elektromagnetických (rádiových) vln nejčastěji ve frekvenčním pásmu

Více

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na

Příklad 3 (25 bodů) Jakou rychlost musí mít difrakčním úhlu 120? -částice, abychom pozorovali difrakční maximum od rovin d hkl = 0,82 Å na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na

plochy oddělí. Dále určete vzdálenost d mezi místem jeho dopadu na Přijímací zkouška z fyziky 01 - Nav. Mgr. - varianta A Příklad 1 (5 bodů) Koule o poloměru R=10 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční rychlostí bod o hmotností

Více

ZÁKLADNÍ PARAMETRY GYROSKOPU

ZÁKLADNÍ PARAMETRY GYROSKOPU ZÁKLADNÍ PARAMETRY GYROSKOPU v Vektor obvodové rchlosti Moment hbnosti r Hlavní osa otáčení Vektor úhlové rchlosti SLEDOVÁNÍ OTÁČENÍ ZEMĚKOULE POMOCÍ GYROSKOPU t hlavní osa t = 0 rovník Groskop je na rovníku,

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník SOUŘADNICOVÉ SOUSTAVY VE FOTOGRAMMETRII SOUŘADNICOVÉ SOUSTAVY VE FTM hlavní souřadnicové soustavy systém snímkových souřadnic systém modelových

Více

frekvence f (Hz) perioda T = 1/f (s)

frekvence f (Hz) perioda T = 1/f (s) 1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu

Více

Vyčkávání. CZ-ADIR (Michal Vorel) Pondělí, 09 Duben :39

Vyčkávání. CZ-ADIR (Michal Vorel) Pondělí, 09 Duben :39 Vyčkávání je část letu, které slouží k dočasnému zdržení daného letadla v určitém prostoru. Vyčkávání (někdy velmi laicky nazýváno "kroužení") - anglicky "holding" je předem stanovený postup, během něhož

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

HLAVA 3 PŘEDPIS L 10/I

HLAVA 3 PŘEDPIS L 10/I HLAVA 3 PŘEDPIS L 10/I HLAVA 3 - SPECIFIKACE RADIONAVIGAČNÍCH ZAŘÍZENÍ Poznámka: Specifikace týkající se umístění a konstrukce zařízení a instalací v provozních prostorech, určené ke snížení nebezpečí

Více

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy

Ing. Jiří Fejfar, Ph.D. GNSS. Globální navigační satelitní systémy Ing. Jiří Fejfar, Ph.D. GNSS Globální navigační satelitní systémy Kapitola 1: Globální navigační systémy (Geostacionární) satelity strana 2 Kapitola 1: Globální navigační systémy Složky GNSS Kosmická složka

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

ÚŘAD PRO CIVILNÍ LETECTVÍ

ÚŘAD PRO CIVILNÍ LETECTVÍ ÚŘAD PRO CIVILNÍ LETECTVÍ Letiště Ruzyně 160 08 PRAHA 6 Sp. zn.: 14/730/0008/ŘLP/01/14 Č. j.: 970-14-701 V Praze dne 7. 3. 2014 VEŘEJNÁ VYHLÁŠKA NÁVRH OPATŘENÍ OBECNÉ POVAHY Úřad pro civilní letectví jako

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Radio v civilním letectví (airliners + GA) Brmlab 5.3.2015

Radio v civilním letectví (airliners + GA) Brmlab 5.3.2015 Radio v civilním letectví (airliners + GA) Brmlab 5.3.2015 Historie první vysílání air/ground - 1910 (Horton, Culver, USA) první zaznamenané telegrafní vysílání - 1911, Lt. Paul W. Beck, USA (James McCurdy,

Více

DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN

DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN DEFINICE ZÁKLADNÍCH LETOVÝCH A PILOTÁŽNĚ NAVIGAČNÍCH VELIČIN y y g v H y x x v vodorovná rovina H z z z x g vodorovná rovina vztažné úrovně Z J V S z g MĚŘENÍ VÝŠKY LETU DEFINICE VÝŠEK METODY MĚŘENÍ VÝŠEKY

Více

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer

Laboratorní úloha č. 2 Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon. Max Šauer Laboratorní úloha č. Vzájemná induktivní vazba dvou kruhových vzduchových cívek - Faradayův indukční zákon Max Šauer 14. prosince 003 Obsah 1 Popis úlohy Úkol měření 3 Postup měření 4 Teoretický rozbor

Více

VŠB-TU Ostrava Referát do předmětu GIS Zpracoval: Petr Heinz DIGITÁLNÍ FOTOGRAMMETRIE

VŠB-TU Ostrava Referát do předmětu GIS Zpracoval: Petr Heinz DIGITÁLNÍ FOTOGRAMMETRIE VŠB-TU Ostrava Referát do předmětu GIS Zpracoval: Petr Heinz DIGITÁLNÍ FOTOGRAMMETRIE Obsah Úvod do fotogrammetrie Základy fotogrammetrie Rozdělení fotogrammetrie Letecká fotogrammetrie Úvod do fotogrammetrie

Více

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen.

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen. Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. 3. URČOV OVÁNÍ VÝŠEK metody Trigonometrická metoda

Více

DRUHY PROVOZU A ŠÍŘENÍ VLN

DRUHY PROVOZU A ŠÍŘENÍ VLN Radioklub OK2KOJ při VUT v Brně: Kurz operátorů 1 DRUHY PROVOZU A ŠÍŘENÍ VLN Kurz operátorů Radioklub OK2KOJ při VUT v Brně 2016/2017 Radioklub OK2KOJ při VUT v Brně: Kurz operátorů 2 Amplitudová modulace

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ LETECKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AEROSPACE ENGINEERING MOŽNOSTI VYUŽITÍ ADS-B PRO ŘÍZENÍ

Více

C velitel pobřežní plavby // Navigace

C velitel pobřežní plavby // Navigace C velitel pobřežní plavby // Navigace 1. Na obrázku ukažte osu Země, póly, poledník (co to je nultý poledník), rovník, rovnoběžku. Definujte zeměpisnou šířku a zeměpisnou délku a kde je na mapě odečítáme.

Více

ZÁKLADNÍ POJMY. Historie, současnost a budoucnost lokalizace a navigace P r e z e n t a c e 1

ZÁKLADNÍ POJMY. Historie, současnost a budoucnost lokalizace a navigace P r e z e n t a c e 1 I N O V A C E B A K A L Á Ř S K Ý C H A M A G I S T E R S K Ý C H S T U D I J N Í C H O B O R Ů N A H O R N I C K O - G E O L O G I C K É FA K U LT Ě V Š B - T U O Historie, současnost a budoucnost lokalizace

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Výcviková dokumentace IR(A)/SE

Výcviková dokumentace IR(A)/SE Výcviková dokumentace IR(A)/SE Jméno a příjmení: Výcvik zahájen: Výcvik ukončen: Osobní údaje Jméno a příjmení: Adresa: Datum narození: Číslo průkazu totožnosti: Telefon: E-mail: Průkaz způsobilosti: číslo:

Více

HLAVA 3 PŘEDPIS L 10/I

HLAVA 3 PŘEDPIS L 10/I HLAVA 3 PŘEDPIS L 10/I 3.1.2.7 V místech, kde na opačných koncích jedné RWY jsou instalovány dva samostatné systémy ILS, musí být zajištěno vzájemné blokování činnosti kurzových majáků tak, aby byl vždy

Více

Z hlediska ONLINE létání tento postup platí, pokud je na letišti přítomen lokální AFIS, například LKSZ_I_TWR.

Z hlediska ONLINE létání tento postup platí, pokud je na letišti přítomen lokální AFIS, například LKSZ_I_TWR. Letištní okruh je typicky podlouhlý obdélník, ve středu jehož delší strany je umístěna vzletová a přistávácí dráha. Přesný tvar okruhu stanovuje mapa letiště, směr okruhu je dán dráhou v používání, což

Více

ABSTRAKT KLÍČOVÁ SLOVA ABSTRACT KEY WORDS

ABSTRAKT KLÍČOVÁ SLOVA ABSTRACT KEY WORDS ABSTRAKT Práce se zabývá problematikou využití prostředků satelitní navigace a odvozených technologií v oblasti přesných přístrojových přiblížení letounů v civilní letecké dopravě. Rozebrány jsou různé

Více

PŘÍRUČKA PRO VÝCVIK IR(A)

PŘÍRUČKA PRO VÝCVIK IR(A) Příručky pro výcvik pilotů letounů v souladu s JAA JAR FCL1 PŘÍRUČKA PRO VÝCVIK IR(A) modulový Vydáno: 1. prosinec 2002 Poslední aktualizace : R5 8. duben 2008 Schválil: ÚCL č.j. : 16.612/02-311 Rozdělovník:

Více

Žádost o udělení individuálního oprávnění k využívání rádiových kmitočtů

Žádost o udělení individuálního oprávnění k využívání rádiových kmitočtů Sídlo Trvalý pobyt, Jednu možnost označit křížkem Jednu možnost označit křížkem ČESKÝ TELEKOMUNIKAČNÍ ÚŘAD se sídlem Sokolovská 219, Praha 9 poštovní přihrádka 02, 225 02 Praha 025 Žádost o udělení individuálního

Více

Návrh. VYHLÁŠKA ze dne ,

Návrh. VYHLÁŠKA ze dne , Návrh VYHLÁŠKA ze dne... 2016, kterou se mění vyhláška Ministerstva dopravy a spojů č. 108/1997 Sb., kterou se provádí zákon č. 49/1997 Sb., o civilním letectví a o změně a doplnění zákona č. 455/1991

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

(2) Omezený průkaz radiotelefonisty letecké pohyblivé služby - OFL ( 2 písm. b) vyhlášky)

(2) Omezený průkaz radiotelefonisty letecké pohyblivé služby - OFL ( 2 písm. b) vyhlášky) (2) Omezený průkaz radiotelefonisty letecké pohyblivé služby - OFL ( 2 písm. b) vyhlášky) a) radiokomunikační předpisy: 1. zajištění účelného využívání rádiových kmitočtů a správu rádiového spektra vykonává

Více

Problematika rušení meteorologických radarů ČHMÚ

Problematika rušení meteorologických radarů ČHMÚ Problematika rušení meteorologických radarů ČHMÚ Ondřej Fibich, Petr Novák (zdrojová prezentace) Český Hydrometeorologický ústav, oddělení radarových měření Meteorologické radary využití - detekce srážkové

Více

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A

Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 2012, varianta A Přijímací zkouška pro nav. magister. studium, obor učitelství F-M, 1, varianta A Příklad 1 (5 bodů) Koule o poloměru R1 cm leží na vodorovné rovině. Z jejího nejvyššího bodu vypustíme s nulovou počáteční

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více