při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. jsou dvakrát, třikrát, n-krát delší."

Transkript

1 EF1: Dva cyklisté Lenka jede rychlostí v1 = 10 m/s, Petr rychlostí v2 = 12 m/s, tedy v2 > v1, délka uzavřené trasy L = 1200 m. Když vyrazí cyklisté opačnými směry, potom pro čas setkání t platí v1 t + v2 t = L, pokud jedou stejným směrem v2 t v1 t = L. a) Při jízdě opačným směrem se poprvé setkají v čase L/(v2 + v1) = 1200/( ) s = 54,5 s, při jízdě stejným směrem v čase L/(v2 v1) = 1200/(12 10) s = 600 s = 10 min. b) Pro druhé setkání je na pravé straně rovnic 2L, pro další 3L, pro n-té nl. Doby pro setkání jsou dvakrát, třikrát, n-krát delší. c) Pohyby obou cyklistů zaznamenáme do grafu s(t); mějme na paměti, že poté, co daný cyklista dospěje do cíle, tj. na konec jednoho kola, je současně na začátku dalšího kola. To se projeví tak, že v daném okamžiku je cyklista na obou místech na konci i na začátku, Jízda opačným směrem

2 Jízda stejným směrem EF2: Rychlík vyjíždí Maximální rychlost vlaku v = 72 km/h = 20 m/s. Úlohu budeme řešit postupně. a) Načrtneme graf v(t), kde je znázorněn úsek zrychlování rychlíku, rovnoměrný pohyb, zpomalování a zastavení vlaku, doba stání před semaforem, znovu rozjíždění a rovnoměrný pohyb včetně průjezdu následující stanicí. b) Doby pohybu v jednotlivých úsecích: t1 = 60 s, t2 = ( )/20 s = 80 s, t3 =90 s, t4 = 150 s (vlak stojí před semaforem), t5 = 60 s, t6 = 2000/20 s = 100 s, celkem t = t1 + t2 + t3 + t4 + t5 + t6 = 540 s. c) Úseky jízdy: s1 = v t1/2 = 20 60/2 = 600 m, s2 = ( ) m = 1600 m, s3 = v t3/2 = 20 90/2 = 900 m, s4 = 0 m, s5 = v t5/2 = 20 60/2 = s1 = 600 m, s6 = 2000 m, celkem 5700 m. d) Přesnější graf pohybu. EF3: Na trase Berlín Vídeň a zpět a) Jízdní trasy se poněkud liší podle toho, kudy se pohybují zejména ve Vídni. b) K výpočtu průměrných rychlostí (včetně čekání ve stanicích) nutno znát vždy celkovou dráhu a celkovou dobu jízdy viz tabulka. c) Znázorníme v grafickém záznamu s(t) viz obrázek. d) Je vhodné se seznámit s uvedenou webovskou stránkou a využívat ji v praktickém životě.

3 Vlak Berlín Praha a zpět Praha Vídeň a zpět Berlín Vídeň a zpět EN477 s = ( ) km s = 804 km Metropol t = (24 + 0,45 19,42) h s = 407 km t = (24 + 6,13 19,42) h t = 5,03 h t = (6,13 0,62) h t = 10,71 h v = 78,9 km/h t = 5,51 h v = 75,0 km/h v = 73,9 km/h EC173 s = ( ) km s = ( ) km s = ( ) km Vindobona s = 420 km s = 817 km t = (13,45 8,60) h t = (18,38 13,65) h t = (18,38 8,60) h t = 4,85 h t = 4,73 h t = 9,78 h v = 81,9 km/h v = 88,8 km/h v = 83,5 km/h EC177 s = (403 6) km s = ( ) km s = (801 6) km Johannes s = 398 km s = 795 km Brahms t = (17,45 12,60) h t = (22,07 17,65) h t = (22,07 12,60) h t = 4,85 h t = 4,42 h t = 9,47 h v = 81,9 km/h v = 90,0 km/h v = 83,9 km/h D406 s = ( ) km s = (418 11) km s = (815 11) km Chopin s = 407 km s = 804 km t = (8,90 3,55) h t = (24 + 3,37 22,38) h t = (24 + 8,90 22,38) h t = 5,35 h t = 4,99 h t = 10,62 h v = 74,2 km/h v = 81,56 km/h v = 75,7 km/h s = ( ) km s = 398 km s = 795 km Carl Maria von t = (10,35 5,83) h t = (15,33 5,83) h Weber t = (15,33 10,52) h t = 4,52 h t = 9,50 h t = 4,81 h v = 88,1 km/h v = 83,7 km/h EC378 v = 82,5 km/h EC172 s = ( ) km s = ( ) km s = ( ) km Vindobona s = 420 km s = 817 km t = (19,33 14,52) h t = (14,35 9,53) h t = (19,33 9,53) h t = 4,81 h t = 4,82 h t = 9,80 h v = 82,5 km/h v = 87,1 km/h v = 83,4 km/h

4 EF4: Cyklista jede z kopce (1) Jde o dvě na sebe navazující úlohy 4 a 5; v prvním případě neuvažujeme odporovou sílu, s níž působí na cyklistu vzduch, ve druhém případě ji nemůžeme zanedbat. První řešení (úloha 4) dospívá k nereálným výsledkům, druhá (úloha 5) odpovídá více skutečnosti. a) Obrázek je jednoduchý a vede ke znázornění sil, působících na cyklistu při jízdě. b) Síla, působící na cyklistu, je rovna F = m g p = ( ,12) N = 90 N. c) Změna polohové energie ΔEp = m g h. d) Změnou polohové energie se zvětší energie pohybová. Ze zákona zachování energie pro rychlost cyklisty platí v 2 g h 2 g p l Poté, co cyklista urazí vzdálenost l = 500 m, dosáhne okamžité rychlosti 34,6 m/s = 125 km/h, poté, co urazí 800 m, dosáhne rychlostí 44 m/s = 158 km/h; obě rychlosti jsou nepravděpodobné. EF5: Cyklista jede z kopce (2) Výsledná síla, která působí na cyklistu, je rovna F = m g p k v2, tedy její velikost závisí na okamžité rychlosti cyklisty. V krajním případě může tato síla dosáhnout nulové hodnoty, takže se dále pohybuje rovnoměrným pohybem. a) Pro okamžitou rychlost 5 m/s vychází výsledná síla F = ( ,12 0,30 52) N = = 82,5 N.

5 b) Pro okamžitou rychlost 15 m/s vychází výsledná síla F = ( ,12 0,30 152) N = = 22,5 N. c) Mezní rychlost, při které se výsledná síla rovná nule F = 0, tj. m g p = k v2, je 17,3 m/s= = 62,4 km/h. d) Pro jízdu po rovině s okamžitým výkonem P při okamžité rychlosti značené v platí P = F v = k v2 v = k v3, odkud hodnota mezní rychlosti je 17,1 m/s = 61,6 km/h. EF6: Spotřeba benzínu Vyjdeme ze vztahu pro odporovou sílu F = k v2. a) Mezní hodnoty odporové síly při rychlostech 15 m/s až 40 m/s: 124 N, 880 N, sestrojíme graf F(v). b) Práce, potřebná k překonání odporové síly na dráze s = 100 km = m je W = F s = = k v2 s. Objem spotřebovaného benzínu o výhřevnosti H = 32 MJ/l při účinnosti spalování η = 0,2 pak vychází V W 0, v 2 0,00859v 2 n H 0, Spotřeba benzínu při daných rychlostech je 5,37 litru, 9,53 litru a 13,75 litru na trase 100 km. c) Po zlepšení technických parametrů vozidla se spotřeba sníží na 3,9 litru, popř. 6,9 litru či 10,0 litru na trase 100 km.

6 EF7: Atmosféra se ohřívá Nejprve provedeme odhad hmotnosti atmosféry. a) Pro poloměr Země RZ = m vychází povrch kulové plochy S = 4π RZ2 5, m2. Atmosférický tlak asi 100 kpa je způsoben gravitačními účinky Země na vzdušný obal; potom m = p S / g = 5, kg, což odpovídá údajům z tabulek. b) Teplo potřebné pro ohřátí atmosféry o 1 C je rovno Q1 = m c Δt = (5, ) J = = 5, J, o 2 C činí Q2 = 10, J. c) Sluneční záření při úplném pohlcení má na hranici atmosféry výkon 1370 W/m2. Uvažme plochu disku o poloměru rovném poloměru Země, potom celkový výkon dopadajícího záření na plochu S2 = π RZ2 = 1, m2 je P = 1, W. Kdyby bylo možno využít celého tepla k ohřátí zemské atmosféry, potom by to trvalo dobu Q1/P = s, tj. asi 8,3 h. Zahřívání atmosféry však není tak jednoduché, ohřívá se vždy jen na přivrácené části, část záření dopadne až na povrch Země aj. V celkové dlouhodobé bilanci se udržuje střední hodnota teploty přibližně stálá. Teplo způsobené pohlcením slunečního záření je zdrojem pro mnoho jevů, které probíhají na povrchu Země. EF8: Ledová kra a) Objem ledu je V = 6,5 ha 30 cm = m 2 0,3 m = 1, m3, hmotnost ledu m = (910 1,95 104) kg = 17, kg = tun. b) Na roztátí ledu je třeba teplo Q = (17, ) J = 5, J, ovšem v případě, že teplota tajícího ledu bude 0 C. Jinak je třeba přidat teplo k ohřátí ledu na teplotu tání. c) K roztátí by bylo třeba asi Q/( ) kg teplé vody o teplotě 70 C, tj m3. To by představovalo zvýšení hladiny vody v rybníce asi o 32 cm za předpokladu, že se nezvětší rozlitím vody jeho plocha. EF9: Pohyb těles kolem Země a) Kruhová dráha Měsíce má velikost s1 = 2π R1 = 2 3, km = 2, km, oběžná doba T1 = 27,32 dne = 2, s. Oběžná rychlost Měsíce na trajektorii kolem Země má střední hodnotu v1 = s1/t1 = 1,023 km/s; protože je však trajektorie eliptická, mění se mezi hodnotami 1,082 km/s v perigeu a 0,968 km/s v apogeu. b) Analogicky s2 = 2π R2 = 2 3, km = 2, km, T2 = 23 h 56 min 04 s = = s. Stacionární družice Země dosahuje rychlosti v1 = s2/t2 = 3,067 km/s, umisťuje

7 se nad rovníkem ve výšce ( ) km = km nad povrchem Země. c) Určíme poměr r3/t2 pro pohyb Měsíce 1, v jednotkách SI, pro pohyb družice stacionární 1, , což je vzhledem k přesnosti údajů prakticky stejné. EF10: Práce s fotomapou Dané místo se nalézá na Václavském náměstí v Praze, v blízkosti sochy sv. Václava na koni. a) Poledníky mají délku asi km, na 1 připadá 111,2 km, na 1 připadá asi 1853 m, na 1 asi 30,9 m, na 0,01 asi 0,31 m, tj. 1 foot. b,c) Vypočteme rozdíl zeměpisných šířek a s využitím faktu, na 1 připadá 111,2 km, určíme hledanou vzdálenost. Tu ověříme funkcí měření. Měření na 50 04,8, tj. 50,08 je délka rovnoběžky km, na 1 připadá 71,35 km, pak na 1 asi 1190 m, na 1 asi 19,8 m. d) Všechny poledníky mají tvar elipsy s delší poloosou rovnou rovníkovému poloměru a kratší poloosou rovnou polárnímu poloměru, což je pro všechny poledníky stejné. Rovnoběžky vzniknou jako řez Zemí rovinami rovnoběžnými s rovinou rovníku, a proto mají od rovníku k pólu zmenšující se poloměry. EF11: Kolumbova první výprava Příslušná místa najdeme v atlase nebo na GoogleEarth3D, kde použijeme funkci měření. Dobu plavby určíme z údajů, předpokládáme, že lodě se nikde nadlouho nezastavovaly (v opačném případě vyjde rychlost větší). a) Z přístavu Palos na Kanárské ostrovy je to asi 1370 km, z Kanárských ostrovů na Bahamské souostroví asi 5730 km, celkem lodě ujely 7100 km (což činí jen 3834 námořních mil, neboť 1 nmi = 1,852 km) za 69 dní, ujely tedy průměrně denně přes 100 km. b) Cesta trvala 28 dní v srpnu, 30 dni v září a 11 dní v říjnu, tj. celkem 69 dní, ujely tedy denně 55,6 námořních mil. c) Průměrná rychlost plujících lodí byla 2,32 uzlů, tj. 4,3 km/h. Rychlost závisela na rychlosti mořského proudění, na rychlosti a směru větru, neboť šlo o plachetnice. EF12: Výzkum pohybu kuličky po nakloněné rovině Sestavíme si experimentální soupravu podle návodu nebo soupravu podobnou, která nám

8 umožní změřit dráhu kuličky při pohybu po nakloněné rovině a příslušnou dobu pohybu. FO52EF13: Automobil a životní prostředí a) Podle zadaných údajů je spotřeba l za jeden rok. b) Podle zadaných údajů se roční emise pohybují v rozmezí 2,6 3,68 tun. c) Odpovídající práce při účinnosti 0,22 bude W = ( ) ,22 J = = 6,4 14,0 GJ. d) Protože platí W = F s, pro střední hodnotu tahové síly máme F = W/s = N e) Člověk produkuje za rok 3720 kg oxidu uhličitého. FO52EF14: Průřez měděného drátu Smotek měděného drátu o délce 350 m má odpor 20 Ω, který jsme zjistili měřením ohmmetrem. Víme, že měděný drát o délce 1 m a průřezu 1 mm2 má odpor R1 = 0,017 Ω. Odpor drátu je přímo úměrný délce drátu a nepřímo jeho průřezu. a) Pokud by měl drát průřez 1 mm2, byl by při délce 350 m jeho odpor 350 0,017 Ω = = 5,95 Ω. Protože je jeho odpor větší, musí mít menší průřez v poměru 5,95/20 0,3 mm2. Ze vztahu pro obsah kruhu S = π d2/4 zjistíme odpovídající poloměr d 0,6 mm. b) Objem drátu V = S l = 0, m2 350 m m3. Pomocí hustoty pak dopočteme hledanou hmotnost m = V ρ = S l ρ = 0,935 kg. c) Pro odpor drátu o průřezu S a délce l platí R = R1 l/s, kde R1 = 0,017 Ω je odpor drátu o délce 1 m a průřezu 1 mm2; pro hmotnost podle předchozí části m = S l ρ. Vyloučení průřezu S z obou vztahů vychází l m R R1 FO52EF15: Experimentální výzkum natékání a vytékání kapaliny z nádoby Práci provedeme nejlépe v koupelně nebo na zahradě či na balkóně, přesně podle návodu. Zvolte vhodnou plastovou lahev. Navrhněte si soupravu, údaje zapisujte do vhodné tabulky.

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Člověk a energie domácí projekt pro 2. ročník

Člověk a energie domácí projekt pro 2. ročník Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Člověk a energie domácí projekt pro 2. ročník Člověk a energie domácí projekt pro

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára)

1) Skupenství fáze, forma, stav. 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) SKUPENSTVÍ 1) Skupenství fáze, forma, stav 2) 3 druhy skupenství (1 látky): pevné (led) kapalné (voda) plynné (vodní pára) 3) Pevné látky nemění tvar, objem částice blízko sebe, pohybují se kolem urč.

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

FYZIKA. Newtonovy zákony. 7. ročník

FYZIKA. Newtonovy zákony. 7. ročník FYZIKA Newtonovy zákony 7. ročník říjen 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443 Projekt

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Vlhký vzduch a jeho stav

Vlhký vzduch a jeho stav Vlhký vzduch a jeho stav Příklad 3 Teplota vlhkého vzduchu je t = 22 C a jeho měrná vlhkost je x = 13, 5 g kg 1 a entalpii sv Určete jeho relativní vlhkost Řešení Vyjdeme ze vztahu pro měrnou vlhkost nenasyceného

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Stručný návod k obsluze programu Vlaková dynamika verze 3.4

Stručný návod k obsluze programu Vlaková dynamika verze 3.4 Stručný návod k obsluze programu Vlaková dynamika verze 3.4 Program pracuje pod Windows 2000, spouští se příkazem Dynamika.exe resp. příslušnou ikonou na pracovní ploše a obsluhuje se pomocí dále popsaných

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Fyzikální korespondenční škola 2. dopis: experimentální úloha

Fyzikální korespondenční škola 2. dopis: experimentální úloha Fyzikální korespondenční škola 2. dopis: experimentální úloha Uzávěrka druhého kola FKŠ je 28. 2. 2010 Kde udělal Aristotelés chybu? Aristotelés, jeden z největších učenců starověku, z jehož knih vycházela

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Mobilní tak, abychom neškodili klimatu!

Mobilní tak, abychom neškodili klimatu! Klimabündnis grenzenlos >>> Mobilní tak, abychom neškodili klimatu! Doprava je pro klima problémem číslo 1 Tento projekt je spolufinancován Evropskou unií z programu INTERREG IIIA pro přeshraniční spolupráci.

Více

Slovní úlohy na lineární rovnici

Slovní úlohy na lineární rovnici Slovní úlohy na lineární rovnici Slovní úlohy je výhodné rozdělit na několik typů a určit nejsnadnější postup jejich řešení. Je vhodné označit v dané úloze jednu veličinu jako neznámou ( většinou tu, na

Více

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru:

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: KATEGORIE D Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: Jméno a příjmení: Kategorie: D Třída: Školní rok: Škola: I. kolo: Vyučující fyziky: Posudek: Okres: Posuzovali: Úloha

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Tělesa sluneční soustavy

Tělesa sluneční soustavy Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661

Více

Spalovací vzduch a větrání pro plynové spotřebiče typu B

Spalovací vzduch a větrání pro plynové spotřebiče typu B Spalovací vzduch a větrání pro plynové spotřebiče typu B Datum: 1.2.2010 Autor: Ing. Vladimír Valenta Recenzent: Doc. Ing. Karel Papež, CSc. U plynových spotřebičů, což jsou většinou teplovodní kotle a

Více

Pracovní list číslo 01

Pracovní list číslo 01 Pracovní list číslo 01 Měření délky Jak se nazývá základní jednotka délky? Jaká délková měřidla používáme k měření rozměrů a) knihy b) okenní tabule c) třídy.. d) obvodu svého pasu.. Jaké díly a násobky

Více

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Teplotní roztažnost. Teorie. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost Teorie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Teplotní roztažnost souvisí se změnou rozměru zahřívaného těles Při zahřívání se tělesa zvětšují, při ochlazování

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou.

1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 1 Pracovní úkoly 1. Určete závislost povrchového napětí σ na objemové koncentraci c roztoku etylalkoholu ve vodě odtrhávací metodou. 2. Sestrojte graf této závislosti. 2 Teoretický úvod 2.1 Povrchové napětí

Více

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída

MATEMATIKA NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! 5. třída MATEMATIKA 5. třída NEOTVÍREJ, DOKUD NEDOSTANEŠ POKYN OD ZADÁVAJÍCÍHO! JMÉNO TŘÍDA ČÍSLO ŽÁKA AŽ ZAHÁJÍŠ PRÁCI, NEZAPOMEŇ: www.scio.cz, s.r.o. Pobřežní 34, 186 00 Praha 8 tel.: 234 705 555 fax: 234 705

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

7. Slovní úlohy na lineární rovnice

7. Slovní úlohy na lineární rovnice @070 7. Slovní úlohy na lineární rovnice Slovní úlohy jsou často postrachem studentů. Jenţe Všechno to, co se učí mimo slovní úlohy, jsou postupy, jak se dopracovat k řešení nějaké sestavené (ne)rovnice.

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max. 25 b) B I: (max. 20 b) B

Více

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu

Šablona č. 01. 09 ZEMĚPIS. Výstupní test ze zeměpisu Šablona č. 01. 09 ZEMĚPIS Výstupní test ze zeměpisu Anotace: Výstupní test je vhodný pro závěrečné zhodnocení celoroční práce v zeměpise. Autor: Ing. Ivana Přikrylová Očekávaný výstup: Žáci píší formou

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

2.5.17 Dvojitá trojčlenka

2.5.17 Dvojitá trojčlenka 2..1 Dvojitá trojčlenka Předpoklady: 020 Př. 1: Čerpadlo o výkonu 1, kw vyčerpá ze sklepa vodu za hodiny. Za jak dlouho by vodu ze sklepa vyčerpalo čerpadlo o výkonu 2,2 kw? Čím výkonnější čerpadlo, tím

Více

1.1.6 Rovnoměrný pohyb I

1.1.6 Rovnoměrný pohyb I 1.1.6 Rovnoměrný pohyb I Předpoklady: 1105 Kolem nás se nepohybují jenom šneci. Existuje mnoho různých druhů pohybu. Začneme od nejjednoduššího druhu pohybu rovnoměrného pohybu. Př. 1: Uveď příklady rovnoměrných

Více

Název DUM: Změny skupenství v příkladech

Název DUM: Změny skupenství v příkladech Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Změny skupenství

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009

Význam vody pro globální chlazení. Globe Processes Model. Verze pro účastníky semináře Cloud 3.12.2009 Význam vody pro globální chlazení Globe Processes Model Verze pro účastníky semináře Cloud 3.12.2009 Jaromír Horák, jaromir.horak@equica.cz, 2009 Role vody v globálních (klimatických) změnách Dík vodě

Více

VÝPOČET TOLEROVANÝCH ROZMĚRŮ

VÝPOČET TOLEROVANÝCH ROZMĚRŮ VÝPOČET TOLEROVANÝCH ROZMĚRŮ OBSAH ZADÁNÍ ÚLOHY... 2 ŘEŠENÍ ÚLOHY... 2 Uložení s vůlí.... 2 Výpočet:...4 Uložení s přesahem.... 5 Výpočet:...5 Uložení přechodné... 6 Výpočet:...7 ŘEŠENÍ ÚLOHY... 8 LITERATURA...

Více

KDE VZÍT PLYNY? Václav Piskač, Brno 2014

KDE VZÍT PLYNY? Václav Piskač, Brno 2014 KDE VZÍT PLYNY? Václav Piskač, Brno 2014 Tento článek se zabývá možnostmi, jak pro školní experimenty s plyny získat něco jiného než vzduch. V dalším budu předpokládat, že nemáte kamarády ve výzkumném

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_Z678HO_13_02_07

Více

Úlohy pro 56. ročník fyzikální olympiády, kategorie E, F

Úlohy pro 56. ročník fyzikální olympiády, kategorie E, F Úlohy pro 56. ročník fyzikální olympiády, kategorie E, F Z následujících úloh vyřešte ty, které vám doporučí váš vyučující fyziky. To samozřejmě neznamená, že se nemůžete pustit do řešení všech úloh. V

Více

Co můžete jako řidič udělat pro životní prostředí?

Co můžete jako řidič udělat pro životní prostředí? Co můžete jako řidič udělat pro životní prostředí? Některá zajímavá fakta Některá zajímavá fakta V porovnání s dobou před 30-ti lety jsme nyní v oblasti spotřeby paliva o 20-30% hospodárnější. Proto produkujeme

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

R5.1 Vodorovný vrh. y A

R5.1 Vodorovný vrh. y A Fyzika pro střední školy I 20 R5 G R A V I T A Č N Í P O L E Včlánku5.3jsmeuvedli,ževrhyjsousloženépohybyvtíhovémpoliZemě, které mají dvě složky: rovnoměrný přímočarý pohyb a volný pád. Podle směru obou

Více

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ

pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ pokus č.1 URČUJEME TÍHOVÉ ZRYCHLENÍ -tíhové zrychlení je cca 9,81 m.s ² -určuje se z doby kyvu matematického kyvadla (dlouhý závěs nulové hmotnosti s hmotným bodem na konci) T= π. (l/g) takže g=π².l/(t²)

Více

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014

MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 ILUSTRAČNÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2014 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací

Více

Laboratorní práce č. 2: Určení povrchového napětí kapaliny

Laboratorní práce č. 2: Určení povrchového napětí kapaliny Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 2: Určení povrchového napětí kapaliny G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice

Více

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně

Přípravný kurz k přijímacím zkouškám. Obecná a anorganická chemie. RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně Přípravný kurz k přijímacím zkouškám Obecná a anorganická chemie RNDr. Lukáš Richtera, Ph.D. Ústav chemie materiálů Fakulta chemická VUT v Brně část III. - 23. 3. 2013 Hmotnostní koncentrace udává se jako

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ..07/..00/.759 Název DUM: Tření Název sady DUM

Více

3.2.4 Huygensův princip, odraz vlnění

3.2.4 Huygensův princip, odraz vlnění ..4 Huygensův princip, odraz vlnění Předpoklady: 0 Izotropní prostředí: prostředí, které je ve všech bodech a směrech stejné vlnění se všech směrech šíří stejnou rychlostí ve všech směrech urazí za čas

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

VÝSTRAŽNÉ ZNAČKY 2 PŘÍKAZOVÉ ZNAČKY 3 INFORMATIVNÍ ZNAČKY PROVOZNÍ 4 INFORMATIVNÍ ZNAČKY SMĚROVÉ 7 INFORMATIVNÍ ZNAČKY JINÉ 8 DODATKOVÉ TABULKY 10

VÝSTRAŽNÉ ZNAČKY 2 PŘÍKAZOVÉ ZNAČKY 3 INFORMATIVNÍ ZNAČKY PROVOZNÍ 4 INFORMATIVNÍ ZNAČKY SMĚROVÉ 7 INFORMATIVNÍ ZNAČKY JINÉ 8 DODATKOVÉ TABULKY 10 VÝSTRAŽNÉ ZNAČKY 2 PŘÍKAZOVÉ ZNAČKY 3 DOPRAVNÍ ZNAČKY Doplněk elektronické publikace pro výuku dopravních značek s příslušnými právními předpisy, výkladovým komentářem a vyobrazeními; zahrnuje změny ve

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. 26.2.2010 Mgr.

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje. 26.2.2010 Mgr. Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 26.2.2010 Mgr. Petra Siřínková ABIOTICKÉ PODMÍNKY ŽIVOTA SLUNEČNÍ ZÁŘENÍ TEPLO VZDUCH VODA PŮDA SLUNEČNÍ

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

n =, kde n je počet podlaží. ψ 0 je redukční

n =, kde n je počet podlaží. ψ 0 je redukční Užitné zatížení Činnost lidí Je nahrazeno plošným a bodovým zatížením. Referenční hodnota 1 rok s pravděpodobností překročení 0,98 Zatížení stropů Velikost zatížení je dána v závislosti na druhu stavby

Více

Matematicko-fyzikální model vozidla

Matematicko-fyzikální model vozidla 20. února 2012 Obsah 1 2 Reprezentace trasy Řízení vozidla Motivace Motivace Simulátor se snaží přibĺıžit charakteristikám vozu Škoda Octavia Combi 2.0TDI Ověření funkce regulátoru EcoDrive Fyzikální základ

Více

Tisková konference při příležitosti zahájení programu 14. listopadu 2007, Praha T. Voříšek, J. Krivošík, SEVEn, o.p.s.

Tisková konference při příležitosti zahájení programu 14. listopadu 2007, Praha T. Voříšek, J. Krivošík, SEVEn, o.p.s. Obsah programu GreenPlan Tisková konference při příležitosti zahájení programu 14. listopadu 2007, Praha T. Voříšek, J. Krivošík, SEVEn, o.p.s. Obsah prezentace 1. Východiska přípravy obsahu programu GreenPlan

Více

Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině

Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině Jméno: Třída: Spolupracovali: Datum: Teplota: Tlak: Vlhkost: Pracovní list č. Téma: Kinematika kuličky na nakloněné rovině Teoretický úvod: Rovnoměrně zrychlený pohyb Rovnoměrně zrychlený pohyb je pohyb,

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami

NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami NAŠE ZEMĚ VE VESMÍRU Zamysli se nad těmito otázkami Jak se nazývá soustava, ve které se nachází planeta Země? Sluneční soustava Která kosmická tělesa tvoří sluneční soustavu? Slunce, planety, družice,

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Slovní úlohy: Pohyb. a) Stejným směrem

Slovní úlohy: Pohyb. a) Stejným směrem Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více