I. FYZIKÁLNÍ VELIČINY A JEDNOTKY

Rozměr: px
Začít zobrazení ze stránky:

Download "I. FYZIKÁLNÍ VELIČINY A JEDNOTKY"

Transkript

1 I. FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličina charakterizuje fyzikální vlastnosti, stavy fyzikálních objektů a jejich změny, které lze změřit. Její hodnotu lze vyjádřit číselnou hodnotou a jednotkou (smluvené značky). Jednotky fyzikálních veličin Smluvené značky. Používání je upraveno zákonem (resp. normou), používají se zákonné měřicí jednotky vycházející z mezinárodní soustavy SI. Dělísena: Základní jednotky metr, kilogram, sekunda, ampér, kelvin, mol, kandela Odvozené jednotky - Jsou určené definičním vztahem příslušné veličiny. - Některé mají vlastní název: N, Pa,... -Patřísemitzv.doplňkové jednotky (radian, steradian). Základní a odvozené jednotky se dohromady nazývají hlavní jednotky. násobné a dílčí jednotky vytvořené z hlavních pomocí předpon: mili, mikro, nano, piko, femto, atto kilo, mega, giga, tera, peta, exa deci, centi, deka, hekto vedlejší jednotky (minuta, hodina, den; úhlový stupeň,minuta,vteřina; astronomická jednotka, parsek; VA, ev, C a další)

2 Rozměrová zkouška (nepovinné) Vyjádříme-li fyzikální veličinu pomocí jiných veličin, pak po dosazení jednotek a úpravách musíme správnou jednotku. Veličiny skalární a vektorové skalární veličiny se chovají jako čísla. Mají velikost a jednotku. hmotnost, čas,... vektorové veličiny se chovají jako šipky. Mají velikost, směr (a orientaci) a jednotku. rychlost, síla,... Práce s vektory (matematické okénko) Sčítání (skládání) Odčítání (= přičítání opačného vektoru) Násobení číslem (a dělení číslem) Skalární a vektorový součin Převody jednotek Používání násobných a dílčích jednotek Používání mocnin deseti

3 II. KINEMATIKA HMOTNÉHO BODU Hmotný bod Nemá rozměr, má hmotnost. Nahrazujeme jím těleso v případech, že rozměry tělesa můžeme zanedbat. Vztažná soustava Soustava souřadnic, v níž je dáno měření času. Polohový vektor (značíme r ) Vektor spojující počátek vztažné soustavy s aktuální polohou hmotného bodu. Relativnost pohybu Těleso může být v jedné vztažné soustavě v klidu a v jiné v pohybu. Absolutní klid neexistuje. Trajektorie Trajektoriejemyšlenákřivka,kterouhmotnýbodopisuje při svém pohybu. Dráha (zn. s, jednotka m metr) Dráha je skalární fyzikální veličina definovaná jako délka trajektorie. Značí se s, její jednotkou je metr. Okamžitá rychlost a okamžité zrychlení Vektorové (!) fyzikální veličiny definované vztahy v = Δ r, Δt Δt 0 [v] =m s 1 a = Δ v, Δt Δt 0 [a] =m s 2 Symbol Δt 0 znamená, že čas Δt je velmi malý.

4 Průměrná rychlost Skalární (!) fyzikální veličina definovaná jako v p = s t Rozdělení pohybů = celková dráha celkový čas [v p ]=m s 1 podle velikosti rychlosti rovnoměrný velikost rychlosti je stálá nerovnoměrný velikost rychlosti se mění podle tvaru trajektorie přímočarý trajektorie je přímka křivočarý trajektorií není přímka (ale křivka) Rovnoměrný pohyb Vzorečky a = 0 v = konst. s = s 0 + vt (zrychlení je nulové) (rychlost se nemění) s 0 je počáteční dráha Grafy závislostí zrychlení, rychlosti a dráhy na čase

5 Rovnoměrně zrychlený pohyb Vzorečky a = konst. (zrychlení je stálé) v = v 0 + at v 0 je počáteční rychlost s = s 0 + v 0 t at2 s 0 je počáteční dráha Grafy závislostí zrychlení, rychlosti a dráhy na čase Rovnoměrně zpomalený pohyb Vzorečky a = konst. (zrychlení je stálé) v = v 0 at v 0 je počáteční rychlost s = s 0 + v 0 t 1 2 at2 s 0 je počáteční dráha Grafy závislostí zrychlení, rychlosti a dráhy na čase

6 Volný pád Vzorečky a = g v = gt h = h gt2 g je tzv. tíhové zrychlení g =9,. 81 m s 2 h je aktuální výška nad zemí h 0 je výška, z níž těleso padá Užitečné jsou také dva následující vzorce: v = 2gH H je výška, o níž těleso spadlo t d = 2h0 t g d je čas dopadu na zem Grafy závislostí zrychlení, rychlost, dráhy a výšky na čase (je to de facto rovnoměrně zrychlený pohyb) Princip superpozice (princip skládání pohybů) Jestliže těleso koná více pohybů najednou, pak jeho výsledná poloha je taková, jako by tyto pohyby vykonalo po sobě a to v libovolném pořadí. Příklady: loďka na řece, vržený kámen,... Skládají se posunutí, rychlost i zrychlení.

7 Oblouková míra stupně vs. radiány 360 odpovídá 2π radiánům. Pokud α je úhel ve stupních, pak se přepočítá na radiány podle vztahu α = 2π 360 {α } [rad] Orientovaný úhel Jestliže jedno rameno úhlu je pevné a druhé obíhá po kružnici, pak může oběhnout i více než 2π radiánů (resp. 360 ). Může obíhat i záporně. Křivočarý pohyb POZOR! Při pohybu po kružnici, resp. jakémokoliv křivočarém pohybu, se vektor rychlosti vždy mění, neboť se mění i směr pohybu. To znamená, že pohyb po kružnici má vždy nenulové zrychlení! Bývá výhodné celkové zrychlení a rozdělit do dvou složek: (a) tečné zrychlení a t (má směr tečny k trajektorii) (b) normálové zrychlení a n (směr normály k trajektorii) Tečné zrychlení určuje změnu velikosti rychlosti. Normálové zrychlení určuje změnu směru rychlosti (jak moc se trajektorie zakřivuje). Velikost celkového zrychlení se spočítá jako a = a 2 t + a 2 n.

8 Pohyb po kružnici Pro pohyb po kružnici používáme kromě obvyklých kinematických veličin (dráha, rychlost, zrychlení) ještě tři jiné fyzikální veličiny. Úhlová dráha (značíme ϕ, jednotka rad) Orientovaný úhel, který hmotný bod po kružnici oběhne. Úhlová rychlost (značíme ω, jednotka rad. s 1 ) Je definovaná vztahem ω = Δϕ Δt, Δt 0 změna úhlové dráhy úhlová rychlost = kratinký čas Úhlové zrychlení (značíme ε, jednotka rad. s 2 ) Je definované vztahem ε = Δω Δt, Δt 0 změna úhlové rychlosti úhlové zrychlení = kratinký čas Mezi dráhou, rychlostí a zrychlením a jejich úhlovými obdobami platí vztahy s = ϕr v = ωr r je poloměr kružnice a t = εr a t je tečné zrychlení a d = v2 r = ω2 r a d je normálové zrychlení Při pohybu po kružnici se obvykle normálové složce zrychlení říká dostředivé zrychlení (když se nakreslí jako šipka, míří do středu kružnice) a značí se a d.

9 Rovnoměrný pohyb po kružnici Vzorečky ε = 0 ω = konst. ϕ = ϕ 0 + ωt a t = 0 a d = v2 r = ω2 r úhlové zrychlení je nulové úhlová rychlost je konstantní ϕ 0 je počáteční úhlová dráha tečné zrychlení je nulové dostředivé zrychlení je nenulové, ale konstantní Zopakujeme ještě vztahy pro dráhu a rychlost, ať je vše pěkně pohromadě: s = ϕr v = ωr r zde značí poloměr kružnice

10 III. DYNAMIKA HMOTNÉHO BODU Síla (značka F, jednotka N Newton) Síla je vektorová fyzikální veličina, která charakterizuje vzájemné působení těles. Tělesa na sebe mohou působit dotykem nebo i na dálku prostřednictvím (silového) pole. Účinky síly mohou být pohybové nebo deformační. Dynamika se zabývá pohybovými účinky sil. O vztahu síly a pohybu hovoří tři Newtonovy zákony. 1. Newtonův zákon (Zákon setrvačnosti) Těleso setrvává v klidu nebo rovnoměrném přímočarém pohybu, pokud není přinuceno vnějšími silami svůj pohybový stav změnit. 2. Newtonův zákon (Zákon síly) Velikost zrychlení hmotného bodu je přímo úměrná velikosti výslednice působících sil a nepřímo úměrná jeho hmotnosti. Směr zrychlení je totožný se směrem výslednice sil. F F = m a, a = m Z tohoto zákona plyne, že jednotka Newton má v jednotkách SI rozměr [N] =kg m s 2 3. Newtonův zákon (Zákon akce a reakce) Působí-li jedno těleso na druhé silou (akce), pak působí také druhé těleso na první silou stejně velikou a opačného směru (reakce). Tyto síly vznikají a zanikají současně.

11 Inerciální vztažná soustava Vztažná soustava, kde platí první Newtonův zákon. Např. vztažná soustava spojená se zemí, se stálicemi Každá vztažná soustava, která se vůči nějaké inerciální vztažné soustavě pohybuje rovnoměrně přímočaře,je také inerciální. Hybnost (značka p, jednotka kg.m.s 1 ) Hybnost je vektorová fyzikální veličina, je definovaná vztahem p = m v. Lehko se vypočte, že F = m a = m Δ v Δt = Δ p Δt. Působení síly na těleso se tedy projeví změnou hybnosti tělesa. Proto říkáme, že hybnost charakterizuje pohybový stav tělesa. Veličině I = F Δt se někdy říká impuls síly. Je roven změně hybnosti tělesa. Izolovaná soustava těles (hmotných bodů) Soustavu těles (či hmotných bodů) nazveme izolovanou, jestliže výslednice vnějších sil působících na soustavu je nulová. Zákon zachování hybnosti Celková hybnost izolované soustavy těles je konstantní.

12 Druhy sil Gravitační síla (značíme F g ) Gravitační silou na sebe navzájem působí každá dvě tělesa. Bavit se o ní budeme později. Tíhová síla (značíme F G ) Tíhovou silou působí Země na objekty v blízkosti zemského povrchu. Směr a orientace tíhové síly je (víceméně) do středu Země. Platí pro ni vztah F G = m g, kde g je tzv. tíhové zrychlení, jehož velikost je přibližně g =9,. 81 m.s 2. Způsobuje volný pád těles. Smykové tření (značíme F t ) Třecí síla vzniká na styčné ploše tělesa a podložky a je důsledkem reakce podložky R na tíhovou sílu F G. Na vodorovné ploše (ne však už třeba na nakloněné rovině) je reakce podložky stejně velká jako tíhová síla a pro velikost třecí síly platí F t = f R = f F G = fmg, kde f je tzv. koeficient tření, jehož velikost závisí na drsnosti styčných ploch. Maximální je v klidu (tzv. klidové tření), při pohybu bývá o něco menší. Třecí síla vždy působí proti směru pohybu tělesa. Valivý odpor (značíme F v ) Vzniká jako důsledek mírné deformace valícího se tělesa v místě dotyku s podložkou. Působí vždy proti směru pohybu tělesa, její velikost se vypočte jako F v = ξ R r,

13 kde R je velikost reakce podložky a r je rameno této síly (poloměr valícího se tělesa). Hodnotě ξ se říká součinitel valivého odporu. Bývá velmi malý. Síly při pohybu po kružnici Protože pohyb po kružnici je pohyb se zrychlením, musí na hmotný bod působit síla, která toto zrychlení způsobuje. Síle, která způsobuje dostředivé zrychlení a d,seříká síla dostředivá. Značíse F d a pro její velikost platí F d = ma d = m v2 r = mω2 r. Její směr a orientace míří do středu kružnice jsou totožné se směrem a orientací dostředivého zrychlení. Neinerciální vztažné soustavy Neinerciální soustavy jsou ty, ve kterých neplatí první Newtonův zákon. Vztažná soustava je neinerciální, pokud se vůči libovolné inerciální soustavě pohybuje s nenulovým zrychlením a. Třetí Newtonův zákon platí i v neinerciálních soustavách beze změny. První a druhý Newtonův zákon platí také, ovšem s jistou modifikací. K silám působícím na těleso je nutné přidat tzv. zdánlivé síly. Jejich výslednici obvykle značíme F.Platípronivztah F = m a, kde a je zrychlení neinerciální soustavy vůči libovolné inerciální soustavě. To znamená, že její orientace je opačná než orientace vektoru zrychlení soustavy.

14 Tyto síly nazýváme je zdánlivé, protože reálně neexistují. Jsou to formální matematické objekty. Pouze spravují výpočty, aby výsledek odpovídal realitě. V praxi jsou důležité dva typy neinerciálních soustav: Zrychlující soustava Vztažná soustava, pohybující se vůči povrchu země rovnoměrně zrychleným přímočarým pohybem s konstantním zrychlením a. Zdánlivá síla, působící proti směru pohybu soustavy, se v tomto případě nazývá setrvačná síla. Př. člověk v rozjíždějícím se/brzdícím metru Otáčející se soustava Vztažná soustava spjatá s objektem, pohybujícím se rovnoměrným pohybem po kružnici s konstantním dostředivým zrychlením a d. Zdánlivá síla se v tomto případě nazývá odstředivá síla. Je stejně velká jako síla dostředivá, má ale opačný směr (od středu). POZOR! Nejde o síly akce a reakce!! Př. člověk na kolotoči

15 IV. PRÁCE, VÝKON, ENERGIE Mechanická práce (značka W, jednotka J Joule) Mechanická práce je skalární fyzikální veličina, vyjadřující působení síly na těleso po dráze. Jestliže na těleso působí stálá síla F po dráze s a tato síla svírá se směrem pohybu úhel α, je mechanická práce W definovaná vztahem W = Fscos α, [J] =Nm = kg m 2 s 2 F α s Jestliže působící síla má směr a orientaci shodnou s pohybem tělesa (α =0 ), pak W = Fs. Jestliže působící síla má směr kolmý na pohyb tělesa (α =90 ), pak žádnou práci nekoná, W =0J. Jestliže působící síla má směr a orientaci proti pohybu tělesa (180 α>90 ), pak práce vyjde záporná W<0. V takovém případě říkáme, že se práce spotřebovává. Grafické určení práce Jestliže působící síla má směr a orientaci shodnou s pohybem tělesa, potom vykonaná práce je rovna ploše pod grafem závislosti síly na dráze. Platí to i tehdy, když je síla proměnná. F F W s W s

16 Výkon (značka P, jednotka W watt) Výkon je skalární fyzikální veličina, která určuje, jak rychle se koná práce. Je definován vztahem P = W [watt] = J t s = Nm = kg m 2 s 3 s Výkon dělíme na průměrný (celková práce/celkový čas) okamžitý (práce/kratinký čas) Příkon (značka P 0, jednotka W watt) Příkon je skalární fyzikální veličina definovaná jako podíl E t energie dodané stroji a času, za který byla energie dodána. Účinnost (značka η, bezrozměrná veličina) Účinnost stroje je skalární fyzikální veličina, kterou definujeme vztahy η = P P 0 = W W 0, kde P je výkon a P 0 příkon stroje, respektive W je práce strojem vykonaná a W 0 energie stroji na tuto práci dodaná. Platí 0 η<1. Občas se účinnost vyjadřuje v procentech, potom η = P P 0 100% (0% η<100%) Stroje nikdy nemohou pracovat se stoprocentní účinností, vždycky nastanou nějaké ztráty. Hypotetický stroj pracující se stoprocentní účinností se nazývá perpetuum mobile (II. druhu).

17 Mechanická energie Jestliže vnější síly vykonaly na tělese nějakou práci, projeví se to změnou veličiny, které se říká mechanická energie. Ta se dělí na dva druhy, podle účinku vykonané práce. kinetická energie (značka E k, jednotka J) Jestliže je těleso volné (nepůsobí na něj žádné síly), pak se vykonaná práce projeví změnou jeho rychlosti. Platí W = Fs = 1 2 Fat2 = 1 F 2 a a2 t 2 = 1 2 mv2. Kinetickou energii tělesa tak definujeme vztahem E k = 1 2 mv2, kde m je hmotnost a v rychlost tělesa. potenciální energie (značka E p, jednotka J) Jestliže se těleso nachází v silovém poli, pak se práce může spotřebovat na překonání těchto sil. zvolím si místo O, kde je potenciální energie nulová potenciální energii v libovolném místě prostoru A definuji jako práci, kterou vykoná síla při přemístění z místa A do místa s nulovou potenciální energií O. Pojem má smysl, pouze pokud práce nezávisí na tvaru trajektorie tělesa mezi místy A a O. Síly vytvářející takové pole nazýváme konzervativní. Mechanická energie tělesa E je pak určena jako součet jeho kinetické energie a potenciální energie E = E k + E p

18 Druhy potenciální energie Typ potenciální energie je odvislý od síly, k níž náleží. Následující výčet není zdaleka úplný. tíhová potenciální energie V homogenním tíhovém poli Země hovoříme o tíhové potenciální energii má těleso o hmotnosti m ve výšce h nad povrchem tíhovou potenciální energii E p = mgh gravitační potenciální energie V radiálním gravitačním poli hmotného bodu o hmotnosti M má hmotný bod o hmotnosti m, vevzdálenosti r, gravitační potenciální energii E p = κ mm r potenciální energie pružnosti Na pružině o tuhosti k při výchylce x z rovnovážné polohy má těleso potenciální energii pružnosti E p = 1 2 kx2 tlaková potenciální energie Při proudění kapaliny v potrubí má množství kapaliny oobjemuv pod tlakem p potenciální energii tlakovou E p = pv potenciální energie elektrického pole Náboj q v elektrickém poli jiného náboje Q má potenciální energii elektrickou E p = 1 Qq 4πε 0 r

19 Zákon zachování mechanické energie Celková mechanická energie izolované soustavy těles se při mechanických dějích nemění. Může se ale měnit jedna forma energie v jinou nebo přecházet z jednoho tělesa na jiné. Příklady: padající míč v tíhovém poli (mechanická energie se zachovává po dobu pádu) (hybnost míče se mění) pružná srážka (mechanická energie se zachovává i při srážce) (zachovává se též celková hybnost) nepružná srážka (mechanická energie se při srážce nezachovává) (celková hybnost soustavy se zachovává) Princip zachování energie Obecně platí, že v izolované soustavě se celková energie zachovává. Může se měnit jedna forma energie v jinou, může přecházet z jednoho tělesa na jiné. Do celkové energie však musíme zahrnout i jiné typy energie než mechanickou (např. vnitřní energii, elektromagnetickou, energii jaderných sil...)

20 V. MECHANIKA TUHÉHO TĚLESA Tuhé těleso Těleso, které se působením sil nedeformuje = jeho tvar ani objem se účinkem libovolně velkých sil nemění. (Deformační účinky sil na těleso jsou zanedbatelné.) Pohyb tuhého tělesa posuvný (translační) otáčivý (rotační) Moment síly (značka M, jednotka Nm) Moment síly je vektorová fyzikální veličina vyjadřující otáčivý účinek síly. Její velikost je definována vztahem M = Fr, kde F je velikost působící síly a r je vzdálenost tzv. rameno síly = vzdálenost osy otáčení od přímky určené směrem působící síly. Působiště vektoru momentu síly je v průsečíku roviny působení síly a osy otáčení. Směr a orientace momentu síly je určena podle pravidla pravé ruky = zahnuté prsty ukazují smysl otáčení, vztyčený palec určuje směr a orientaci vektoru momentu síly. r F Příklad: Moment síly na páce

21 Skládání sil Pro libovolný počet sil působících na těleso vždy existuje jedna síla, tzv. výslednice sil (určená svou velikostí, působištěm, směrem a orientací), která má stejný posuvný i otáčivý účinek na těleso. Nepovinně: jak se taková výslednice určí na páce Dvojice sil Dvojici sil tvoří dvě stejně velké síly opačného směru. Moment dvojice sil se spočte jako M = Fd. Závisí jen na vzájemné vzdálenosti sil d a jejich velikosti F. Nezávisí na vzdálenosti od osy otáčení! Podmínky rovnováhy Tuhé těleso je v rovnovážné poloze, jestliže výslednice sil působících na těleso je nulová a těleso je v klidu. F 1 + F F n = o. Tuhé těleso otáčivé kolem nehybné osy je v rovnováze, jestliže výslednice momentů působících sil vůči této ose je nulová a těleso je v klidu. (Momentová věta) M 1 + M M n = o. Rovnovážné polohy stabilní při malém vychýlení se těleso samo vrací do rovnovážné polohy. labilní při malém vychýlení se těleso dále samo vzdaluje od rovnovážné polohy. volná (indiferentní) po vychýlení těleso zůstane v nové rovnovážné poloze.

22 Těžiště tuhého tělesa Těžištěm tuhého tělesa nazýváme působiště tíhové síly. Kinetická energie tuhého tělesa Kinetická energie tuhého tělesa přísluší jednak posuvné složce pohybu, jednak rotační složce pohybu. Kinetická energie posuvného pohybu tělesa o hmotnosti m a rychlosti v se spočte E kp = 1 2 mv2 Kinetická energie rotačního pohybu o úhlové rychlosti ω se spočte E kp = 1 2 Jω2 kde J je veličina zvaná moment setrvačnosti. Moment setrvačnosti (značka J, jednotka kg. m 2 ) Moment setrvačnosti je skalární fyzikální veličina. Definovaná je takto: Pro hmotný bod o hmotnosti m je moment setrvačnosti tohoto bodu vzhledem k ose otáčení ve vzdálenosti r dán vztahem J = mr 2. Pro soustavu hmotných bodů m 1,...,m n od osy otáčení ve vzdálenostech r 1,...,r n je moment setrvačnosti této soustavy vzhledem k této ose otáčení J = m 1 r m n r 2 n.

23 Posčítáním přes všechny hmotné body lze určit moment setrvačnosti i pro některá homogenní tělesa. moment setrvačnosti homogenní koule vzhledem k ose procházející jejím středem J = 2 5 mr2 moment setrvačnosti homogenního válce vzhledem k ose procházející jeho středem J = 1 2 mr2 Jednoduché stroje páka pevná kladka kladkostroj kolo na hřídeli Pohyb těles na nakloněné rovině (nep.) (a) Pohyb bez tření (kvádr, koule) (b) Pohyb s malým třením (kvádr) (c) Pohyb s velkým třením (kvádr, koule)

24 VI. GRAVITAČNÍ A TÍHOVÉ POLE Newtonův gravitační zákon Dvě tělesa o hmotnostech m 1,m 2 avzdálenostir na sebe vzájemně působí stejně velkými přitažlivými silami F g = κ m 1m 2 r 2 gravitační konstanta κ =6, Nkg 2 m 2 Gravitační síla je vždy přitažlivá, má směr spojnice těžišť obou těles, pro obě tělesa má stejnou velikost, ale různé účinky Stejně velkou silou, jakou působí Země na kámen, působí také kámen na Zemi. Zatímco ale kámen velmi rychle padá, se Zemí to (obrazně řečeno) ani nehne. Gravitační zrychlení (značka a g, jednotka m.s 2 ) Gravitační síla F g udílí tělesu o hmotnosti m gravitační zrychlení F a g = g m. Intenzita gravitačního pole (zn. K, jedn. N.kg 1 ) Intenzita gravitačního pole je vektorová fyzikální veličina, definovaná v daném místě prostoru jako gravitační síla F g působící na těleso o hmotnosti 1 kg. Vypočte se K = F g m = a g a je tedy rovna gravitačnímu zrychlení tělesa.

25 Radiální (centrální) gravitační pole Gravitační pole hmotného bodu má charakter radiálního (centrálního) pole vektor intenzity míří vždy do hmotného bodu. Stejně vypadá aké pole vně homogenní koule (přibližně to odpovídá také gravitačnímu poli hvězd a planet). Pro velikost intenzity gravitačního pole hmotného bodu o hmotnosti M ve vzdálenosti r platí K = F g m = κ mm r 2 m = κm r. 2 Radiální gravitační pole hmotného bodu a homogenní koule Čím dále od středu, tím menší intenzita (síla) pole Siločáry Siločára je myšlená křivka, jejíž tečna má v každém jejím bodě směr působící síly. Říkává se, že hustota siločar je úměrná velikosti síly pole. Siločáry homogenního pole jsou rovnoběžné např. tíhové pole v blízkosti povrchu Země Siločáry radiálního pole míří jako paprsky ze slunce např. gravitační pole Země Ekvipotenciální plochy Jsou to plochy se stejnou potenciální energií. V každém místě jsou kolmé na siločáry pole.

26 Paprsky mířící do středu koule znázorňují siločáry radiálního pole. Soustředné kružnice znázorňují ekvipotenciální plochy radiálního pole. Potenciální energie v radiálním gravitačním poli E p = κ Mm r Práce v centrálním gravitačním poli W =ΔE p = E p1 E p2 Gravitační potenciál (značka ϕ g, jednotka J.kg 1 ) Gravitační potenciál ϕ g se definuje jako potenciální energie tělesa o hmotnosti 1 kg v daném místě prostoru. V radiálním gravitačním poli ve vzdálenosti r od centra platí ϕ g = E p m = κm r. Pohyby planet v centrálním gravitačním poli Slunce Řídí se třemi Keplerovými zákony: 1. Keplerův zákon Planety se pohybují po elipsách málo odlišných od kružnic. V jejich společném ohnisku je Slunce. 2. Keplerův zákon Obsahy ploch opsaných průvodičem planety za jednotku času jsou konstantní. 3. Keplerův zákon Podíl druhé mocniny oběžné doby planety a třetí mocniny hlavní poloosy oběžné dráhy je konstantní.

27 Pohyby těles v centrálním gravitačním poli (nep.) Druhý a třetí Keplerův zákon platí obecně pro jakákoli tělesa pohybující se v centrálním gravitačním poli, která obíhají po eliptických drahách. v 0 h R M Pohyby těles v centrálním gravitačním poli (obecně). V závislosti na velikosti rychlosti v 0 může nastat některý z šesti případů: (a) v 0 =0. Těleso spadne po přímce na Zem. (b) 0 <v 0 <v k. Těleso nemá dostatečnou rychlost na to, aby obíhalo. Během prvního (či některého dalšího) obletu spadne. (c) v 0 = v k. Těleso má kruhovou rychlost minimální rychlost na to, aby se udrželo na stabilní oběžné dráze, která je v tomto případě kruhová. Velikost této rychlosti lze odvodit z rovnosti gravitační a dostředivé síly F g = F d κ mm r 2 = m v2 k r v k = κm r. (d) v k <v 0 <v p. Těleso obíhá po stabilní eliptické oběžné dráze. (e) v 0 = v p. Těleso má únikovou rychlost minimální rychlost na to, aby uniklo ze sféry působení gravitačního pole. Velikost této rychlosti lze odvodit z rovnosti velikostí kinetické a potenciální energie E k = E p 1 2 mv2 p = κ mm 2κM v p = = v k 2. r r V tomto případě těleso uniká po parabolické dráze. (f) v p <v 0. V tomto případě těleso uniká po hyperbolické dráze. V případě, že jde o gravitační pole Země, se kruhové rychlosti říká také první kosmická rychlost a únikové rychlosti druhá kosmická rychlost.

28 Tíhová síla Tíhovou silou F G označujeme výslednici gravitační a odstředivé síly při povrchu země. F G = F g + F s Tíhové pole v blízkosti povrchu obvykle považujeme za homogenní pole. Pro tíhovou sílu a tíhovou potenciální energii platí F G = m g, E p = mgh, kde g je tíhové zrychlení, g =9,81m.s. 2. Normální tíhové zrychlení je dohodnutá konstanta g 0 = 9,80665 m.s 2. Je skoro přesně rovna hodnotě tíhového zrychlení na rovníku při hladině moře. Tíha (značka G, jednotka N newton) Tíha je vektorová fyzikální veličina, jejíž velikost, směr i orientace je rovna tíhové síle. Rozdíl je v tom, že tíhová síla působí v těžišti tělesa, zatímco tíha na styku tělesa s podložkou. Pohyby v tíhovém poli Jde o složení volného pádu a rovnoměrného přímočarého pohybu ve směru vzhůru, vodorovně nebo šikmo. Rozlišujeme volný pád vrh svisle vzhůru vodorovný vrh šikmý vrh Obvykle nás zajímá: nejvyšší výška h ačast h,kdy jí těleso dosáhne dálka d, do které těleso doletí doba letu t d tělesa

29 VII. MECHANIKA KAPALIN A PLYNŮ Tekutiny kapaliny (nestálý tvar, nestlačitelná, vytvoří hladinu) plyny (nestálý tvar, stlačitelný, vyplní nádobu) Ideální kapalina je dokonale tekutá i zcela nestlačitelná. Tlak (značka p, jednotka Pa pascal) Tlak je skalární fyzikální veličina, definovaná podílem působící síly F na plochu S. p = F S [Pa]= N m 2 = kg m 1 s 2 Síla vyvolaná tlakem tekutiny se nazývá tlaková síla. Pascalův zákon Tlak v kapalině vyvolaný vnější silou je ve všech místech kapaliny stejný. využívá se toho v hydraulických zařízeních (lis, nůžky) Hydrostatický tlak Tlak v kapalině vyvolaný tíhou samotné kapaliny se nazývá hydrostatický tlak. V kapalině hustoty ϱ vhloubce h má hodnotu p = hϱg. Přitom nezávisí na objemu či tvaru nádoby, ani plošném obsahu dna to se nazývá hydrostatické paradoxon. spojené nádoby měření tlaku (manometr = tlakoměr) otevřený/uzavřený kapalinový manometr kovový manometr

30 Archimedův zákon Těleso je z tekutiny vytlačováno stejnou silou, jako je objem jím vytlačené tekutiny. Vztlaková síla F vz se tedy spočte jako F vz = V ponořené ϱ tekutiny g. části tělesa V závislosti na hustotě tělesa ϱ a hustotě tekutiny ϱ k mohou pro těleso ponořené do tekutiny nastat tři případy 1) ϱ<ϱ k = těleso vyplave na povrch a plove 2) ϱ = ϱ k = těleso se v tekutině vznáší 3) ϱ>ϱ k = těleso klesá na dno karteziánek, hustoměry Atmosférický tlak Atmosférický tlak je tlakem vzduchu v daném místě. Počítá se složitěji, protože u vzduchu se s rostoucí výškou a měnící teplotou mění i jeho hustota. Normální atmosférický tlak p a = 1, Pa. Toricelliho pokus a rtuťový barometr Magdeburské polokoule Proudění kapalin a plynů Proudění je pohyb tekutiny, při kterém se částice tekutiny pohybují svým neuspořádaným pohybem a zároveň se posouvají ve směru proudění. Tekutina vždy proudí z místa vyššího tlaku do místa nižšího tlaku. Proudnice (proudová čára) je trajektorie pohybu jednotlivých částic při proudění kapalin. ustálené proudění (časová nezávislost veličin) neustálené proudění

31 Objemový průtok (značka Q v, jednotka m 3.s 1 ) Objemový průtok je skalární fyzikální veličina, která udává, jaký objem vody proteče daným průřezem S za jednotku času. Vypočte se jako Q v = V t = Ss = Sv, t kde v je rychlost proudící tekutiny. Rovnice kontinuity (ZZHm) Pro ustálené proudění tekutiny platí, že objemový průtok je všude konstantní. To se přepisuje do vztahu S 1 v 1 = S 2 v 2. Z toho vyplývá, že v užší trubici proudí voda rychleji ( zalévací zákon ). Potenciální tlaková energie Při ustáleném proudění v trubici o průřezu S působí na kapalinu tlaková síla, která ji nutí proudit. Této síle přísluší tlaková potenciální energie, pro kterou lze odvodit vztah E p = W = Fs = pss = pv. Bernoulliho rovnice (ZZE) Pro ustálené proudění tekutiny platí zákon zachování energie, kterému se (po dělení objemem) říká Bernoulliova rovnice a píše se ve tvaru 1 2 ϱv2 + p = konst. ϱ je hustota kap., v rychlost proudění a p tlak v kap. Z rovnice vyplývá, že v místě větší rychlosti proudění je v kapalině menší tlak = hydrodynamické paradoxon.

32 Výtok kapaliny z nádoby Jestliže voda vytéká otvorem z nádoby ve výšce h pod hladinou, pro rychlost výtoku platí Torricelliho vzorec v = 2gh. Proudění reálné kapaliny V reálné kapalině existuje vnitřní tření (charakterizuje jej veličina zvaná viskozita). Rozlišujeme dva typy proudění laminární turbulentní Při obtékání těles vzniká odporová síla. Při malých rychlostech je úměrná první mocnině rychlosti, při vyšších rychlostech druhé mocnině rychlosti. F o = 1 2 CSϱv2. (Newtonův vztah) Koeficient odporu C nabývá hodnot od cca 0, 03 do zhruba 1, 33 a závisí v zásadě na aerodynamičnosti tvaru tělesa. Fyzika létání Křídla mají vhodný tvar, aby jejich horní stranu okolní vzduch obtékal rychleji než spodní. Tak se vytváří přetlak (resp. aerodynamická síla), který letadlo drží ve vzduchu.

33 VIII. MOLEKULOVÁ FYZIKA Atomová hmotnostní jednotka m u Jedna dvanáctina klidové hmotnosti izotopu uhlíku 12. =1, kg m u 6 C Relativní atomová/molekulová hmotnost (zn. A r ) Podíl hmotnosti atomu/molekuly m 0 a atomové hmotnostní jednotky (udává se v tabulkách). A r = m 0 m u Avogadrova konstanta N A Počet atomů v 12g izotopu uhlíku 12 6 C. N A =6, mol 1. Látkové množství (zn. n, jednotka mol) Látkové množství je určeno podílem N počtu částic v látce a Avogadrovy konstanty N A. n = N N A Molární hmotnost (zn. M m, jedn. kg. mol 1 ) Molární hmotnost je hmotnost jednoho molu látky. M m = m n. Protože m n = mn A N = m. 0N A = A r m u N A = Ar 10 3 kg/mol je molární hmotnost v jednotkách g/mol přibližně rovna relativní molekulové hmotnosti. Molární objem V m = objem jednoho molu látky. 1

34 Molekulová fyzika Zkoumá vlastnosti látek na základě jejich vnitřní struktury a vzájemného působení částic v látce. Jejím základem je kinetická teorie látek, kterásepopsatmakro- skopický stav látky (teplotu, tlak,...) v souvislosti s pohybem částic v látce. Je postavena na třech experimentálně ověřených poznatcích: diskrétní struktura látek Každá látka se skládá z částic. Prostor, který látka zaujímá, není částicemi zcela vyplněn mezi částicemi jsou mezery. neustálý neuspořádaný (tepelný) pohyb částic v látce tlak plynu Brownův pohyb difuze osmóza částice látky na sebe vzájemně působí silami, které jsou na krátkou vzdálenost odpudivé a na větší vzdálenost přitažlivé sféra působení těchto sil je malá graf této závislosti, rovnovážná poloha částic Vnitřní energie Vnitřní energie látek se skládá zejména z kinetické energie částic v látce z potenciální energie vzájemného silového působení částic v látce pro rovnovážnou polohu částic vazebná energie 2

35 Modely skupenství látek Plyn velké vzdálenosti mezi částicemi (malá interakce) malá poteciální energie; vnitřní energie kinetická energie částic pohyb posuvný všemi směry, rotační, vibrační rychlost pohybu roste s teplotou snadno vyplní celou nádobu Pevná látka (krystalická) částice blízko sebe kmitají v rovnovážných polohách (uzlech mříže) stálý tvar a objem potenciální energie převažuje nad kinetickou Pevná látka (amorfní) struktura jen částečně uspořádána přechod mezi pevnými látkami a kapalinami lze je považovat za velmi viskózní kapaliny Kapaliny částice dále od sebe než v pevné látce částice kmitají kolem rovnovážných poloh, které se ale často mění (uspořádání na krátkou vzdálenost) potenciální energie je zhruba rovna kinetické tvar podle nádoby, stálý objem (skoro nestlačitelné), tekuté Plazma (plamen, blesk, polární záře,...) tvoříjiionty,elektronyineutrálníčástice vzniká při vysokých teplotách 3

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012

Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 Maturitní temata z fyziky pro 4.B, OkB ve školním roce 2011/2012 1. Kinematika pohybu hmotného bodu pojem hmotný bod, vztažná soustava, určení polohy, polohový vektor trajektorie, dráha, rychlost (okamžitá,

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Maturitní témata profilová část

Maturitní témata profilová část SEZNAM TÉMAT: Kinematika hmotného bodu mechanický pohyb, relativnost pohybu a klidu, vztažná soustava hmotný bod, trajektorie, dráha klasifikace pohybů průměrná a okamžitá rychlost rovnoměrný a rovnoměrně

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

Maturitní otázky z předmětu FYZIKA

Maturitní otázky z předmětu FYZIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu FYZIKA 1. Pohyby z hlediska kinematiky a jejich zákon Relativnost klidu a pohybu, klasifikace pohybů z hlediska

Více

Maturitní otázky z fyziky Vyučující: Třída: Školní rok:

Maturitní otázky z fyziky Vyučující: Třída: Školní rok: Maturitní otázky z fyziky Vyučující: Třída: Školní rok: 1) Trajektorie, dráha, dráha 2) Rychlost 3) Zrychlení 4) Intenzita 5) Práce, výkon 6) Energie 7) Částice a vlny; dualita 8) Síla 9) Náboj 10) Proudění,

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

Fyzika II mechanika zkouška 2014

Fyzika II mechanika zkouška 2014 Fyzika II mechanika zkouška 2014 Přirozené složky zrychlení Vztahy pro tečné, normálové a celkové zrychlení křivočarého pohybu, jejich odvození, aplikace (nakloněná rovina, bruslař, kruhový závěs apod.)

Více

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT,

1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, 1. ÚVOD 1.1 SOUSTAVA FYZIKÁLNÍCH VELIČIN, KONSTANT, JEDNOTEK A JEJICH PŘEVODŮ FYZIKÁLNÍ VELIČINY Fyzikálními veličinami charakterizujeme a popisujeme vlastnosti fyzikálních objektů parametry stavů, ve

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Látka a těleso. Hustota Hustota látky udává, jaká je hmotnost jednoho metru krychlového této látky. Značí se: ρ (ró) Jednotka: kg/m 3, g/cm 3

Látka a těleso. Hustota Hustota látky udává, jaká je hmotnost jednoho metru krychlového této látky. Značí se: ρ (ró) Jednotka: kg/m 3, g/cm 3 Látka a těleso Všechna tělesa kolem nás jsou vytvořena z různých druhů látek, např. okno ze skla, stůl ze dřeva atd. Látky se skládají z atomů, které jsou složeny z jádra (obsahuje protony a neutrony)

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY

MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY MINISTERSTVO ŠKOLSTVÍ MLÁDEŽE A TĚLOVÝCHOVY Schválilo Ministerstvo školství mládeže a tělovýchovy dne 15. července 2003, čj. 22 733/02-23 s platností od 1. září 2002 počínaje prvním ročníkem Učební osnova

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK Základními vlastnosti pevných látek jsou KRYSTALICKÉ A AMORFNÍ LÁTKY Jak vzniká pevná látka z kapaliny Krystalické látky se vyznačují uspořádáním Dělíme je na 2 základní

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Přehled otázek z fyziky pro 2.ročník

Přehled otázek z fyziky pro 2.ročník Přehled otázek z fyziky pro 2.ročník 1. Z jakých základních poznatků vychází teorie látek + důkazy. a) Látka kteréhokoli skupenství se skládá z částic molekul, atomů, iontů. b) Částice se v látce pohybují,

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

DYNAMIKA HMOTNÉHO BODU. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika DYNAMIKA HMOTNÉHO BODU Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Dynamika Obor mechaniky, který se zabývá příčinami změn pohybového stavu těles, případně jejich deformací dynamis = síla

Více

MATURITNÍ OKRUHY Z FYZIKY

MATURITNÍ OKRUHY Z FYZIKY MATURITNÍ OKRUHY Z FYZIKY 1.a) Kinematika hmotného bodu Hmotný bod, poloha hmotného bodu, vztažná soustava. Trajektorie a dráha, hm. bodu, průměrná a okamžitá rychlost, okamžité zrychlení. Klasifikace

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

TESTY Závěrečný test 2. ročník Skupina A

TESTY Závěrečný test 2. ročník Skupina A 1. Teplota tělesa se zvýšila o o C. Analogicky tomu lze říci, že se a) snížila o K. b) zvýšila o 93,15 K c) snížila o 53,15 K d) zvýšila o K. Částice v látce se pohybují a) neustáleným a uspořádaným pohybem

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

Elektřina a magnetizmus závěrečný test

Elektřina a magnetizmus závěrečný test DUM Základy přírodních věd DUM III/2-T3-20 Téma: závěrečný test Střední škola Rok: 2012 2013 Varianta: TEST - A Zpracoval: Mgr. Pavel Hrubý a Mgr. Josef Kormaník TEST Elektřina a magnetizmus závěrečný

Více

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

2. Molekulová stavba pevných látek

2. Molekulová stavba pevných látek 2. Molekulová stavba pevných látek 2.1 Vznik tuhého tělesa krystalizace Při přeměně kapaliny v tuhou látku vzniknou nejprve krystalizační jádra, v nichž nastává tuhnutí kapaliny. Ochlazování kapaliny se

Více

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu

Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud Elektrický proud v kovech Odpor vodiče, Ohmův zákon Kirchhoffovy zákony, Spojování rezistorů Práce a výkon elektrického proudu Elektrický proud v kovech Elektrický proud = usměrněný pohyb

Více

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

SÍLY A JEJICH VLASTNOSTI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda SÍLY A JEJICH VLASTNOSTI Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vzájemné působení těles Silové působení je vždy vzájemné! 1.Působení při dotyku 2.Působení na dálku prostřednictvím polí gravitační pole

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

Tématický celek - téma. Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah

Tématický celek - téma. Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah 6. ročník květen Stavba látek Stavba látek Elektrické vlastnosti látek Magnetické vlastnosti látek Laboratorní úloha: Určení hmotnosti tělesa podle rovnoramenných vah Magnetické vlastnosti látek Měření

Více

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

3.3 Kalorimetrie. stránka 51. nebo [C] = J K 1. nebo. [c] = J kg 1 K 1

3.3 Kalorimetrie. stránka 51. nebo [C] = J K 1. nebo. [c] = J kg 1 K 1 3.3 Kalorimetrie KALORIMETRIE: Část experimentální fyziky, která se zabývá měřením tepla při různých fyzikálních, chemických, popř. biologických dějích. TEPLO - Q: Veličina určená energií přijatou, popř.

Více

FYZIKA II Otázky ke zkoušce

FYZIKA II Otázky ke zkoušce FYZIKA II Otázky ke zkoušce 1. Formy fyzikálního pohybu. Hmotný bod, trajektorie, dráha, zákon pohybu, vztažná soustava. Pohyb hmotného bodu podél přímky: vektor posunutí, rychlost posunutí, okamžitá rychlost,

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Základy elektrotechniky - úvod

Základy elektrotechniky - úvod Elektrotechnika se zabývá výrobou, rozvodem a spotřebou elektrické energie včetně zařízení k těmto účelům používaným, dále sdělovacími a informačními technologiemi. Elektrotechnika je úzce spjata s matematikou

Více

FYZIKA Gymnázium Nový PORG. I. Cíle výuky. II. Nástroje a metody, kterými ověřujeme plnění cílů. III. Hodinová dotace

FYZIKA Gymnázium Nový PORG. I. Cíle výuky. II. Nástroje a metody, kterými ověřujeme plnění cílů. III. Hodinová dotace FYZIKA Gymnázium Nový PORG Fyziku vyučujeme na gymnáziu Nový PORG jako samostatný předmět od sekundy do sexty. Fyziku vyučujeme v češtině a rozvíjíme v ní a doplňujeme témata probíraná v rámci předmětu

Více

Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti"

Evropský sociální fond Praha a EU: Investujeme do vaší budoucnosti Střední škola umělecká a řemeslná Projekt Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Fyzika Obory nástavbového studia

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

2. Smykové tření a valivý odpor

2. Smykové tření a valivý odpor 1. Struktura pevných látek ANOTACE: Prezentace slouží k zopakování struktury a vlastností pevných látek. Materiál popisuje vlastnosti pevných látek, rozebírá strukturu krystalických látek, zabývá se pružnou

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů FYZIKA Gymnázium Nový PORG Fyziku vyučujeme na gymnáziu Nový PORG jako samostatný předmět od sekundy do sexty. Fyziku vyučujeme v češtině a rozvíjíme v ní a doplňujeme témata probíraná v rámci předmětu

Více

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid

Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky nepatří: a) asfalt b) křemík c) pryskyřice d) polvinylchlorid Mezi krystalické látky patří: a) grafit b) diamant c) jantar d) modrá skalice Mezi krystalické látky patří: a) rubín

Více

FYZIKA PORG Ostrava. I. Cíle výuky. II. Nástroje a metody, kterými ověřujeme plnění cílů. III. Hodinová dotace. IV. Osnovy

FYZIKA PORG Ostrava. I. Cíle výuky. II. Nástroje a metody, kterými ověřujeme plnění cílů. III. Hodinová dotace. IV. Osnovy FYZIKA PORG Ostrava Fyziku vyučujeme na gymnáziu PORG Ostrava jako samostatný předmět od sekundy do sexty. Fyziku vyučujeme v češtině a rozvíjíme v ní a doplňujeme témata probíraná v rámci předmětu Integrated

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

Tabulka 1. SI - základní jednotky

Tabulka 1. SI - základní jednotky 1 Veličina Jednotka Značka Rozměr délka metr m L hmotnost kilogram kg M čas sekunda s T elektrický proud ampér A I termodynamická teplota kelvin K Θ látkové množství mol mol N svítivost kandela cd J Tabulka

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektrostatika: Elektřina pro bakalářské obory Souvislost a analogie s mechanikou. Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, UK.LF Elektrostatika: Souvislost a analogie s mechanikou. Elektron

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Úvod do elektrokinetiky

Úvod do elektrokinetiky Úvod do elektrokinetiky Hlavní body - elektrokinetika Elektrické proudy pohyb nábojů Ohmův zákon, mikroskopický pohled Měrná vodivost σ izolanty, vodiče, polovodiče Elektrické zdroje napětí (a proudu)

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení

Více

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI?

FYZIKA na LF MU cvičná. 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? FYZIKA na LF MU cvičná 1. Který z následujících souborů jednotek neobsahuje jen základní nebo odvozené jednotky soustavy SI? A. kandela, sekunda, kilogram, joule B. metr, joule, kalorie, newton C. sekunda,

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Elektřina a magnetismus - elektrický náboj tělesa, elektrická síla, elektrické pole, kapacita vodiče - elektrický proud v látkách, zákony

Více

TÉMATA K OPAKOVÁNÍ LÁTKY Z FYZIKY školní rok 2008/2009

TÉMATA K OPAKOVÁNÍ LÁTKY Z FYZIKY školní rok 2008/2009 TÉMATA K OPAKOVÁNÍ LÁTKY Z FYZIKY školní rok 2008/2009 1. Fyzikální obraz světa Předmět a metody zkoumání fyziky, rozdělení fyziky podle různých hledisek, význam experimentu ve fyzice (fyzikální měření),

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Hmotnost atomu, molární množství. Atomová hmotnost

Hmotnost atomu, molární množství. Atomová hmotnost Hmotnost atomu, molární množství Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv atomové hmotnostní jednotky u: Dohodou bylo stanoveno, že atomová hmotnostní

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 2 Termika 2.1Teplota, teplotní roztažnost látek 2.2 Teplo a práce, přeměny vnitřní energie tělesa 2.3 Tepelné motory 2.4 Struktura pevných

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Prototyp kilogramu. Průřez prototypu metru

Prototyp kilogramu. Průřez prototypu metru Prototyp kilogramu Průřez prototypu metru 1.Fyzikální veličiny a jednotky 2.Mezinárodní soustava jednotek 3.Vektorové a skalární veličiny 4.Skládání vektorů 1. Fyzikální veličiny a jednotky Fyzikální veličiny

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více