Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky"

Transkript

1 Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS

2 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence. Stejnoměrná konvergence. 3 Mocninná a Taylorova řada. Mocninná řada. Poloměr konvergence. Taylorova řada. 4 Literatura

3 Součet nekonečné řady. Nekonečnou posloupnost {a n} reálných ( případně komplexních) čísel zapsanou ve tvaru součtu nazýváme číselnou řadou. Definice. Součet prvních n členů řady, tj. součet s n = a n n a i, nazýváme n-tým částečným součtem dané řady. Je-li limita lim s n = s konečná, nazýváme číslo s součtem řady, píšeme s = a říkáme, že tato řada konverguje. Je-li lim s n nevlastní nebo tato limita neexistuje, součet řady nedefinujeme a říkáme, že řada diverguje. Příklad: Řada n se nazývá řada harmonická. Ukážeme, že tato řada je divergentní. i= i= a i

4 Součet nekonečné řady. Zřejmě s 2 n = ( ) + ( ) + ( ) ( 2 n n ) n. n 2, nebot každý výraz v závorce je větší než 2. Odtud a harmonická řada tedy diverguje. Příklad: Uvažujme řadu Zřejmě lim s 2 n lim n 2 = +, ( ) i = i=0 n s n = ( ) i = i=0 { 0 pro n sudé, pro n liché. Tedy lim s n neexistuje a tato řada diverguje.

5 Součet nekonečné řady. Věta. Je-li řada i= Důkaz: Necht řada s = lim s n. Odtud a i konvergentní, pak lim i a i = 0. i= a i konverguje a s = lim s n. Pak ale též lim an = lim (sn s n ) = lim s n lim s n = s s = 0. Věta říká, že podmínka lim a n = 0 je nutnou podmínkou pro konvergenci řady a n. Větu nelze obrátit, tj. ze vztahu lim a n = 0 neplyne, že řada a n konverguje, jak ukazuje příklad harmonické řady ale řada diverguje., kde lim = 0, n n

6 Součet nekonečné řady. Velmi důležitou řadou je tzv. geometrická řada. Je to každá řada tvaru a + aq + aq 2 + = aq i, kde a, q R, a 0. i=0 Číslo q nazýváme kvocientem geometrické řady. Věta 2. Geometrická řada aq i je konvergentní právě tehdy, když q <. i=0 V tomto případě pro její součet platí vztah aq i = a q. i=0 Důkaz: Podle vzorce pro rozdíl n-tých mocnin dostáváme q n = ( q)( + q + q q n ) s n = a + aq + + aq n = a qn q. Je-li q <, je lim q n = 0 a dostáváme lim sn = lim a qn q = a q.

7 Součet nekonečné řady. Naopak je-li q, pak lim i aq i není rovna nule a tedy podle věty je daná řada divergentní. Definice 2. řada a i. i= Říkáme, že řada a i konverguje absolutně, jestliže konverguje i= Věta 3. Jestliže řada a i konverguje absolutně, pak tato řada konverguje. i= Jinak řečeno: konverguje-li řada a i, konverguje i řada a i. Tvrzení věty 3 nelze obrátit. Později ukážeme, že řada i= i= ( ) n n konverguje, ale jak víme, řada ( )n diverguje. Řada ( ) n je tedy příkladem n n konvergentní řady, která není absolutně konvergentní. Určit součet konvergentní řady je obvykle značně obtížná úloha, kterou umíme řešit pro geometrickou řadu a dále v některých jednoduchých případech. Jednodušší úlohou může být úloha zjistit, zda je daná řada konvergentní (aniž bychom určovali její součet). K tomu slouží tzv. kritéria konvergence. Těchto kritérií je celá řada, některá z nich si nyní ukážeme.

8 Kritéria konvergence Věta 4 (Srovnávací kritérium). Necht pro každé n, příp. n n 0, platí 0 a n b n. Potom platí: (i) konverguje-li řada nebo totéž ve negované formě b n, konverguje i řada a n, (ii) diverguje-li řada a n, diverguje i řada b n. Důkaz: Označme s n = (a + a a n) a S n = (b + b b n). zřejmě s n S n a obě posloupnosti {s n} i {S n} jsou neklesající. Je-li tedy lim Sn konečná, je nutně konečná i lim sn a tím je tvrzení dokázáno. Ve větě 4 je možno platnost předpokladu 0 a n b n požadovat pro všechna n n 0, kde n 0 je nějaký pevný index. Konvergence nebo divergence řady totiž nezáleží na hodnotách konečného počtu sčítanců.

9 Kritéria konvergence Příklad: Uvažujme řadu. Protože 0 pro n a řada n.2 n n.2 n 2 n 2 n je konvergentní (je to geometrická řada s kvocientem q = /2), je podle věty 4 konvergentní i řada Příklad: Řada divergentní. n=2 n.2 n. je divergentní, protože pro n 2 a řada je ln n ln n n n n=2 Věta 5 (Podílové kritérium). Uvažujme řadu a n, a n 0. Je-li lim a n+ <, pak řada a n 2 Je-li lim a n+ >, pak řada a n a n konverguje absolutně. a n diverguje. Větu nebudeme dokazovat. Poznamenejme jen, že důkaz první části spočívá na porovnání dané řady s jistou geometrickou řadou. Pro druhou část lze ukázat, že řada nesplňuje nutnou podmínku pro konvergenci danou větou.

10 Kritéria konvergence Je-li lim a n+ =, a n podílové kritérium o konvergenci řady nerozhodne. Existují řady konvergentní (např. ) i řady divergentní (např. harmonická řada), pro které platí, že n 2 limita podílu je ). Věta 6 (Odmocninové kritérium). Uvažujme řadu a n, a necht existuje (konečná i nekonečná) limita lim n a n = L. Potom platí: je-li L <, řada a n je absolutně konvergentní, 2 je-li L >, řada a n je divergentní. Důkaz: Je-li L <, zvolme ε > 0 tak, aby platilo L + ε <. Potom existuje n 0 N takové, že pro n N, n n 0 je n a n < L + ε <, odkud a n < (L + ε) n. Řada (L + ε) n je konvergentní geometrická řada.

11 Kritéria konvergence Podle srovnávacího kritéria (Věta 4) řada a n konverguje. Je-li L >, potom existuje n 0 N takové, že pro n N, n n 0 je n a n. Platí tedy a n pro n n 0, není tedy splněna nutná podmínka konvergence (Věta ). Řada a n diverguje. Odmocninové kritérium selže v případě, že lim n a n neexistuje nebo je rovna jedné. Příklad: Vyšetřeme konvergenci řady (ln n). n Použijeme odmocninové kritérium: Řada tedy konverguje. n lim n=2 (ln n) n = lim ln n = 0 <.

12 Kritéria konvergence Zatím se uvedená kritéria týkala absolutní konvergence. Uved me nyní jedno kritérium pro neabsolutní konvergenci, Leibnitzovo kritérium. Týká se tzv. alternujících řad, tj. řad, jejichž členy pravidelně mění znaménko. Věta 7 (Leibnitzovo kritérium). Necht pro posloupnost {a n} platí: a n a n+ 0 pro každé n, a současně Potom řada ( ) n a n konverguje. lim a n = 0. Příklad: Řada ( ) (n+) splňuje podmínky věty 7 (posloupnost { } je n n klesající a lim = 0 ) a tedy konverguje. (Později ukážeme, že její součet je n ln 2.) Jak již bylo řečeno, tato řada nekonverguje absolutně, srovnej s harmonickou řadou.

13 Kritéria konvergence Věta 8 (Integrální kritérium). Necht funkce f (x) definovaná pro x je nerostoucí spojitá funkce splňující podmínku f (x) 0 pro x. Pak f (x) dx konverguje právě tehdy, když konverguje řada f (n). Příklad: Řada konverguje, protože integrál n 2 x 2 dx = [ ] = lim ( x x x ) ( ) = konverguje. Příklad: Pomocí integrálního kritéria můžeme také dokázat divergenci harmonické řady. Protože integrál n diverguje, diverguje i řada x dx = [ln x] n. = lim x ln x =

14 Bodová konvergence. Definice 3. Necht n N a f n je reálné funkce jedné reálné proměnné definované na intervalu I. Potom řadu f n(x) nazýváme funkční řadou v I. Říkáme, že řada f n(x) konverguje bodově v množině D I, jestliže pro každou hodnotu x D konverguje řada f n(x). Množinu D nazýváme oborem konvergence řady. Označíme-li s m(x) = řady a platí-li lim sm(x) = s(x), pro x D, potom píšeme m m f n(x) částečný součet f n(x) = s(x), pro x D. Důležitou otázkou týkající se řad funkcí je to, zda se vlastnosti jednotlivých členů řady (spojitost, existence derivace, apod.) přenáší také na součet řady. Bodová konvergence nám k tomu nestačí, musíme proto zavést silnější typ konvergence.

15 Stejnoměrná konvergence. Definice 4. Říkáme, že řada f n(x) konverguje stejnoměrně k součtu s(x) na intervalu I, jestliže posloupnost {s m(x)} jejich částečných součtů konverguje stejnoměrně k funkci s(x) na I (píšeme s m s), tj. ε > 0 n 0 N takové, že x I a n N, n n 0 platí s m(x) s(x) < ε. Je třeba si uvědomit, že slabší vlastnost bodové konvergence znamená x I ε > 0 n 0 N takové, že a n N, n n 0 platí s m(x) s(x) < ε. Věta 9 (Weierstrassovo kriterium). Necht a n 0 a a n konverguje. Necht pro všechna x I a všechna n N platí f n(x) a n. Potom řada f n(x) konverguje stejnoměrně na I. Příklad: Rozhodněme, kde řada konverguje stejnoměrně cos nx n 4.

16 Stejnoměrná konvergence. Použijeme Weierstrassovo kritérium cos nx n 4 n 4 pro x R. Řada konverguje, tedy daná řada konverguje stejnoměrně v R. n4 Věta 0. Necht řada funkcí f n(x) konverguje stejnoměrně na I a má na I součet s(x). Jsou-li všechny funkce f n(x) na I spojité, pak je na I spojitá také funkce s(x). Věta. Necht řada funkcí f n(x) konverguje stejnoměrně na I = [a, b] a má na I součet s(x). Jsou-li všechny funkce f n(x) na I integrovatelné, pak je na I integrovatelná také funkce s(x) a plati b b ( b ) b s(x) dx = f n(x) dx, tj. f n(x) dx = f n(x) dx. a a a a

17 Stejnoměrná konvergence. Příklad: Vypočtěte Řada 2 0 ( ) n x n dx. n x n konverguje stejnoměrně na [0, ] (podle Weierstrassova 2 kritéria). Platí proto ( ) 2 n x n dx = 0 ( 2 ) n x n dx = Věta 2. Necht řada funkcí 0 [ x n ] 2 0 = f n(x) konverguje na otevřeném intervalu I = (a, b) a má na I součet s(x). Necht řada funkcí f n(x) konverguje 2 n =. stejnoměrně na I. Mají-li všechny funkce f n(x) na otevřeném intervalu I derivaci pro všechna n N, potom má také funkce s(x) derivaci na I a plati ( s (x) dx = f n(x) dx, tj. f n(x)) = f n(x).

18 Mocninná řada. Poloměr konvergence. Definice 5. Řadu tvaru a n(x x 0 ) n, kde x 0, a 0, a,... jsou reálná čísla, x je proměnná, nazýváme mocninnou řadou. Čísla a 0, a,... nazýváme koeficienty a číslo x 0 střed mocninné řady. Pro zvolenou hodnotu proměnné x je mocninná řada číselnou řadou. Součet mocninné řady představuje jistou funkci, definovanou právě pro ty hodnoty proměnné x, pro které odpovídající číselná řada konverguje. Příklad: Mocninná řada x n (se středem x 0 = 0) je geometrickou řadou s kvocientem x, a tedy konverguje právě pro x (, ). Podle věty 2 pro její součet platí x n = pro x (, ). x

19 Mocninná řada. Poloměr konvergence. Věta 3. Necht a n(x x 0 ) n je mocninná řada. Pak existuje číslo R 0, + (tj. R 0, + ) nebo R = + ), takové, že: Je-li R = 0, pak daná mocninná řada konverguje pouze pro x = x 0 a pro ostatní x x 0 diverguje. 2 Je-li R (0, + ), pak daná mocninná řada konverguje absolutně pro každé x (x 0 R, x 0 + R) a diverguje pro každé x (, x 0 R) (x 0 + R, + ). 3 Je-li R = +, pak daná mocninná řada konverguje absolutně pro každé x R. Číslo R nazýváme poloměrem konvergence mocninné řady. Poloměr konvergence mocninné řady a n(x x 0 ) n je možno určit pomocí podílového kritéria. Označme R = lim an a n+.

20 Mocninná řada. Poloměr konvergence. Ukážeme, že R je poloměr konvergence dané mocninné řady. Platí lim a n+(x x 0 ) n+ a n(x x 0 ) n = lim a n+(x x 0 ) = x x 0 lim a n+. Odtud okamžitě plyne, že pro x x 0 < R mocninná řada konverguje absolutně a naopak pro x x 0 > R diverguje. Tedy R je poloměrem konvergence dané mocninné řady. V případě 2. věty 3, tj. v případě R (0, + ), nelze říci obecně nic o konvergenci mocninné řady pro x = x 0 R a x = x 0 + R. Existují příklady, kdy mocninná řada konverguje jak pro x = x 0 R tak pro x = x 0 + R, příklady kdy konverguje pouze pro jednu z těchto hodnot, i příklady, kdy pro obě z těchto hodnot diverguje. Příklad: Určete, pro které hodnoty proměnné x konverguje řada Protože lim x n+ n+ x n n a n = lim x n n + = x, je podle podílového kritéria daná řada absolutně konvergentní pro x (, ) a divergentní pro x (, ) (, + ). Poloměr konvergence dané mocninné řady je tedy roven. a n x n n.

21 Mocninná řada. Poloměr konvergence. Pro x = je daná řada harmonickou řadou, a tedy řadou divergentní, pro x = je daná řada řadou ( ) n, u které jsme již určili, že konverguje. n n

22 Taylorova řada. Definice 6. Necht funkce f má v bodě x 0 derivace všech řádů. Taylorovou řadou funkce f se středem v x 0 rozumíme řadu f (n) (x 0 ) (x x 0 ) n. n! Příklad: Odvod te Taylorovu řadu funkce f (x) = e x se středem v bodě x 0 = 0 a určete, pro která x tato řada konverguje. Pro f (x) = e x je f (n) (x) = e x, a tedy f (n) (x 0 ) =. Taylorova řada je tedy řada x n n!. Vyšetřeme konvergenci této řady podílovým kritériem: x n+ lim = lim x n + = 0 pro každé x R. Řada (n+)! x n n! x n n! tedy konverguje pro každé x R. Součet Taylorovy řady, pokud existuje, budeme značit symbolem T (x).

23 Taylorova řada. Protože Taylorův polynom T n(x) n-tého stupně funkce f v bodě x 0 je právě n-tým částečným součtem Taylorovy řady této funkce, je podle definice T (x) = lim T n(x). V dalším se budeme zabývat otázkou, kdy f (x) = T (x). Z Taylorova vzorce f (x) = T n(x) + R n(x) dostaneme limitním přechodem pro n f (x) = lim T n(x) + lim R n(x) = T (x) + lim R n(x). Z této rovnosti plyne, že f (x) = T (x) právě pro ta x, pro která je Rn(x) = 0. lim Tím jsme dokázali následující větu: Věta 4. Pro součet T (x) Taylorovy řady funkce f se středem v x 0 platí T (x) = f (x) právě tehdy, když lim R n(x) = 0. Je důležité poznamenat, že existují funkce, které mají v bodě x 0 všechny derivace, a tedy mají Taylorovu řadu, jejíž součet se dané funkci v okolí x 0 nerovná.

24 Taylorova řada. Pro tyto funkce zřejmě lim R n(x) 0. Příkladem takové funkce je funkce { f (x) = e x 2 pro x 0 0 pro x = 0. Lze ukázat, že T (x) = 0 pro všechna x R. Ilustrujme si použití věty 4. Příklad: Ukážeme, že e x = x n n! Z předchozího příkladu víme, že řada pro každé x R. x n n! je Taylorovou řadou funkce e x se středem v x 0 = 0 a že tato řada konverguje pro každé x R. Pro pevně zvolené x R platí prodle věty o zbytku v Taylorově formuli. Zřejmě R n(x) = e c (n + )! x n+, kde c leží mezi x a x 0. R n(x) = e c (n + )! x n+ e x x n+ (n + )!.

25 Taylorova řada. x Ukážeme-li, že lim n+ = 0, pak nutně i lim (n+)! řadou konvergentní, a tedy podle věty je lim x n n! = lim Rn(x) = 0. Ale řada x n+ (n + )! = 0. Na závěr tohoto odstavce uved me Taylorovy řady některých funkcí, spolu s intervaly, kde se těmto funkcím rovnají: e x x n = n!, x R sin x = cos x = ln(x + ) = arctg x = ( ) n x 2n+ (2n + )!, x R ( ) n x 2n (2n)!, x R ( ) (n+) x n, x (, n ( ) n x 2n+, x, 2n + x n n! je

26

Posloupnosti a řady. 28. listopadu 2015

Posloupnosti a řady. 28. listopadu 2015 Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

1 Posloupnosti a řady.

1 Posloupnosti a řady. 1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 14. přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

17. Posloupnosti a řady funkcí

17. Posloupnosti a řady funkcí 17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.

Více

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183

Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými

Více

Přednáška 6, 7. listopadu 2014

Přednáška 6, 7. listopadu 2014 Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3

1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3 VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně

Více

(verze 12. května 2015)

(verze 12. května 2015) Pár informací o nekonečných řadách (doplňkový text k předmětu Matematická analýza 3) Pavel Řehák (verze 12. května 2015) 2 Několik slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza

Více

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13

Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13 Příklad 1 Určete poloměr a obor bodové konvergence mocninných řad: a) 1 8 b) +1 c) 3 d) +2+1 e)! f)! 3 g) +2 +3 h) 2 2 1 =8, = 7,9 =1, = 1,1 =3, = 3,3 =1, = 2,0 =+, =,+ =0, =3 =1, = 3,1 = 1 2, = 1 2,1

Více

MATEMATIKA B 2. Integrální počet 1

MATEMATIKA B 2. Integrální počet 1 metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Funkcionální řady. January 13, 2016

Funkcionální řady. January 13, 2016 Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital

Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Matematika 3. Úloha 1. Úloha 2. Úloha 3

Matematika 3. Úloha 1. Úloha 2. Úloha 3 Matematika 3 Úloha 1 Co lze říci o funkci imaginární část komplexního čísla která každému komplexnímu číslu q přiřazuje číslo Im(q)? a. Je to funkce mnohoznačná. b. Je to reálná funkce komplexní proměnné.

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada.

Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada. Kapitola 5 Číselné řady 5. Základní pojmy Definice 5...Symbol a + a 2 + +a n +,kde n N, a n R,se nazývá číselná řada. Jiná označení: n= a n, a n (vynecháme-lipodmínku pro n,uvažujemečlenyodnejmenšího n

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Reálné posloupnosti 1. Reálné posloupnosti

Reálné posloupnosti 1. Reálné posloupnosti Reálné posloupnosti Reálné posloupnosti Intervaly otevřený interval (a, b) = {x R, a < x < b}; polouzavřený interval (a, b = {x R, a < x b}; uzavřený interval a, b = {x R, a x b}; otevřený neomezený interval

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE

MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset

Více

Úvod základy teorie zobrazení

Úvod základy teorie zobrazení Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Kapitola 1. Funkční posloupnosti a řady

Kapitola 1. Funkční posloupnosti a řady 1 2 Kapitola 1 Funkční posloupnosti a řady Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.

f (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad. 8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011

Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011 Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Posloupnosti a řady. In: Jiří Jarník (author): Posloupnosti a řady. (Czech). Praha: Mladá fronta, pp

Posloupnosti a řady. In: Jiří Jarník (author): Posloupnosti a řady. (Czech). Praha: Mladá fronta, pp Posloupnosti a řady 5. kapitola. Posloupnosti a řady funkcí In: Jiří Jarník (author): Posloupnosti a řady. (Czech). Praha: Mladá fronta, 1979. pp. 114 136. Persistent URL: http://dml.cz/dmlcz/403940 Terms

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010

Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010 Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27

HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27 Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Písemná zkouška z Matematiky II pro FSV vzor

Písemná zkouška z Matematiky II pro FSV vzor Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,

Více

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.

x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f. 1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,

Více

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.

RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni. KMA/ZM1 Přednášky RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni sediva@kma.zcu.cz Obsah 0.1 Matematické objekty, matematické definice, matematické věty.............. 4

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y

Více

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj.

Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. 1 Limity posloupností 1. (a) pro a > 1 je (c) Pro β > 0 a a > 1 Tabulkové ity n! n n = 0 a n n! = 0. n β a n = 0. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. libovolně malé) ln α n n β = 0. (e)

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

5. Limita a spojitost

5. Limita a spojitost 5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

3. Mocninné a Taylorovy řady

3. Mocninné a Taylorovy řady 3. Mocninné a Taylorovy řady A. Záladní pojmy. Obor onvergence Mocninné řady jsou nejjednodušším speciálním případem funčních řad. Jsou to funční řady, jejichž členy jsou mocninné funce. V této apitole

Více

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a

ϵ = b a 2 n a n = a, pak b ϵ < a n < b + ϵ (2) < ϵ, což je spor, protože jsme volili ϵ = b a MA 6. cvičení výpočet limit posloupností Lukáš Pospíšil,202 Malý (ale pěkný) důkaz na úvod V dnešním cvičení se naučíme počítat jednoduché limity, nicméně by na začátek bylo vhodné ukázat, že to co hledáme,

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak

15. Nulové body a póly. Věta. Je-li funkce f : G holomorfní v oblasti G a f(z 0 ) 0 pro z 0 G, pak 5. Nulové body a póly Věta. Je-li funkce f holomorfní v oblasti G C, a f(z 0 ) 0 pro bod z 0 G, pak existuje okolí U(z 0 ) bodu z 0 takové, že f(z) 0 pro z U(z 0 ). Definice: Je-li funkce f holomorfní

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

Zimní semestr akademického roku 2013/2014. 3. září 2014

Zimní semestr akademického roku 2013/2014. 3. září 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 03/04 3. září 04 Předmluva ii Rozjezd

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.

Pojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε. LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17

Helena R ˇ ı hova (CˇVUT) Posloupnosti 5. rˇı jna / 17 Posloupnosti Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Posloupnosti 5. října 2012 1 / 17 Obsah 1 Posloupnosti Definice, vlastnosti Vybraná, stacionární, oscilující, ohraničená posloupnost Monotónní

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda

Více