Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
|
|
- Jiří David Čech
- před 1 lety
- Počet zobrazení:
Transkript
1 Matematika přednáška Číselné a mocninné řady Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci LS 2012/13 Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc.
2 14.1 Základní pojmy Definice Necht {a n } C je posloupnost komplexních čísel. Pro m N položme s m = a 1 + a a m. Číslo s m nazveme m-tým částečným součtem řady n=1 a n. Prvek a n budeme nazývat n-tým členem řady n=1 a n. Součtem nekonečné řady n=1 a n nazveme limitu posloupnosti {s m }, pokud tato limita existuje. Součet řady budeme značit symbolem n=1 a n. Řekneme, že řada konverguje, je-li její součet konečné číslo. V jiném případě řekneme, že řada diverguje.
3 14.1 Základní pojmy (pokrač.) Věta 14.1 (nutná podmínka konvergence řady) Jestliže řada n=1 a n konverguje, pak lim a n = 0. Poznámka Právě uvedená nutná podmínka konvergence se používá především ve tvaru Jestliže lim a n 0 nebo lim a n neexistuje, potom řada n=1 a n diverguje.
4 14.1 Základní pojmy (pokrač.) Věta 14.2 (i) Necht α C, α 0. Potom n=1 a n konverguje, právě když n=1 αa n konverguje. V tom případě platí αa n = α a n. n=1 n=1 (ii) Necht n=1 a n a n=1 b n jsou konvergentní řady. Potom n=1 (a n + b n ) konverguje, a platí (a n + b n ) = n=1 a n + b n. n=1 n=1
5 14.1 Základní pojmy (pokrač.) Věta 14.3 (Bolzano-Cauchy) Řada n=1 a n konverguje, právě když platí ε > 0 n 0 N m > n n 0 : m j=n+1 a j < ε.
6 14.2 Kritéria konvergence Věta 14.4 (srovnávací kritérium) Necht n 0 N. Dále necht n=1 a n a n=1 b n jsou dvě řady splňující 0 a n b n pro každé n N, n n 0. (i) Je-li n=1 b n konvergentní, je rovněž n=1 a n konvergentní. (ii) Je-li n=1 a n divergentní, je rovněž n=1 b n divergentní.
7 14.2 Kritéria konvergence (pokrač.) Věta 14.5 (limitní srovnávací kritérium) Necht n=1 a n a n=1 b n jsou řady s nezápornými členy a lim n + a n /b n = c R. (i) Necht c (0, ). Potom n=1 a n konverguje, právě když konverguje n=1 b n. (ii) Necht c = 0. Pak konverguje-li n=1 b n, konverguje i n=1 a n. (iii) Necht c =. Pak konverguje-li n=1 a n, konverguje i n=1 b n.
8 14.2 Kritéria konvergence (pokrač.) Věta 14.6 (Cauchyovo odmocninové kritérium) Necht n=1 a n je řada s nezápornými členy. Potom platí: (i) Existuje-li q (0, 1) takové, že n 0 N n N, n n 0 : n a n q, potom n=1 a n konverguje. (ii) Je-li lim n a n < 1, pak je n=1 a n konvergentní. (iii) Je-li lim n a n > 1, pak neplatí lim a n = 0 a n=1 a n je divergentní.
9 14.2 Kritéria konvergence (pokrač.) Věta 14.7 (d Alembertovo podílové kritérium) Necht n=1 a n je řada s kladnými členy. (i) Existuje-li q (0, 1) takové, že n 0 N n N, n n 0 : a n+1 a n q, potom n=1 a n konverguje. (ii) Je-li lim a n+1 a n < 1, pak je n=1 a n konvergentní. (iii) Je-li lim a n+1 a n > 1, pak neplatí lim a n = 0 a n=1 a n je divergentní.
10 14.2 Kritéria konvergence (pokrač.) Věta 14.8 (integrální kritérium) Necht f je nezáporná, nerostoucí a spojitá na n 0, + ), kde n 0 N. Necht pro posloupnost reálných čísel {a n } n=1 platí a n = f (n) pro n n 0. Pak n 0 f (x)dx < + a n konverguje. n=1 Věta 14.9 Necht α R. Řada n=1 1 n α konverguje právě tehdy, když α > 1.
11 14.2 Kritéria konvergence (pokrač.) Věta (Raabeovo kritérium) Necht n=1 a n je řada s kladnými členy. ( ) (i) Je-li lim n an a n+1 1 > 1, pak je n=1 a n konvergentní. ( ) (ii) Je-li lim n an a n+1 1 < 1, pak je n=1 a n divergentní.
12 14.2 Kritéria konvergence (pokrač.) Definice Řekneme, že řada n=1 a n je absolutně konvergentní, pokud řada n=1 a n konverguje. Věta Je-li řada n=1 a n absolutně konvergentní, je rovněž konvergentní.
13 14.3 Neabsolutní konvergence Věta (Abel-Dirichletovo kritérium) Necht {a n } n=1 je posloupnost a {b n} n=1 je omezená monotónní posloupnost. Jestliže je splněna některá z následujících podmínek, pak je n=1 a nb n konvergentní. (A) n=1 a n je konvergentní, (D) lim n b n = 0 a n=1 a n má omezenou posloupnost částečných součtů.
14 14.3 Neabsolutní konvergence (pokrač.) Věta (Leibniz) Necht {a n } n=1 je posloupnost splňující n N : a n 0, n N : a n a n+1, lim a n = 0. Potom je řada n=1 ( 1)n a n konvergentní.
15 14.4 Přerovnávání řad Definice Necht p : N N je bijekce. Přerovnáním řady n=1 a n rozumíme řadu n=1 a p(n). Věta Necht n=1 a n je absolutně konvergentní řada a n=1 a p(n) je její přerovnání. Pak n=1 a p(n) je absolutně konvergentní a má stejný součet jako n=1 a n.
16 14.5 Součin řad Definice Cauchyovým součinem řad n=1 a n a m=1 b m budeme rozumět řadu ( k ) a k+1 i b i. k=1 i=1 Věta (Mertens) Necht řady n=1 a n, m=1 b m konvergují, přičemž alespoň jedna z nich konverguje absolutně. Potom ( k ) ( ) ( ) a k+1 i b i = a n b m. k=1 i=1 n=1 m=1
17 14.5 Součin řad (pokrač.) Věta (Abel) Necht n=1 a n, m=1 b m jsou konvergentní řady, takové, že i jejich Cauchyův součin konverguje. Pak platí ( k ) ( ) ( ) a k+1 i b i = a n b m. k=1 i=1 n=1 m=1
18 14.5 Součin řad (pokrač.) Shrnutí Vztah absolutni konvergence a konvergence a n 0 AK K a n C AK = K Aritmetické operace s řadami operace násobek konstantou asociativita (uzávorkování) součet, rozdíl přerovnání (komutativita) násobení dvou řad stačí, když řada konverguje řada konverguje obě řady konvergují řada konverguje absolutně obě řady konvergují, alespoň jedna z nich absolutně
19 14.6 Mocninné řady Definice Mocninnou řadou o středu z 0 C rozumíme řadu k=0 a k(z z 0 ) k, kde z C a a k C pro každé k N {0}.
20 14.6 Mocninné řady (pokrač.) Věta Necht k=0 a k(z z 0 ) k je mocninná řada. Pak existuje nezáporný prvek R R takový, že Platí pro každé z C, z z 0 < R, uvedená řada konverguje absolutně, pro každé z C, z z 0 > R, uvedená řada diverguje. R = 1 lim k k a k, pokud limita ve jmenovateli zlomku vpravo existuje. Výrazu 1/0 zde přiřazujeme hodnotu R = + a výrazu 1/ přiřazujeme hodnotu R = 0.
21 14.6 Mocninné řady (pokrač.) Poznámka. Platí také R = 1 a lim k+1, k a k pokud limita ve jmenovateli zlomku vpravo existuje. Výrazu 1/0 zde opět přiřazujeme hodnotu R = + a výrazu 1/ přiřazujeme hodnotu R = 0. Definice Prvek R z předchozí věty nazýváme poloměrem konvergence řady k=0 a k(z z 0 ) k. Kruh v komplexní rovině K R (z 0 ) := {z C; z z 0 < R} nazýváme kruhem konvergence, a kružnici K R (z 0 ) := {z C; z z 0 = R} nazýváme konvergenční kružnicí dané řady.
22 14.6 Mocninné řady (pokrač.) Poznámka. V dalším textu budeme používat pojem derivace komplexní funkce, který je definován formálně zcela stejně jako pojem derivace reálné funkce reálné proměnné. Tedy, řekneme, že f : C C má derivaci v bodě z C, pokud existuje limita f f (w) f (z) (z) := lim C. w z w z Na rozdíl od reálných funkcí nedefinujeme v tomto případě pojem nevlastní limity (derivace), ani pojmy jednostranná limita (derivace).
23 14.6 Mocninné řady (pokrač.) Věta Necht R > 0 je poloměrem konvergence mocninné řady n=0 a n(z z 0 ) n. Definujme f (z) := a n (z z 0 ) n, z z 0 < R. n=0 Potom řada n=1 na n(z z 0 ) n 1 konverguje pro z z 0 < R a platí f (z) = na n (z z 0 ) n 1, z z 0 < R. n=1
24 14.6 Mocninné řady (pokrač.) Věta Necht f je jako ve Větě Potom má f derivace všech řádů pro z C, z z 0 < R, a platí: f (k) (z) = n(n 1)... (n k + 1)a n (z z 0 ) n k. n=k Speciálně platí f (k) (z 0 ) = k!a k.
25 14.6 Mocninné řady (pokrač.) Poznámka. Mocninnou řadu lze tedy uvnitř kruhu konvergence libovolněkrát derivovat (a integrovat) člen po členu, aniž se změní poloměr konvergence. Stejně tak lze provádět uvnitř kruhu konvergence všechny výše sepsané aritmetické operace, včetně přerovnání řady.
26 14.6 Mocninné řady (pokrač.) Věta (Abel) Necht f je jako ve Větě a necht číselná řada n=0 a n(z z 0 ) n konverguje pro nějaké z C, ležící na konvergenční kružnici, tedy pro z = z 0 + Re iϕ, ϕ 0, 2π). Potom existuje vlastní limita lim r R f (z 0 + re iϕ ) a platí: a n (z z 0 ) n = n=0 a n R n e inϕ = lim f (z 0 + re iϕ ). r R n=0 Speciálně, pokud konverguje číselná řada n=0 a nr n, je n=0 a nr n = lim x R f (x), a podobně je n=0 ( 1)n a n R n = lim x R+ f (x) za předpokladu, že číselná řada n=0 ( 1)n a n R n konverguje.
27 14.6 Mocninné řady (pokrač.) Příklady: Některá z použití teorie číselných a mocninných řad: Rozvíjení funkcí do Taylorových řad pomocí derivování a integrovaní řady (ln(1 + x), arctg x). Sčítání některých číselných (i mocninných) řad (ln 2, = arctg 1). π 4 Hledání řešení ODR ve tvaru řady.
1 Posloupnosti a řady.
1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže
Nekonečné číselné řady. January 21, 2015
Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =
Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky
Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.
Posloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Petr Hasil. c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183
Nekonečné řady Petr Hasil Přednáška z Matematické analýzy III c Petr Hasil (MUNI) Nekonečné řady MA III (M3100) 1 / 183 Obsah 1 Nekonečné číselné řady Základní pojmy Řady s nezápornými členy Řady s libovolnými
Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.
Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné
1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady... 2 1.2 Základnívlastnostiřad... 3
VII. Číselné řady Obsah 1 Základní pojmy a vlastnosti 2 1.1 Význačnéřady...... 2 1.2 Základnívlastnostiřad..... 3 2 Řady s nezápornými členy 3 2.1 Kritériakonvergenceadivergence...... 3 3 Řady absolutně
17. Posloupnosti a řady funkcí
17. Posloupnosti a řady funkcí Aplikovaná matematika III, NMAF073 M. Rokyta, KMA MFF UK ZS 2011/12 17.1 Stejnoměrná konvergence posloupnosti funkcí Definice Necht M je množina, f, f n : M R m, m, n N.
Přednáška 6, 7. listopadu 2014
Přednáška 6, 7. listopadu 204 Část 3: nekonečné řady Základní definice. Nekonečná řada, krátce řada, je posloupnost reálných čísel (a n ) R uvedená v zápisu a n = a + a 2 + a 3 +..., spolu s metodou přiřazující
Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné
MATEMATIKA B 2. Integrální počet 1
metodický list č. 1 Integrální počet 1 V tomto tématickém celku se posluchači seznámí s některými definicemi, větami a výpočetními metodami užívanými v části matematiky obecně známé jako integrální počet
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Aplikovaná matematika I, NMAF071
M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační
Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
Posloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
Kapitola 15. Číselné řady. 15.1 Základní pojmy. Definice 15.1.1.Symbol a 1 + a 2 + +a n +,kde n N, a n R,se. nazývá číselná řada.
Kapitola 5 Číselné řady 5. Základní pojmy Definice 5...Symbol a + a 2 + +a n +,kde n N, a n R,se nazývá číselná řada. Jiná označení: n= a n, a n (vynecháme-lipodmínku pro n,uvažujemečlenyodnejmenšího n
Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
Posloupnosti a jejich konvergence POSLOUPNOSTI
Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,
HL Academy - Chata Lopata Emu (Brkos 2012) Řetězové zlomky / 27
Řetězové zlomky HL Academy - Chata Lopata 2012 13.2. 18.2.2012 Emu (Brkos 2012) Řetězové zlomky 13.2. 18.2.2012 1 / 27 Obsah 1 Úvod 2 Základní pojmy 3 Konečné řetězové zlomky Sblížené zlomky Euklidův algoritmus
Matematická analýza. L. Pick a J. Spurný
Matematická analýza L. Pick a J. Spurný 25. května 200 Obsah Matematická analýza a 5 Výroky, důkazové techniky a množiny.................................... 5. Výroková a predikátová logika....................................
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Funkcionální řady. January 13, 2016
Funkcionální řady January 13, 216 f 1 + f 2 + f 3 +... + f n +... = f n posloupnost částečných součtů funkcionální řada konverguje na množine M konverguje posloupnost jeho částečných součtů na množine
Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2
Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
10 Určitý integrál Riemannův integrál. Definice. Konečnou posloupnost {x j } n j=0 nazýváme dělením intervalu [a,b], jestliže platí
10 Určitý integrál 10.1 Riemnnův integrál Definice. Konečnou posloupnost {x j } n j=0 nzýváme dělením intervlu [,b], jestliže pltí = x 0 < x 1 < < x n = b. Body x 0,...,x n nzýváme dělícími body. Normou
MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce
Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický
Funkce komplexní proměnné a integrální transformace
Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na
a n (z z 0 ) n, z C, (1) n=0
Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,
(verze 12. května 2015)
Pár informací o nekonečných řadách (doplňkový text k předmětu Matematická analýza 3) Pavel Řehák (verze 12. května 2015) 2 Několik slov na úvod Tento text tvoří doplněk k části předmětu Matematická analýza
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
Matematika 1 pro PEF PaE
Derivace funkcí jedné proměnné / 9 Matematika pro PEF PaE 4. Derivace funkcí jedné proměnné Přemysl Jedlička Katedra matematiky, TF ČZU Derivace funkcí jedné proměnné Nejjednodušší derivace 2 / 9 Derivace
Příklad 1. Řešení 1a Máme určit poloměr a obor bodové konvergence mocninné řady ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 13
Příklad 1 Určete poloměr a obor bodové konvergence mocninných řad: a) 1 8 b) +1 c) 3 d) +2+1 e)! f)! 3 g) +2 +3 h) 2 2 1 =8, = 7,9 =1, = 1,1 =3, = 3,3 =1, = 2,0 =+, =,+ =0, =3 =1, = 3,1 = 1 2, = 1 2,1
Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
OBECNOSTI KONVERGENCE V R N
FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce
2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem
2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice
VII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
Diferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011
Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz
Matematika (KMI/PMATE)
Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika
3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
Tabulkové limity. n! lim. n n) n + lim. n + n β = 0. n + a n = 0. lim. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj.
1 Limity posloupností 1. (a) pro a > 1 je (c) Pro β > 0 a a > 1 Tabulkové ity n! n n = 0 a n n! = 0. n β a n = 0. (d) Pro α > 0 (tj. libovolně velké) a pro β > 0 (tj. libovolně malé) ln α n n β = 0. (e)
Přehled probrané látky
Přehled probrané látky 1. přednáška 5.10.2004. Organizační pokyny. Motivace - řetězovka, brachystochrona, analýza v The Art of Computer Programming D. Knutha. Co probereme v ZS: R, posloupnosti a řady,
8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
Limita a spojitost funkce
Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu
Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
MATEMATIKA I DIFERENCIÁLNÍ POČET I FAKULTA STAVEBNÍ MODUL BA01 M05, GA01 M04 LIMITA A SPOJITOST FUNKCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA0 M05, GA0 M04 DIFERENCIÁLNÍ POČET I LIMITA A SPOJITOST FUNKCE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 0 Typeset
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
Matematika I Posloupnosti
Matematika I Posloupnosti RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Posloupnost Def. Nekoneènou posloupností reálných èísel
Metody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
Komplexní analýza 1. Ladislav Mišík
1 Komplexní analýza 1 Ladislav Mišík 2 Obsah 1 Komplexní čísla 5 1.1 Rozšíření tělesa reálných čísel.................. 5 1.2 Operace s komplexními čísly................... 8 1.3 Geometrie komplexních čísel...................
(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
19 Hilbertovy prostory
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:
KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
Matematika I (KMI/PMATE)
Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce
0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
Riemannův určitý integrál
Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
17. ledna porad te se s kolegou nebo doporučenou literaturou. Pomocí vodorovných čar jsou
Stručné poznámky z MA pro I ZS 2008/9 Robert Šámal 17. ledna 2009 Tento text se vztahuje k předmětu NMAI054, paralelka Y. Vznikl (vzniká) úpravou textu z loňska od Stanislava Hencla (děkuji!). Najdete
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský
Užití nekonečných řad při řešení obyčejných diferenciálních rovnic Michal Ostřanský Bakalářská práce 2017 ABSTRAKT Cílem bakalářské práce je ukázat možnosti použití nekonečných řad při řešení obyčejných
Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
Základy matematiky pro FEK
Základy matematiky pro FEK 12. přednáška Blanka Šedivá KMA zimní semestr 216/21 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 216/21 1 / 15 Integrování jako inverzní operace příklady inverzních
Úvod základy teorie zobrazení
Úvod základy teorie zobrazení V přednášce se budeme zabývat diferenciálním a integrálním počtem funkcí více proměnných. Přednáška navazuje na přednášku atematická analýza 1 z prvního semestru. Proto se
Písemná zkouška z Matematiky II pro FSV vzor
Písemná zkouška z Matematik II pro FSV vzor. (0 bodů) Určete a nakreslete definiční obor funkce sin x f(x, ) = (Kalenda 00/) spočtěte její parciální derivace podle všech proměnných všude, kde existují,
Definice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36
Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic
Kapitola 1. Funkční posloupnosti a řady
1 2 Kapitola 1 Funkční posloupnosti a řady Definice 1.1(funkční posloupnost) Funkční posloupnost( = posloupnost funkcí) je zobrazení, které každému přirozenému číslu n N přiřazuje právějednufunkci f n
RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni.
KMA/ZM1 Přednášky RNDr. Blanka Šedivá, PhD. Katedra matematiky FAV Západočeská univerzita v Plzni sediva@kma.zcu.cz Obsah 0.1 Matematické objekty, matematické definice, matematické věty.............. 4
Derivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
Použití derivací. V této části budou uvedena některá použití derivací. LEKCE08-PRU. Použití derivací. l Hospital
V této části budou uvedena některá použití derivací. a derivace a derivace -zbytek L HOSPITALOVO PRAVIDLO POČÍTÁNÍ LIMIT Tvrzení je uvedeno pro jednostrannou limitu zprava. Samozřejmě obdobné tvrzení platí
Věta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
Matematika (KMI/PMATE)
Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její
Cvičení z matematiky jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice
Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u
Matematika vzorce. Ing. Petr Šídlo. verze
Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
MATEMATIKA A Metodický list č. 1
Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači
Západočeská univerzita v Plzni SBÍRKA ÚLOH Z MATEMATIKY
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky SBÍRKA ÚLOH Z MATEMATIKY FUNKE KOMPLEXNÍ PROMĚNNÉ Josef MAŠEK Plzeň 996 vydání 3 Předmluva k vydání Tento učební text navazuje
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
5. Limita a spojitost
5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: geometrická posloupnost, geometrická
verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu
Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové
Základy matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
1 1 x. (arcsinx) = (arccosx) = (arctanx) = x 2. (arcctg) = (e x ) = e x
.cvičení 0..009 Teorie Definice. Necht f je reálná funkce a a R. Jestliže eistuje lim h 0 f(a + h) f(a), h pak tuto limitu nazýváme derivací funkce f v bodě a. Značíme f f(a + h) f(a) (a) := lim. h 0 h
Sada 1 Matematika. 04. Nekonečné řady
S třední škola stavební Jihlava Sada 1 Matematika 04. Nekonečné řady Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a
METRICKÉ A NORMOVANÉ PROSTORY
PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme
Kapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený