Nanovědy Nanooptika Nanotechnologie. E hν x λ/2 Obr.1. Vztah současných věd a nanověd [2]

Rozměr: px
Začít zobrazení ze stránky:

Download "Nanovědy Nanooptika Nanotechnologie. E hν x λ/2 Obr.1. Vztah současných věd a nanověd [2]"

Transkript

1 Nanooptika Pavel TOMÁNEK Abstrakt: S rozvojem nanotechnologií začínají nabývat na významu i nové podobory klasických disciplin nanooptika a nanofotonika a jejich hlavní nástroj optika blízkého pole. V tomto přehledu jsou popsány základní principy těchto disciplin a některé z jejich aplikací spojené zejména s použitím rastrovacích optických mikroskopů s lokální sondou (SNOM): vliv polarizace na kvalitu obrazů, magnetické obrazy, lokální charakterizace fotonických součástek, polovodičů a defektů struktur. Tyto příklady ukazují, že SNOM se stává plnohodnotným nástrojem nedestruktivního bezkontaktního měření v nanoměřítku a manipulace s nanostrukturami. Klíčová slova: nanotechnologie, nanovědy, nanooptika, optika v blízkém poli, evanescentní vlny, rastrovací mikroskop v blízkém poli, lokální charakteristiky, aplikace. 1. Úvod V posledních dvaceti letech začala věda a technický pokrok směřovat k teoretickému studiu nanověd a jejich praktickým aplikacím v nanotechnologiích [1]. Tyto snahy jsou motivovány faktem, že se vývoj součástek a zařízení posunuje k menším rozměrům, přičemž se makroskopické fyzikální zákony mění na mikroskopické. Využití kvantových jevů pro technologické aplikace je nejzřejmější hnací silou další miniaturizace. Nedávný bouřlivý rozvoj byl většinou podmíněn schopností měřit individuální struktury nanometrických rozměrů a manipulovat s nimi (např. použití lokální rastrovací sondy, optické pinzety, elektronových mikroskopů s vysokým rozlišením). Nastolený trend nutí i optiku k tomu, aby prováděla základní experimenty v nanometrickém měřítku. Poněvadž difrakční hranice rozlišení neumožňují fokusovat světlo na bod, ale jen na skvrnku o průměru rovném přibližně polovině vlnové délky, není možné pomocí tradičních nástrojů dosáhnout nanometrických detailů []. Základní přírodní vědy Optika.. Technické vědy Nanovědy Nanooptika Nanotechnologie E hν x λ/ Obr.1. Vztah současných věd a nanověd [] Čím jsou tyto obory charakterizovány? Nanotechnologie (přesněji nanotechnika) je interdisciplinární obor zahrnující aplikovaný výzkum v oboru chemie, fyziky, biologie, lékařství, inženýrských vědy a dalších. Jedná se o řízené strukturování hmoty v oblastech pod 100 nm, až k jednotlivým molekulám a atomům. Výsledkem je dosažení zcela nové funkčnosti a nových vlastností, které není možné dosáhnout v objemových materiálech. 1

2 Nanovědy se zabývají základním výzkumem a charakterizací hmoty, která je uměle strukturována v rozměrech pod 100 nm. Zahrnují i manipulaci s nanoskopickými detaily a jejich restruktualizaci. Nanooptika zahrnuje výzkum, výrobu, charakterizaci a aplikace umělých optických struktur s mezoskopickými a subvlnovými rozměry. Nanooptika je součástí optiky, která se zabývá interakcí světla s částicemi nebo strukturami, jejichž rozměry jsou menší než je vlnová délka použitého světla. Většinou se to týká oboru viditelného nebo blízkého infračerveného světla (přibližně nm). Interakce světla s nanočásticemi či nanostrukturami vede k uvěznění elektromagnetického pole v těsné blízkosti povrchu vzorku a ke vzniku optického blízkého pole. Toto pole, které je směsicí šířících se a nešířících se (evanescentních) vln, může být potom narušeno přítomností ostrého hrotu sondy, které umožní měřit. Toto elektromagnetické pole závisí na velikosti a tvaru nanostruktury, s níž světelná vlna interaguje [3,4]. Žádná analýza optického signálu vyzářeného předmětem s nanorozměrovými strukturami či detaily nám neposkytne přímé informace o těchto vlnách. Abychom takovou informaci dostali, musí být evanescentní pole v těsné blízkosti předmětu nejprve nějakým způsobem narušeno tak, aby se jeho část přeměnila na šířící se vlny. Ať se jedná o jakoukoli použitou techniku, optické blízké pole vždy využívá interakci elektromagnetické vlny se strukturami s nanometrickými detaily. Pochopení těchto interakcí je apriorně komplexním problémem. Je možné určit tři hlavní příčiny této komplexnosti: 1. Je nutné vypočítat blízké pole v těsné blízkosti povrchu, kdy jev nevykazuje symetrii, navíc za přítomnosti rezonance a mnohonásobné difúze. Zde již není možné použít aproximace geometrické optiky ani skalární vlnové optiky, nýbrž pouze vektorový formalismus elektromagnetického pole.. Některé z konceptů používaných v klasické optické mikroskopii ztrácejí v blízkém poli smysl. Např. koeficient odrazu (nelokální veličina definovaná pro rovinnou vlnu a rovinný povrch) nemá smysl při vzdálenostech menších než vlnová délka. Je tedy třeba změnit některé zvyky a zavést nové přístupy. 3. Aplikace optiky v blízkém poli jsou čím dál rozmanitější (jdou podstatně dále než k zobrazení topografie povrchu tomuto účelu lépe slouží lokální sondové mikroskopy, např. STM, AFM) [5].. Princip Základní nástroj charakterizace optického blízkého pole je rastrovací optický mikroskop s lokální sondou (SNOM). Jedná se o optický mikroskop s vysokým rozlišením, v němž je vzorek osvětlován pomocí malé světelné skvrnky a toto světlo je detekováno buď po odrazu na vzorku, nebo po průchodu vzorkem. Rozlišovací schopnost aperturního SNOM je určena rozměry apertury. SNOM používá sondu s malou aperturou (50 nm) v kovovém stínítku, která se nachází v těsné vzdálenosti (<<λ) od povrchu vzorku tak, aby bylo možné lokálně osvětlit vzorek (osvětlovací režim) nebo detektovat blízké optické pole (kolektorový režim). Světlo nemůže takovou aperturou procházet, ale evanescentní pole, nebo optické blízké pole ano [4]. Toto pole však klesá exponenciálně se vzdáleností a může být tedy detekováno pouze těsně u povrchu předmětu.

3 Obr.. Schéma optických mikroskopů pracujících v blízkém poli: hlavními prvky jsou sonda, řídící systém a nanokolektor nebo nanodetektor. Řádkování (v rozsahu několik nm µm) se uskutečňuje díky trojrozměrnému ohybu piezotrubičky, je-li na ni přiloženo vhodné napětí. Nanodetektorem je většinou špičaté optické vlákno, jehož druhý konec je spojen se vzdáleným detektorem (nízkošumový fotočlánek nebo fotonánásobič). Osvětlení vzorku průchodem, či odrazem světla: a) STOM konfigurace, b), c) SNOM konfigurace, d) NSOM konfigurace. SNOM využívá slabé interakce mezi předmětem a sondou submikronových rozměrů, tj. tunelového jevu, který řídí přechod částic (elektronů, či fotonů) do klasicky zakázaných oblastí a nad limitované vzdálenosti. To je spojeno s kvantovou povahou vln, doprovázejících tyto částice, přičemž je nutné brát v úvahu, že četné známé základní koncepce se v nanometrické oblasti radikálně mění: střihové síly, teplotní přechody, vodivost, a pod... musejí nyní splňovat zákony, které již nejsou integrální, společné, nýbrž diferenciální, individuální, lokální. Tab.1: Analogie vlastností elektronů a fotonů v oblasti blízkého pole Elektron Foton energie E = mc hybnost p = E/c hmotnost m 0 vlnová funkce Ψ= Ψ ο (x,y,z) Vlnová rovnice Schrödingerova: + hraniční podmínky m Ψ + ( E U ) 0 Ψ = 0 h Řešení: Ψ = Ψ o exp [(iπ /h).pr] Podmínky šíření: Energie E = h.ν vlnový vektor k = πp/h hmotnost m = 0 intenzita elektrického pole E = E o (x,y,z) Vlnová rovnice Helmholtzova: + hraniční podmínky E+ k E= 0 Řešení: E = E o exp i(ωt - kr) Parametry spojené s prostorovým chováním vlny jsou hybnost p a vlnový vektor k. 3

4 p = (p x,p y,p z ) = p, p z k = (k x, k y, k z ) = k, k z jestliže p z = [m(e-u o ) - p ] 1/ k z = [(n ω /c ) - k ] 1/ [m(e- U o ) - p ] > 0 [(n ω /c ) - k ] > 0 potom p z je reálné k a elektrony a fotony se šíří jako homogenní vlny. Jestliže však z je reálné [m(e-u o ) - p ] < 0 [(n ω /c ) - k ] < 0 pak p je imaginární, k z je imaginární z a vlnová funkce bude mít tvar Ψ = Ψ xy exp (-p z.π/h) E = E xy exp (-k z.z) což je klesající funkce - evanescentní vlna. Její detekcí získáme informace o jemných detailech předmětu. Typická struktura nešířícího se pole je [6]: E(x,y,z,t) = E 0 (x,y,z)exp -j(k x x + k y y) exp (-k z z).exp j(ωt), kde E 0 je amplituda pole v bodě (x,y,z), exp-j(k x x + k y y) odpovídá členu vlny šířícímu se v rovině xy, exp(-k z z) vyjadřuje pokles pole ve směru osy z. Vlnové číslo k z závisí na vlastnostech materiálu a na jeho prostorové struktuře a je nepřímo úměrné rozměrům detailů. Konečně exp j(ωt) vyjadřuje časovou závislost pole. Fyzicky se pole šíří ve směru roviny xy a klesá ve směru osy z, přičemž kmitá s frekvencí použitého světla. Světelný svazek se tedy nemůže šířit, je omezen jen na prostor v těsné blízkosti povrchu předmětu. 3. Aplikace SNOM Výhoda SNOM oproti ostatním rastrovacím technikám spočívá v tom, že umožňuje pozorování celé škály optických vlastností vzorku. V optické mikroskopii blízkého pole se k vytvoření obrazu obvykle používají změny intenzity světla. Ale i následující vlastnosti mohou vytvořit dostatečný kontrast ve SNOM obrazech []: - Topografie vzorku, změny indexu lomu, odrazivosti, propustnosti, polarizace, mechanooptických vlastností, magneto-optických vlastností, fluorescence molekul, nelineární jevy generování druhé harmonické frekvence, ramanovský rozptyl, materiálové změny a jiné. Příklady možných aplikací jsou uvedeny v dalších odstavcích. 4

5 3.1. Intenzitní kontrast Obr. 3: Možnosti měření kontrastů pomocí SNOM Monitorování intenzity světla poskytuje informaci o propustnosti či odrazivosti vzorku, nebo obecně o změnách indexu lomu. Monitorování jen intenzity signálu je zvláště vhodné pro topografii artefaktů, přičemž je často nutné opatrně interpretovat data [7]. Jako příklad uveďme zrnka halidů stříbra. Ta se vyznačují velmi rovinným povrchem, což způsobí, že se někdy objeví topografické artefakty. Obr. 4: Zobrazení AgIBr krystalků v blízkém poli: topografie (vlevo) a SNOM signál v prošlém světle (vpravo) [7]. Tyto krystaly se používají ve fotografických emulzích a jejich složení a struktura jsou optimalizovány tak, aby umožnily vytvoření latentních obrazů. Krystaly AgIBr nevykazují téměř žádnou topografii povrchu (vlevo). SNOM signál (v prošlém světle) ukazuje změny, které pravděpodobně pocházejí ze změn indexu lomu, které jsou způsobeny gradientem koncentrace jódu uvnitř krystalů. Velikost obrazů je 5 5 µm, odtud plyne rozlišení pod λ/. 3.. Polarizační kontrast Polarizační kontrast umožňuje sledovat dvojlom vzorku a mnoho aspektů orientace na povrchu. SNOM s polarizačním kontrastem je zajímavý tím, že jeho rozlišovací schopnost je potenciálně větší než u konvenčního optického mikroskopu. Kombinace optické a topografické informace získaná pomocí obrazů střižných sil je také velmi atraktivní. V praxi rozlišujeme dvě experimentální schémata polarizačního SNOM, které závisejí na tom, který ze směrů vstupní polarizace je zachován (TE či p-polarizace, nebo TM či s-polarizace), nebo která z nich je modulovaná Kontrast vlnových délek Fluorescenční mikroskopie umožní jednak pozorovat různé typy luminiscence (fotoluminiscenci i elektroluminiscenci) a molekulární fluorescenční jevy, jednak i provádět spektroskopii pro chemickou identifikaci. 5

6 Obr.5: Zobrazení LiF tenké vrstvy. Topografie (vlevo), optický obraz s λ = 456 nm (uprostřed), fotoluminiscence (vpravo). Je známo, že LiF i další alkalické halidy, tvoří barevná centra, když jsou ozářeny elektrony o vysoké energii. Na obr. 5 je topografie vzorku (vlevo), obraz vlnové délky λ =456 nm v prošlém světle (uprostřed) a fotoluminiscenční signál (vpravo). Všechny tři signály byly registrovány současně. Luminiscence vypadá jako by pocházela z okrajů zrnek viditelných v topografickém obraze [8]. Fakt, že excitační světlo nevykazuje tento rys, indikuje, že tato zdánlivost nepochází z topografického artefaktu Magnetooptické zobrazení Magnetooptika popisuje interakci optického záření s magnetickým polem. Faradayův jev popisuje změnu polarizace světla prošlého magnetickým vzorkem [9]. V odraženém světle je analogickým jevem magnetooptický Kerrův jev, který má ohromné možnosti v technologických aplikacích, např. pro magnetooptické paměti (MO disky). Faradayův jev využívá kruhového dvojlomu: závisí na magnetizaci materiálu, jeho materiálových vlastnostech a tloušťce. Potom je možné pozorovat stáčení orientace přeneseného lineárně polarizovaného světla. Vismutem dopovaná vrstva yttrium-železo-granát (YIG) vykazuje kolmou magnetizaci, její domény mohou být zobrazeny použitím modulace polarizace (obr.6). Obr. 6: Zobrazení domén magnetizace u vizmutem dotované tenké vrstvy YIG pomocí modulace polarizace. a) topografie (vlevo), b) modulace polarizace (uprostřed), c) při fixní polarizaci (vpravo). Velikost úhlu Faradayovy rotace je dána změnou úhlu fáze mezi dopadajícím a prošlým světlem a může být monitorována záznamem výstupu fáze ze synchronního zesilovače. Vyjma několika částic prachu je topografie vzorku téměř rovinná (obrázek vlevo). V současně zaznamenaném optickém obraze (synchronní fáze) je patrně zřetelná doménová struktura YIF vstvičky (prostřední obrázek). Úhel Faradayovy rotace dosahuje hodnot,3 přes celý obrázek, tj. mezi horními a dolními doménami. Pro srovnání bylo provedeno měření téhož vzorku s fixní polarizací (obrázek vpravo). Určit velikost úhlu Faradayovy rotace na základě tohoto obrázku fixní polarizace je velmi nesnadný úkol, protože to vyžaduje změnu nastavení analyzátoru tak, aby došlo k maximálnímu otočení fáze. Tři obrázky odpovídají natočení analyzátoru postupně o. 6

7 3.5. Nanolitografie a charakteristika sond v blízkém optickém poli Litografie v blízkém poli se dnes jeví jako konkurent magnetického záznamu, díky možnosti vysoké hustoty uchování dat. Navrhli jsme metodu záznamu bez chemického zpracování, která využívá jako fotocitlivý materiál polymer PMMA dopovaný DR1. Barvivo absorbuje modro-zelenou část spektra, což umožňuje použít zelený polovodičový laser (λ = 53 nm) o výkonu 0,5 mw. Osvětlení povrchu způsobí repolymerizaci a odstranění polymeru. Laserový svazek je směřován optickým vláknem k pokovenému hrotu, na jehož konci se nachází nanoapertura o průměru nm, které vytváří lokální osvětlení přibližně 30 µw/µm. Vjem motivu se získá díky pohybu sondy. Čtení této modifikované topografie, jejíž amplituda je v jednotkách či desítkách nanometrů, probíhá v kvazireálném čase, díky zařízení využívající tzv. střižných sil, které je integrováno do mikroskopu. Obr. 7. Nanolitografický záznam do fotopolymeru pomocí optického řádkovacího mikroskopu s lokální sondou. Záznam se uskuteční pomocí zeleného světla laseru, čtení a měření pomocí červeného světla. Dosažená velikost jednoho otvoru je 140 nm. Spodní obrázek ukazuje záznam s rozlišením < 100 nm []. Obrázky znázorňují jednak záznam a čtení jediného otvoru i příklad zápisu, které byly získány pomocí pokovené sondy. Tento postup také umožní mapovat rozložení světelné energie na konci vysílací sondy a vyjádřit je ve tvaru reliéfu. To vytváří metodu pro optickou kalibraci sond, které jsou vyrobeny pomocí tepelného tažení, a umožňuje srovnat dopad různých typů sond, pokovených či nepokovených, na kvalitu zobrazení. Litografické rozlišení, definované jako nejmenší možná vzdálenost mezi zaregistrovanými body, je < 100 nm Vnitřní fotoemise rozhraní kov-polovodič v blízkém poli Znalost lokálních charakteristik v submikronové oblasti je pro polovodičovou fyziku základním požadavkem. Mikroskopie v blízkém poli je pro tuto oblast ideálním nástrojem. Např. osvětlení v blízkém poli umožnilo měřit lokální fotoproudy mezi polovodičem a polotransparentní kovovou elektrodou [10]. Malá tloušťka této elektrody (10-50 nm) 7

8 umožní lokální osvětlení rozhraní, bez zřetelné divergence svazku vyzářeného sondou, s příčným rozlišením < λ. Studie provedené na kombinaci Pt-GaP prokázaly velmi lokalizované změny fotoproudu, které nekorelovaly s topografickými vadami vzorku. Tyto změny mohou být spojeny s fluktuacemi výšky Schottkyho bariéry nebo s fluktuacemi počtu rekombinací elektron-díra, způsobenými přítomností chemických nečistot [11]. Prezentované výsledky ukazují jednak topografický obraz, jednak soubor tří obrazů odpovídající třem vlnovým délkám: λ = 543 nm (He-Ne laser), 78 nm a 1,3 µm (laserové diody). Dosažené výsledky jsou ve shodě s teorií: pro vyšší vlnové délky je světelná energie slabá, elektrony mají menší energii, nemohou tedy difundovat, zůstávají v blízkosti oblasti vzniku. Naopak pro krátké vlnové délky mají elektrony větší energii, dochází k difúzi elektronů z kovu a vlastní emise polovodičového materiálu vyjadřuje neostrost získaného obrazu. Tento výsledek ukazuje mapu rozložení a difúze elektrických nábojů v Schottkyho bariéře v oblasti, která byla dosud nedosažitelná (několik stovek nanometrů). Obr. 8. Detekce fotoproudu na Schotkyho bariéře. Princip experimentu a struktura vzorku. Na rozdíl od topografie závisí rozlišovací schopnost na vlnové délce. Na obrázcích získaných pomocí dielektrické optické sondy je patrný defekt, jehož viditelnost závisí na použité vlnové délce. 4. Závěry a perspektivy Optika v blízkém poli nanooptika a její základní nástroj mikroskopie v blízkém poli, dosáhla své zralosti. Vlastnosti evanescentních vln jsou používány zejména pro návrh nových součástek a pro jejich charakterizování směřující do oblasti optických nanotechnologií. Využití evanescentních vlastností vedlo a určitě povede ke značnému pokroku v tak rozmanitých oblastech jako jsou atomová optika, fotonika, optická mikroskopie v blízkém poli a následně k realizacím zařízení, která jsme si ještě před několika lety neuměli ani představit. Příkladem může být vedení atomů pomocí evanescentního pole vidů generovaných určitými vlnovody či optické struktury se zakázaným pásem fotonické krystaly. Optická mikroskopie v blízkém poli by měla pokrýt oblast klasické optické mikroskopie, ale s daleko vyšší rozlišovací schopností. SNOM by mohla mít nejvíce společného s AFM, ať již z hlediska základního nebo z hlediska aplikací. Její současná relativně malá rozlišovací 8

9 schopnost by mohla být kompenzována její kapacitou dodávat informace od jednotlivých vlnových délek. Mohla by v příštích letech se stát výtečným nástrojem pro lokální spektroskopii. Protože se jedná o oblast, která se permanentně vyvíjí, můžeme se od mikroskopie s lokální sondou dočkat ještě mnoha zajímavých překvapení. Dnes jsou to STM a AFM, které slouží za vzor vývoji ostatních. Jejich výkonnost se zdá být obtížně překonatelná. Úsilí by tedy mělo být směrováno do komplementárních oblastí, kde mohou přinést ostatní mikroskopie další nové informace a kde si mohou najít svou úspěšnou oblast využití. Poděkování Tato práce částečně přispívá k řešení projektů výzkumného záměru MŠMT MIKROSYN MSM 6000 a projektu GAČR 108/10/1474. Literatura [1] Nanotechnology and nanoscience, [] TOMÁNEK, P. Optická tunelová skenovací mikroskopie s lokální sondou, Habilitační práce, FEI VUT, Brno, [3] FILLARD, J-P. Near-field optics and nanoscopy, World Scientific, Singapore, [4] COURJON, D., BAINIER, C., Le champ proche optique, Springer, Paris, 00. [5] MAGONOV, S.N., WHANGBO, Myung-Hwan, Surface analysis with STM and AFM, VCH, Weinheim, [6] BORN, M., WOLF, E., Osnovy optiki, nd edition, Nauka, Moskva, [7] ŠKARVADA, P.; TOMÁNEK, P.; MACKŮ, R. Near- field photoelectric measurement of Si solar cells. In 4th European Photovoltaic Solar Energy Conference Proceedings. Hamburg, Germany: 009. s [8] TOMÁNEK, P. Optická tunelová mikroskopie s lokální sondou, In: FRANK, L., KRÁL, J. Metody analýzy povrchů, Iontové, sondové a speciální metody, Academia, Praha, 3.díl, 00, [9] LACOSTE, T., HUSER, T., HEINZELMANN, H. Faraday rotation imaging by Nearfield Optical Microscopy, Z. Phys. B 1997, 104, [10] TOMÁNEK, P.; ŠKARVADA, P.; GRMELA, L. Local optical and electric characteristics of solar cells. Proc of SPIE , paper 73880L1. [11] TOMÁNEK, P., BENEŠOVÁ, M., KOŠŤÁLOVÁ, D., LÉTAL, P, Local optical characteristics of semiconductor surfaces, Proc. of SPIE, 00, 4607, Kontakt: Prof. RNDr.Pavel Tománek, CSc. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií, Ústav fyziky, Technická 8, Brno 9

Mikroskopie se vzorkovací sondou. Pavel Matějka

Mikroskopie se vzorkovací sondou. Pavel Matějka Mikroskopie se vzorkovací sondou Pavel Matějka Mikroskopie se vzorkovací sondou 1. STM 1. Princip metody 2. Instrumentace a příklady využití 2. AFM 1. Princip metody 2. Instrumentace a příklady využití

Více

Spektrometrické metody. Reflexní a fotoakustická spektroskopie

Spektrometrické metody. Reflexní a fotoakustická spektroskopie Spektrometrické metody Reflexní a fotoakustická spektroskopie odraz elektromagnetického záření - souvislost absorpce a reflexe Kubelka-Munk funkce fotoakustická spektroskopie Měření odrazivosti elmg záření

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Fotonické nanostruktury (nanofotonika)

Fotonické nanostruktury (nanofotonika) Základy nanotechnologií KEF/ZANAN Fotonické nanostruktury (nanofotonika) Jan Soubusta 4.11. 2015 Obsah 1. ÚVOD 2. POHLED DO MIKROSVĚTA 3. OD ELEKTRONIKY K FOTONICE 4. FYZIKA PRO NANOFOTONIKU 5. PERIODICKÉ

Více

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka

Optická mikroskopie a spektroskopie nanoobjektů. Nanoindentace. Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů Nanoindentace Pavel Matějka Optická mikroskopie a spektroskopie nanoobjektů 1. Optická mikroskopie blízkého pole 1. Princip metody 2. Instrumentace 2. Optická

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA)

Optoelektronika. elektro-optické převodníky - LED, laserové diody, LCD. Elektronické součástky pro FAV (KET/ESCA) Optoelektronika elektro-optické převodníky - LED, laserové diody, LCD Elektro-optické převodníky žárovka - nejzákladnější EO převodník nevhodné pro optiku široké spektrum vlnových délek vhodnost pro EO

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Lasery optické rezonátory

Lasery optické rezonátory Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti

Spektroskopické metody. převážně ve viditelné, ultrafialové a blízké infračervené oblasti Spektroskopické metody převážně ve viditelné, ultrafialové a blízké infračervené oblasti Elektromagnetické záření Elektromagnetické záření je postupné vlnění elektromagnetického pole složeného z kombinace

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov

Pozorování Slunce s vysokým rozlišením. Michal Sobotka Astronomický ústav AV ČR, Ondřejov Pozorování Slunce s vysokým rozlišením Michal Sobotka Astronomický ústav AV ČR, Ondřejov Úvod Na Slunci se důležité děje odehrávají na malých prostorových škálách (desítky až stovky km). Granule mají typickou

Více

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ

STUDIUM OHYBOVÝCH JEVŮ LASEROVÉHO ZÁŘENÍ Úloha č. 7a STUDIUM OHYBOVÝCH JEVŮ ASEROVÉHO ZÁŘENÍ ÚKO MĚŘENÍ: 1. Na stínítku vytvořte difrakční obrazec difrakční mřížky, štěrbiny a vlasu. Pro všechny studované objekty zaznamenejte pomocí souřadnicového

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika

28 NELINEÁRNÍ OPTIKA. Nelineární optické jevy Holografie a optoelektronika 336 28 NELINEÁRNÍ OPTIKA Nelineární optické jevy Holografie a optoelektronika Světelná vlna (jako každá jiná vlna) vyjádřená ve tvaru y=y o sin (út - ) je charakterizována základními charakteristikami:

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX / 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)

Více

PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i.

PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i. PSI (Photon Systems Instruments), spol. s r.o. Ústav přístrojové techniky AV ČR, v.v.i. Konstrukce a výroba speciálních optických dielektrických multivrstev pro systémy FluorCam Firma příjemce voucheru

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ

MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Mikroskopické techniky MIKROSKOPIE JAKO NÁSTROJ STUDIA MIKROORGANISMŮ Slouží k vizualizaci mikroorganismů Antoni van Leeuwenhoek (1632-1723) Čočka zvětšující 300x Různé druhy mikroskopů, které se liší

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Lasery Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png http://cs.wikipedia.org/wiki/ Soubor:Spectre.svg Bezkontaktní termografie 2 Součásti laseru

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

Otázka č. 14 Světlovodné přenosové cesty

Otázka č. 14 Světlovodné přenosové cesty Fresnelův odraz: Otázka č. 4 Světlovodné přenosové cesty Princip šíření světla v optickém vlákně Odraz a lom světla: β α lom ke kolmici n n β α lom od kolmice n n Zákon lomu n sinα = n sin β Definice indexu

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Chemické senzory Principy senzorů Elektrochemické senzory Gravimetrické senzory Teplotní senzory Optické senzory Fluorescenční senzory Gravimetrické chemické senzory senzory - ovlivňov ování tuhosti pevného

Více

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií)

LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) LEED (Low-Energy Electron Diffraction difrakce elektronů s nízkou energií) RHEED (Reflection High-Energy Electron Diffraction difrakce elektronů s vysokou energií na odraz) Úvod Zkoumání povrchů pevných

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Zobrazovací metody v nanotechnologiích

Zobrazovací metody v nanotechnologiích Zobrazovací metody v nanotechnologiích Optická mikroskopie Z vlnové povahy světla plyne, že není možné detekovat menší podrobnosti než polovina vlnové délky světla. Viditelné světlo má asi 500 nm, nejmenší

Více

Princip rastrovacího konfokálního mikroskopu

Princip rastrovacího konfokálního mikroskopu Konfokální mikroskop Obsah: Konfokální mikroskop... 1 Princip rastrovacího konfokálního mikroskopu... 1 Rozlišovací schopnost... 2 Pozorování povrchů ve skutečných barvách... 2 Konfokální mikroskop Olympus

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390)

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Praktikum z pevných látek (F6390) Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Praktikum z pevných látek (F6390) Zpracoval: Michal Truhlář Naměřeno: 13. března 2007 Obor: Fyzika Ročník: III Semestr:

Více

Vlnové vlastnosti světla. Člověk a příroda Fyzika

Vlnové vlastnosti světla. Člověk a příroda Fyzika Název vzdělávacího materiálu: Číslo vzdělávacího materiálu: Autor vzdělávací materiálu: Období, ve kterém byl vzdělávací materiál vytvořen: Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Tematická

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková

Viková, M. : MIKROSKOPIE II Mikroskopie II M. Viková II Mikroskopie II M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz Osvětlovac tlovací soustava I Výsledkem Köhlerova nastavení je rovnoměrné a maximální osvětlení průhledného preparátu, ležícího

Více

5. Optické počítače. 5.1 Optická propojení

5. Optické počítače. 5.1 Optická propojení 5. Optické počítače Cíl kapitoly Cílem kapitoly je pochopit funkci optických počítačů. Proto tato kapitola doplňuje poznatky z předešlých kapitol k objasnění funkcí optických počítačů Klíčové pojmy Optické

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

1 Bezkontaktní měření teplot a oteplení

1 Bezkontaktní měření teplot a oteplení 1 Bezkontaktní měření teplot a oteplení Cíle úlohy: Cílem úlohy je seznámit se s technologií bezkontaktního měření s vyhodnocováním tepelné diagnostiky provozu elektrických zařízení. Součastně se seznámit

Více

PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A)

PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) PRINCIPY ZAŘÍZENÍ PRO FYZIKÁLNÍ TECHNOLOGIE (FSI-TPZ-A) GARANT PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc. (ÚFI) VYUČUJÍCÍ PŘEDMĚTU: Prof. RNDr. Tomáš Šikola, CSc., Ing. Stanislav Voborný, Ph.D. (ÚFI) JAZYK

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

Světlo v multimódových optických vláknech

Světlo v multimódových optických vláknech Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý

Více

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda

λ hc Optoelektronické součástky Fotorezistor, Laserová dioda Optoelektronické součástky Fotorezistor, Laserová dioda Úvod Optoelektronické součástky jsou založeny na interakci optického záření s elektricky nabitými částicemi v polovodičích. Vztah mezi energií fotonů

Více

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č.8 Laserové zpracování materiálu Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Lasery pro průmyslové zpracování materiálu E (ev) 0,12 1,17 1,17 1,2 1,5 4,17

Více

optické vlastnosti polymerů

optické vlastnosti polymerů optické vlastnosti polymerů V.Švorčík, vaclav.svorcik@vscht.cz Definice světelného paprsku světlo se šíří ze zdroje podél přímek (paprsky) Maxwell: světlo se šířív módech (videch) = = jediná možná cesta

Více

Mikroskop atomárních sil: základní popis instrumentace

Mikroskop atomárních sil: základní popis instrumentace Mikroskop atomárních sil: základní popis instrumentace Jednotlivé komponenty mikroskopu AFM Funkce, obecné nastavení parametrů a jejich vztah ke konkrétním funkcím software Nova Verze 20110706 Jan Přibyl,

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

1. Teorie mikroskopových metod

1. Teorie mikroskopových metod 1. Teorie mikroskopových metod A) Mezi první mikroskopové metody patřilo barvení biologických preparátů vhodnými barvivy, což způsobilo ovlivnění amplitudy světla prošlého preparátem, který pak byl snadno

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku

Měřicí řetězec. měřicí zesilovač. převod na napětí a přizpůsobení rozsahu převodníku Měřicí řetězec fyzikální veličina snímač měřicí zesilovač A/D převodník počítač převod fyz. veličiny na elektrickou (odpor, proud, napětí, kmitočet...) převod na napětí a přizpůsobení rozsahu převodníku

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

Moderní metody rozpoznávání a zpracování obrazových informací 15

Moderní metody rozpoznávání a zpracování obrazových informací 15 Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie

vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie Chování polymerů v elektrickém a magnetickém poli vodič u něho dochází k transportu el. nabitých částic, který je nevratný, dochází ke vzniku proudu a disipaci energie dielektrikum, izolant, nevodič v

Více

Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času

Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času Fotonické sítě jako médium pro distribuci stabilních signálů z optických normálů frekvence a času Ondřej Číp, Šimon Řeřucha, Radek Šmíd, Martin Čížek, Břetislav Mikel (ÚPT AV ČR) Josef Vojtěch a Vladimír

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny. Polovodičové lasery Energie elektronů v atomech nabývá diskrétních hodnot energetické hladiny. Energetické hladiny tvoří pásy Nejvyšší zaplněný pás je valenční, nejbližší vyšší energetický pás dovolených

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Infračervená spektroskopie

Infračervená spektroskopie Infračervená spektroskopie 1 Teoretické základy Podstatou infračervené spektroskopie je interakce infračerveného záření se studovanou hmotou, kdy v případě pohlcení fotonu studovanou hmotou mluvíme o absorpční

Více

FYZIKA II. Petr Praus 6. Přednáška elektrický proud

FYZIKA II. Petr Praus 6. Přednáška elektrický proud FYZIKA II Petr Praus 6. Přednáška elektrický proud Osnova přednášky Elektrický proud proudová hustota Elektrický odpor a Ohmův zákon měrná vodivost driftová rychlost Pohyblivost nosičů náboje teplotní

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i.

Věra Mansfeldová. vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Mikroskopie, která umožnila vidět Feynmanův svět Věra Mansfeldová vera.mansfeldova@jh-inst.cas.cz Ústav fyzikální chemie Jaroslava Heyrovského AV ČR, v. v. i. Richard P. Feynman 1918-1988 1965 - Nobelova

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

Měření vlastností optického vlákna

Měření vlastností optického vlákna ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická LABORATORNÍ ÚLOHA Č. 1 Měření vlastností optického vlákna Vypracovali: Jan HLÍDEK & Lukáš TULACH V rámci předmětu: Telekomunikační systémy

Více

METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ

METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ METODY CHARAKTERIZACE POLOVODIVÝCH TERMOELEKTRICKÝCH MATERIÁLŮ J. KAŠPAROVÁ, Č. DRAŠAR Fakulta chemicko - technologická, Univerzita Pardubice, Studentská 573, 532 10 Pardubice, CZ, e-mail:jana.kasparova@upce.cz

Více

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112

Elektřina a magnetismus UF/01100. Základy elektřiny a magnetismu UF/PA112 Elektřina a magnetismus UF/01100 Rozsah: 4/2 Forma výuky: přednáška Zakončení: zkouška Kreditů: 9 Dop. ročník: 1 Dop. semestr: letní Základy elektřiny a magnetismu UF/PA112 Rozsah: 3/2 Forma výuky: přednáška

Více

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014

Úvod, optické záření. Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Úvod, optické záření Podkladový materiál k přednáškám A0M38OSE Obrazové senzory ČVUT- FEL, katedra měření, Jan Fischer, 2014 Materiál je pouze grafickým podkladem k přednášce a nenahrazuje výklad na vlastní

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

Obrazové snímače a televizní kamery

Obrazové snímače a televizní kamery Obrazové snímače a televizní kamery Prof. Ing. Václav Říčný, CSc. Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Snímače obrazových signálů akumulační a neakumulační. Monolitické

Více

1. Millerovy indexy, reciproká mřížka

1. Millerovy indexy, reciproká mřížka Obsah 1. Millerovy indexy, reciproká mřížka 2. Krystalografické soustavy, Bravaisovy mřížky 3. Poruchy v pevných látkách 4. Difrakční metody určování struktury pevných látek 5. Mechanické vlastnosti pevných

Více

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii Speciální spektrometrické metody Zpracování signálu ve spektroskopii detekce slabých signálů synchronní detekce (Lock-in) čítaní fotonů měření časového průběhu signálů metoda fázového posuvu časově korelované

Více

Přednáška č.14. Optika

Přednáška č.14. Optika Přednáška č.14 Optika Obsah základní pojmy odraz a lom světla disperze polarizace geometrická optika elektromagnetické záření Světlo = elektromagnetické vlnění o vlnové délce 390nm (fialové) až 790nm (červené)

Více

Frekvenční analýza optických zobrazovacích systémů

Frekvenční analýza optických zobrazovacích systémů OPT/OZI L05 Frekvenční analýza optických zobrazovacích systémů obecný model vstupní pupila výstupní pupila v z u y z o x z i difrakčně limitovaný zobrazovací systém: rozbíhavá sférická vlna od bodového

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9.

rychlostí šíření světla v tomto prostředí ku vakuu, n = c/v. Pro vzduch je index lomu přibližně 1, voda má 1.33, sklo od 1.5 do 1.9. 1 Transport světla Pro popis šíření světla se může použít více metod v závislosti na okolnostech. Pokud je vlnová délka zanedbatelně malá nebo překážky, které klademe světlu do cesty, jsou mnohem větší

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více