VYSOKOFREKVENČNÍ A MIKROVLNNÁ TECHNIKA

Rozměr: px
Začít zobrazení ze stránky:

Download "VYSOKOFREKVENČNÍ A MIKROVLNNÁ TECHNIKA"

Transkript

1 VYSOKOFREKVENČNÍ A MIKROVLNNÁ TECHNIKA Přednášky Doc. Ing. Stanislav Hanus, CSc. Prof. Ing. Jiří Svačina, CSc. ÚSTAV RADIOELEKTRONIKY

2 Stanislav Hanus, Jiří Svačina, ISBN 8-4--X

3 P Ř E D M L V A Skripta Vysokofrekvenční a mikrovlnná technika jsou určena studentům, kteří jsou zapsáni a navštěvují stejnojmenný povinný předmět (se zkratkou VMT) vyučovaný ve. ročníku,. stupně oboru Elektronika a sdělovací technika. Skripta jsou rozdělena do dvou částí. V první části s názvem Vysokofrekvenční technika jsou uvedeny základní poznatky týkající se vysokofrekvenčních prvků a obvodů, tedy problematiky, která je studentům v běžné literatuře v takto ucelené formě obtížně přístupná. Ve druhé části skripta s názvem Mikrovlnná technika jsou ve zbývajících kapitolách uvedeny pouze základní poznatky, které je nutno chápat jako úvod do této široké a obtížné problematiky. Doufáme, že tato skripta pomohou doplnit studentům jejich poznatky získané na přednáškách i ostatních formách výuky a tím usnadní jejich přípravu ke zkoušce. Mnoho úspěchů při studiu přejí všem studentům autoři V Brně,.. Doc. Ing. Stanislav Hanus, CSc. Prof. Ing. Jiří Svačina, CSc. 3

4 O B S A H Část první VYSOKOFREKVENČNÍ TECHNIKA ZÁKLADNÍ PRVKY A OBVODY Základní obvodové prvky Sériový rezonanční obvod Paralelní rezonanční obvod....4 Transformační vlastnosti rezonančních obvodů Vázané rezonanční obvody Činitel vazby a stupeň vazby Transformace impedance Rezonanční křivky....6 Filtry se soustředěnou selektivitou Piezokrystalové filtry Piezokeramické filtry Monolitické piezokrystalové filtry Filtry s povrchovou akustickou vlnou Aktivní prvky Bipolární tranzistory Tranzistory řízené elektrickým polem VYSOKOFREKVENČNÍ ZESILOVAČE Úzkopásmové linearizované zesilovače Obvodové funkce zesilovače Stabilita zesilovače Šumové vlastnosti zesilovače Analýza zesilovače Způsoby snížení vlivu vnitřní zpětné vazby tranzistoru Pasivní přizpůsobovací obvody Základní body návrhu jednostupňového zesilovače Několikastupňové zesilovače Širokopásmové zesilovače Širokopásmové zesilovače bez selektivních obvodů Širokopásmové zesilovače se selektivními obvody Širokopásmové zesilovače s rozprostřeným zesílením Výkonové zesilovače Pracovní třídy zesilovače Pracovní stavy zesilovače Stanovení složek výstupního proudu Změna režimu Příklady zapojení Zkreslení signálu a dynamický rozsah zesilovače Zkreslení signálu Dynamický rozsah zesilovače... 85

5 3 OSCILÁTORY Základní parametry Oscilátory LC se záporným diferenciálním odporem Zpětnovazební oscilátory LC Obecné zapojení Základní zapojení oscilátorů Analýza oscilátoru Krystalové oscilátory Stabilita kmitočtu oscilátorů Přeladitelné oscilátory LC... 4 SMĚŠOVAČE Analýza směšovače Základní parametry směšovače Základní zapojení směšovačů MODLÁTORY Modulační charakteristiky Modulátory AM Modulátor s kolektorovou modulací Modulátor s bázovou modulací Modulátor DSB Modulátor SSB Kvadraturní modulátor QAM Modulátory FM Modulátory pro přímou FM Modulátory pro nepřímou FM DEMODLÁTORY Demodulátory AM signálů Diodový detektor Synchronní (koherentní) demodulátor Demodulátory FM signálů Fázový detektor Poměrový demodulátor Koincidenční demodulátor Šumové poměry Preemfáze a deemfáze FÁZOVÝ ZÁVĚS Základní bloky Fázový detektor závěsu Filtr smyčky Napětím řízený oscilátor Přenosové funkce Popis činnosti Vliv filtru smyčky Aplikace fázového závěsu

6 8 KMITOČTOVÉ SYNTEZÁTORY Rozdělení syntezátorů Syntezátory s nepřímou koherentní syntézou Syntezátory s nepřímou koherentní syntézou bez předděliče Syntezátory s nepřímou koherentní syntézou s pevným předděličem Syntezátory s nepřímou koherentní syntézou s řízeným předděličem Jednoduché příklady návrhu syntezátoru Příklady zapojení syntezátorů Syntezátory s přímou koherentní syntézou Metoda přímé přeměny Metoda harmonických Syntezátory s přímou nekoherentní syntézou Základní literatura pro studium části Vysokofrekvenční technika Část druhá MIKROVLNNÁ TECHNIKA 9 MIKROVLNNÁ VLNOVODOVÁ TECHNIKA Úvod do problematiky mikrovlnné techniky Typy mikrovlnných vedení Homogenní duté kovové vlnovody Základní parametry Kovové vlnovody obdélníkového průřezu Kovové vlnovody kruhového průřezu Koaxiální (souosé) vedení a koaxiální vlnovody Srovnání různých druhů vlnovodů a koaxiálních vedení Značení a normalizace ve vlnovodové a koaxiální technice Výroba a technologie vlnovodů a koaxiálních konektorů Dutinové rezonátory Základní parametry Kvádrové rezonátory Válcové rezonátory Koaxiální rezonátory Způsoby zapojení rezonátoru do vedení Buzení vlnovodů a dutinových rezonátorů Mikrovlnné vlnovodové zeslabovače Odporové (absorpční) zeslabovače Bezodrazové koncovky Nereciproční mikrovlnné feritové obvody Gyromagnetické jevy ve feritech a jejich využití v mikrovlnné technice Feritové izolátory Feritové cirkulátory Mikrovlnné posouvače fáze Fázovač se změnou průřezu Fázovače s pohyblivými dielektrickými částmi

7 9.8 Směrové vazební členy (směrové odbočnice) Základní vlastnosti směrových odbočnic Vlnovodové reaktanční členy Vlnovodové písty a tlumivky Vlnovodové clony Vlnovodové kolíky Vlnovodové filtry Literatura... 8 MIKROVLNNÁ INTEGROVANÁ TECHNIKA Historie a vznik mikrovlnné integrované techniky Hybridní mikrovlnné integrované obvody Základní typy pasivních hybridních mikrovlnných integrovaných struktur Technologie hybridních MIO Návrhové problémy hybridních MIO Některé výpočetní vztahy pro analýzu a syntézu mikropáskových struktur MIO se soustředěnými parametry Rozdělení MIO se soustředěnými parametry Monolitické mikrovlnné integrované obvody (MMIO) Materiály pro MMIO Některé otázky a problémy MMIO Druhy pasivních mikrovlnných integrovaných obvodů Základní výpočetní vztahy pro analýzu a návrh některých mikropáskových obvodů Buzení a pouzdra mikrovlnných integrovaných obvodů....7 Kombinované a zvláštní MIO pro pásma mm vln Vícevrstvé (objemové) MIO Ploutvové vedení (fin line) Příklady mikrovlnných integrovaných subsystémů a systémů pro rádiovou komunikaci Literatura... 7

8 ZÁKLADNÍ PRVKY A OBVODY. Základní obvodové prvky Ideální základní obvodové prvky se nazývají rezistor, kapacitor a induktor. Jsou charakterizovány pouze jediným parametrem. Parametrem ideálního rezistoru je odpor R, jeho převrácená hodnota se označuje G a nazývá se vodivost rezistoru. Kapacitor má parametr C nazývaný kapacita, induktor má parametr L nazývaný indukčnost. Schematické značky těchto prvků, užívané pro kreslení schémat radioelektronických obvodů, jsou nakresleny na obr..a,b,c. Skutečné radioelektronické obvody jsou realizovány pomocí vyrobených diskrétních součástek, které se nazývají rezistor (slangově odpor), kondenzátor a cívka. Tyto reálné součástky mají kromě základního (dominantního) parametru i parametry parazitní, jejichž velikost závisí na použité technologii výroby. Obvodové modely reálných obvodových prvků (součástek) lze vytvořit pomocí ideálních obvodových prvků. Příklady užívaných modelů reálných prvků jsou nakresleny na obr.. d,e,f,g,h. a) b) c) d) e) f) g) h) Obr... Schematická značka: a) ideálního rezistoru, b) kapacitoru, c) induktoru, obvodový model: d) reálného rezistoru, e), f) kondenzátoru, g), h) cívky. Sériový rezonanční obvod Sériovým spojením kondenzátoru (kapacitoru) a cívky (induktoru) vznikne sériový rezonanční obvod. Jeho obvodový model nakreslený na obr.. se skládá z kapacitoru, rezistoru (ideálního) a induktoru. Rezistor R zde reprezentuje ztráty kondenzátoru a cívky, případně zahrnuje i vnitřní odpor reálného napájecího zdroje. Pro impedanci obvodu platí Obr... Sériový rezonanční obvod Z ωc jϕ ( ω ) R + j ωl R + jx Ze. (.) Při harmonickém buzení obvodu ze zdroje napětí s amplitudou, závisí proud tekoucí obvodem na modulu impedance Z a tedy na kmitočtu signálu zdroje. Grafické znázornění závislosti proudu I na kmitočtu f (nebo ω ) se nazývá rezonanční křivka. Je nakreslena na obr..3a a lze ji popsat rovnicí I. (.) R + ωl ωc Prochází počátkem souřadnic, neboť při f je kapacitní reaktance nekonečně veliká. Pro f je nekonečně veliká zase induktivní reaktance, takže velikost proudu tekoucího obvodem se opět blíží nule. Stav, kdy kapacitní a induktivní reaktance jsou si rovny, tj. výsledná reaktance obvodu je rovna nule, se 8

9 nazývá sériovou rezonancí obvodu. Z podmínky X lze stanovit Thomsonův vztah pro výpočet rezonančního kmitočtu ω resp. LC f. (.3) π LC Při rezonanci nabývá modul impedance obvodu své minimální hodnoty Z R, proud tekoucí obvodem nabývá naopak své maximální hodnoty I r R. (.4) Šířka propustného pásma B sériového rezonančního obvodu je definována jako rozmezí dvou kmitočtů v okolí rezonance, při kterých je absolutní hodnota reaktance obvodu rovna jeho činnému odporu. Jestliže tedy platí pro uvažovaný případ lze psát X R, potom Z R + X R a Z I r B,77 Ir. (.5) I R Symbol I B označuje proud na mezi propustného pásma. Vyjádříme-li poměr proudů IB a I r v jednotkách db, platí pro mez propustného pásma IB log log log 3 db. (.6) I r Šířka pásma sériového rezonančního obvodu je tedy určena dvěma kmitočty, při kterých poklesne proud tekoucí obvodem na hodnotu,77 I r neboli o 3 db oproti proudu tekoucímu obvodem za rezonance. Na obr..3b je nakreslena kmitočtová závislost argumentu impedance sériového rezonančního obvodu, někdy označovaná jako jeho fázová charakteristika. Na podrezonančních kmitočtech má obvod kapacitní charakter neboť kapacitní reaktance je větší než reaktance induktivní. Argument impedance má proto záporné znaménko a pro kmitočty jdoucí k nule se jeho hodnota blíží 9. Naopak při nadrezonančních kmitočtech má obvod induktivní charakter neboť induktivní reaktance je větší než reaktance kapacitní. Argument impedance má proto kladné f +9 Obr..3. a) Rezonanční křivka sériového rezonančního obvodu b) Kmitočtová závislost argumentu impedance obvodu znaménko a pro se jeho hodnota blíží. Při rezonanci má obvod reálný charakter, a proto argument impedance je roven nule. Pro krajní kmitočty propustného pásma platí X R, takže argument impedance bude roven ± 45. Jestliže změníme u sériového rezonančního obvodu velikost odporu R, např. použitím prvků (kondenzátoru nebo cívky) s většími nebo menšími ztrátovými odpory nebo použitím napěťového zdroje s jiným vnitřním odporem, změní se proud tekoucí obvodem za rezonance i celkový tvar rezonanční křivky, jak vyplývá z rovnice (.). V důsledku toho se změní i šířka propustného pásma B. Na obr..4 jsou nakresleny rezonanční křivky pro různé hodnoty odporu R. Pro malé hodnoty odporu R je rezonanční křivka úzká, proud za rezonance je velký a šířka propustného pásma je malá. Rezonanční obvod vykazuje dobré selektivní vlastnosti. Naopak pro velké hodnoty odporu R je rezonanční křivka plochá, proud za rezonance je malý a šířka propustného pásma je velká. Rezonanční obvod ztrácí charakter selektivního obvodu. Obr..4. Rezonanční křivky sériového rezonančního obvodu pro různé hodnoty odporu R ( R < < R, L a C jsou konstantní) R 3 9

10 Kvalitu rezonančního obvodu můžeme vyjádřit pomocí činitele jakosti obvodu, který se označuje symbolem Q. Je definován vztahem ω A Q, (.7) P kde A je energie, která přechází z elektrického pole do magnetického pole (kmitá) a P je činný výkon, který se ztrácí v odporu R (ztrátový odpor). Součin ω A představuje jalový výkon induktoru nebo kapacitoru při rezonanci. Poněvadž platí A L I a P R I, (.8) lze po dosazení (.8) do (.7) psát ωl Q R ω CR R L C Z R. (.9) Činitel jakosti sériového rezonančního obvodu lze tedy určit jako podíl induktivní nebo kapacitní reaktance obvodu za rezonance a odporu R. Převrácená hodnota činitele jakosti se nazývá činitel tlumení a označuje se symbolem d. Veličina Z je charakteristická impedance obvodu a lze ji vyjádřit pomocí různých veličin, např. Obr..5. Rezonanční křivky sériového rezonančního obvodu pro různé poměry L C ( R je konstantní, L C < C L < L 3 C 3 ) L Z ω L. (.) ω C C Ze vztahu (.9) vyplývá, že činitel jakosti Q je přímo úměrný charakteristické impedanci obvodu Z vyjádřené ve tvaru L C. Máme-li tedy sériový rezonanční obvod naladěný na kmitočet f, potom při konstantní hodnotě odporu R můžeme změnit jeho činitel jakosti změnou poměru L C. Současně s tím se změní i šířka propustného pásma B. Tuto skutečnost dokumentuje obr..5, kde jsou znázorněny rezonanční křivky pro různé poměry L C. Poněvadž ve všech případech uvažujeme stejnou hodnotu odporu R, mají všechny křivky při rezonanci stejnou hodnotu rezonančního proudu. Mění se tedy pouze jejich tvar a s ním i šířka propustného pásma B. Jestliže budíme sériový rezonanční obvod ze zdroje harmonického signálu s amplitudou, protéká při rezonanci obvodem proud I r daný vztahem (.4). Poněvadž za rezonance má obvod reálný charakter, napětí zdroje a proud I r jsou ve fázi. Napětí na odporu R je proto stejné, jako je napětí napájecího zdroje. Pro napětí Lr na induktoru a napětí Cr na kapacitoru při rezonanci lze psát a Lr jω L I r jωl jq (.) R Cr I Q C r j j jω ω C R. (.) Napětí na induktoru předbíhá napětí zdroje a tím i proud I r o 9, zatímco napětí na kapacitoru se zpožďuje za napětím zdroje a proudem I r o 9. Za rezonance jsou tedy napětí na induktoru a kapacitoru stejně veliká, ale opačného směru (jejich součet je roven nule). Ve srovnání s napětím zdroje jsou obě napětí Q krát větší. Jestliže budíme sériový rezonanční obvod např. z generátoru s výstupním napětím V a činitel jakosti obvodu je např. Q, bude napětí na kondenzátoru Cr V!!! Proto je třeba použít kondenzátor s dostatečně vysokým průrazným napětím.

11 Impedance sériového rezonančního obvodu je dána vztahem (.). Jestliže v tomto vztahu vytkneme před závorku člen ω L a člen v závorce upravíme pomocí Thomsonova vztahu dostáváme ω ω ω ( ) + Z ω R + j ωl R + jωl R jωl. (.3) ωc ω ωωlc ω ω Výraz v závorce se nazývá činitel rozladění a označuje se symbolem F. Lze psát F ω ω ω ω f f f f. (.4) S pomocí (.4) můžeme vztah (.3) zjednodušit a z obou členů vytkneme Z ω ω ω ω + ω L R R. Po úpravě dostaneme ( ω ) R + jω L R + jω LF R j F R( + jqf ) R( jα + ). (.5) Součin QF α se nazývá stupeň rozladění. Impedanci sériového rezonančního obvodu můžeme podle vztahu (.) psát také ve tvaru X Z ( ω ) R + jx R + j. (.6) R Srovnáním (.5) a (.6) dostáváme, že stupeň rozladění lze vyjádřit také vztahem X α tgϕ, (.7) R kde ϕ je argument impedance rezonančního obvodu. Pro modul impedance sériového rezonančního obvodu platí S pomocí (.8) lze vyjádřit proud tekoucí obvodem Z R + α. (.8) Úpravou (.9) získáme závislost I r I. (.9) R + α + α I I r + α, (.) definující tzv. normovanou rezonanční křivku, pomocí které můžeme popsat jakýkoliv sériový rezonanční obvod. platí Ze vztahu (.) vyplývá, že pro krajní kmitočty propustného pásma je stupeň rozladění Řešením rovnice I I r I I B r + α α ± neboť. (.) f f Q F Q ± (.) f f pro kmitočty f a f, které určují propustné pásmo, tj. f f B, získáme velice důležitý a pro praxi užitečný vztah f Q. (.3) B

12 Poznámka: Ze vztahu (.) lze také odvodit, že rezonanční kmitočet kmitočtů a, tj. platí f f f f f přímky procházející bodem f kolmo na osu kmitočtu!!! f se rovná geometrickému průměru. Rezonanční křivka tedy není osově souměrná podle.3 Paralelní rezonanční obvod Duálním obvodem k sériovému rezonančnímu obvodu, nakresleném na obr.., je paralelní rezonanční obvod, jehož obvodový model je uveden na obr..6. K proudovému zdroji je připojena paralelní kombinace vodivosti, kapacitoru a induktoru. Vodivost G reprezentuje ztráty obou reálných akumulačních prvků, případně zahrnuje i vnitřní vodivost reálného zdroje. Pro admitanci obvodu platí Obr..6. Paralelní rezonanční obvod kmitočtu ( ω ) Z jϕ Y G + j ωc G + jb Ye, (.4) ( ω ) ωl kde B je výsledná susceptance obvodu. Při harmonickém buzení obvodu ze zdroje proudu s amplitudou I, závisí napětí na rezonančním obvodu na modulu admitance Y a tedy na kmitočtu signálu zdroje. Grafické znázornění závislosti napětí na kmitočtu f (nebo ω ) se nazývá rezonanční křivka. Lze ji popsat rovnicí Z podmínky ω resp. LC I I ZI. (.5) Y G + ωc ωl B lze stanovit vztah pro výpočet rezonančního f. (.6) π LC Podobně jako u sériového rezonančního obvodu, lze i pro paralelní rezonanční obvod odvodit vztahy pro admitanci obvodu ve tvaru ( ω ) G( + jα ) Y a Y G + α. (.7) Při rezonanci, kdy α, nabývá modul admitance obvodu své minimální hodnoty Y G, zatímco napětí na obvodu nabývá naopak své maximální hodnoty kde R G se nazývá rezonanční odpor. I r IR, (.8) G Šířka propustného pásma B paralelního rezonančního obvodu je definována jako rozmezí dvou kmitočtů v okolí rezonance, při kterých poklesne napětí na rezonančním obvodu na hodnotu,77 r (pokles o 3 db ), jak je naznačeno na obr..7a. Poněvadž napětí na rezonančním obvodu je přímo úměrné impedanci obvodu, bývá rezonanční křivka kreslena také jako závislost modulu impedance obvodu na kmitočtu. Mezi šířkou propustného pásma a činitelem jakosti obvodu platí opět vztah (.3). Činitel jakosti obvodu Q je definován vztahem (.7). Poněvadž pro energii A a činný výkon P platí lze po dosazení (.9) do (.7) psát A C a P R, (.9)

13 R R R ωc Q ω CR. (.3) ωl L Z G ωlg C Činitel jakosti paralelního rezonančního obvodu se tedy rovná podílu rezonančního odporu a induktivní nebo kapacitní reaktance obvodu za rezonance. Pro charakteristickou impedanci obvodu platí vztah (.). Z Jestliže budíme paralelní rezonanční obvod ze zdroje harmonického signálu s amplitudou I, je za rezonance na obvodu napětí r dané vztahem (.8). Poněvadž admitance obvodu je za rezonance reálná, je napětí r ve fázi s proudem I. Proud tekoucí vodivostí G je stejný, jako proud tekoucí z napájecího zdroje. Pro proudy I tekoucí induktorem a I tekoucí kapacitorem při rezonanci platí Lr Cr r j I I Lr j jq I ω L ω L G (.3) r a I Cr I jωc jq I. G (.3) jω C Proud tekoucí induktorem se zpožďuje za proudem zdroje I a tím i napětím r o 9, zatímco proud tekoucí kapacitorem předbíhá proud I a tedy i napětí r o 9. Za rezonance jsou tedy proudy tekoucí induktorem a kapacitorem stejně veliké, ale opačného směru (jejich součet je roven nule). Ve srovnání s proudem zdroje jsou oba proudy Q krát větší. Jestliže budíme paralelní rezonanční obvod např. z generátoru s výstupním proudem I ma a činitel jakosti obvodu je např. Q, je proud tekoucí cívkou I Lr A!!! Proto je třeba pro konstrukci cívky použít vodič dostatečného průřezu. Cívky rezonančních obvodů ve vysílačích velkých výkonů bývají proto konstruovány z měděných trubek, které mohou být i postříbřené. Model paralelního rezonančního obvodu, nakreslený na obr..6, vytvořený jako duální obvod k sériovému rezonančnímu obvodu, nevystihuje přesně chování skutečného rezonančního obvodu, především při nulovém kmitočtu a v jeho blízkém okolí. Rezonanční křivka skutečného obvodu, nakreslená na obr..7a, vykazuje při nulovém kmitočtu určité malé napětí, které v obvodu vzniká v důsledku nenulového odporu vinutí cívky. Tuto skutečnost lépe vystihuje model nakreslený na obr..8. Cívka je modelována sériovou kombinací induktoru L a ztrátového rezistoru R L, podobně kondenzátor je modelován sériovým spojením kapacitoru C a ztrátového rezistoru RC. Impedance obou větví můžeme vyjádřit ve tvaru Z L R L + jx Pro výslednou impedanci obvodu lze psát ZL ZC Z Z + Z L C L a Z R jx. C ( RL + jx L )( RC jxc ) ( R + jx ) + ( R jx ) L L C C C C. (.33) Oddělíme-li od sebe reálnou a imaginární složku, dostaneme Obr..7. a) Rezonanční křivka paralelního rezonančního obvodu b) Kmitočtová závislost argumentu impedance obvodu kde Z s RLZ Z R + jx C + R C s Z Z L X LZ + j C X Z s C Z L, (.34) je modul impedance, která se rovná sériovému spojení Obr..8. Model paralelního rezonančního obvodu se dvěma větvemi 3

14 impedancí a, takže platí Z L Z C Z s ( R + R ) + ( X X ) L C L C a dále Z L RL + X L a Z C RC + XC. V uvažovaném obvodu nastane rezonance, jestliže imaginární část výsledné impedance (.34) bude rovna nule. Rezonanční podmínka je proto dána vztahem X LZC XCZL X. (.35) Z Z podmínky (.35) vyplývá, že rezonanční kmitočet závisí nejen na indukčnosti L a kapacitě C, ale i na ztrátových rezistorech R a R. Pouze v případě, kdy platí L C L s R << X a R << X, (.36) L tj. rezistory v jednotlivých větvích můžeme zanedbat vůči jejich reaktancím, lze podmínku (.35) zjednodušit do tvaru X L XC XC X L X L XC ( XC X L ) X. (.37) Z Z s Rezonance potom nastává v případě, když X C X L, což je stejná podmínka, jako podmínka platná pro sériový rezonanční obvod. Z ní je možné stanovit rezonanční kmitočet ve tvaru (.3), (.6). Jestliže nelze splnit podmínky (.36), musíme rezonanční kmitočet vypočítat z podmínky (.35), tj. Po dosazení do (.38) a úpravě dostáváme pro rezonanční kmitočet vztah L C Z R ω resp. LC Z R kde je charakteristická impedance obvodu daná vztahem (.). Z C s C X Z X Z. (.38) L C C L L C Z R f, (.39) π LC Z R Odpor obvodu za rezonance neboli rezonanční odpor určíme z (.34), při uvažování rezonanční podmínky (.35). Jestliže navíc platí i podmínky (.36) dostáváme R R L X C L C ( R + R ) RL + RC RL + RC L + R C C X L X X. (.4) Rezonanční odpor paralelního rezonančního obvodu se tedy rovná druhé mocnině reaktance libovolné větve obvodu za rezonance, dělené celkovým odporem obou větví v sérii R s RL + RC. Po dosazení do (.4) za reaktance jednotlivých větví a úpravě, dostáváme další vztahy pro výpočet rezonančního odporu ω R R L s ωc R s Z R s L CR s Q R s QZ. (.4) Lze odvodit, že vztahy (.4) a (.4) můžeme použít s dostatečnou přesností (lepší než %) pro rezonanční obvody, u kterých je Q 5. Kmitočtová závislost argumentu impedance paralelního rezonančního obvodu (.34) je nakreslena na obr..7b. Za rezonance je impedance obvodu reálná a tedy argument impedance je nulový. Na podrezonančních kmitočtech má obvod induktivní charakter neboť impedance induktivní větve je menší než impedance kapacitní větve a při jejich paralelním spojení se výrazněji podílí na výsledné impedanci obvodu. Argument impedance proto nabývá kladných hodnot a pro kmitočty jdoucí k nule se jeho hodnota blíží +9. Na nadrezonančních kmitočtech má obvod kapacitní charakter neboť na výsledné impedanci obvodu se nyní výrazněji podílí impedance kapacitní větve. Argument impedance je proto záporný a pro kmitočet f se jeho hodnota blíží 9. Z (.3) a (.4) vyplývají vzájemné vztahy mezi činitelem jakosti obvodu, rezonančním odporem, reaktancemi jednotlivých větví za rezonance, charakteristickou impedancí obvodu a odporem. Na obr. R s 4

15 .9 jsou nakresleny rezonanční křivky obvodů pro různé hodnoty odporu R s. Rezonanční křivka pro R s R je úzká a vychází téměř z počátku souřadnic poněvadž odpor R je malý. Obvod vykazuje selektivní vlastnosti, jeho šířka propustného pásma je malá, činitel jakosti a rezonanční odpor jsou velké. Naproti tomu rezonanční křivka pro R s R 3 je plochá a v důsledku velkého odporu R 3 vzniká na obvodu při f velké stejnosměrné napětí. Obvod ztrácí selektivní charakter, jeho šířka propustného pásma je veliká, činitel jakosti a rezonanční odpor jsou malé. Na obr.. jsou nakresleny rezonanční křivky obvodů pro různé hodnoty poměru L C. Z obrázku je vidět, že pro větší poměr L C je větší i rezonanční odpor a činitel jakosti obvodu, a proto vykazuje obvod lepší selektivní vlastnosti. Obr..9. Rezonanční křivky paralelního rezonančního obvodu pro různé hodnoty odporu R ( R < < R, L a C jsou konstantní) konstantní, Obr... Rezonanční křivky paralelního rezonančního obvodu pro různé poměry L C ( R je s R 3 C s 3 C L < L C < L 3 ).4 Transformační vlastnosti rezonančních obvodů Na obr.. je nakreslen paralelní rezonanční obvod složený ze tří prvků kapacitoru C, induktoru L a vodivosti G, která reprezentuje pouze ztráty reálných akumulačních prvků. Poněvadž k obvodu není připojen budící zdroj ani zátěž, nazývá se takový obvod nezatížený. Pro tento ryze teoretický případ můžeme podle známých vztahů určit příslušné parametry obvodu. Skutečnost, že parametry platí pro nezatížený obvod, vyjádříme indexem nula u příslušného symbolu. Proto vodivost nezatíženého obvodu označujeme symbolem G a pro činitel jakosti Q nezatíženého obvodu a šířku propustného pásma B nezatíženého obvodu používáme výpočtové vztahy Q ωc G ω LG f a B. (.43) Q (.4) Kdybychom k nezatíženému rezonančnímu obvodu připojili zátěž Y Z nebo budící zdroj s vnitřní admitancí Y G (případně oba prvky), Obr... Nezatížený paralelní rezonanční obvod jak je čárkovaně naznačeno na obr.., rezonanční obvod by výrazně změnil svoje parametry. Vlivem imaginárních částí připojených admitancí by došlo ke změně rezonančního kmitočtu, tj. obvod by se rozladil, a současně by došlo k zatlumení obvodu a tím ke zmenšení jeho činitele jakosti. Celková vodivost zatíženého obvodu by byla G G + G + (.44) G G Z a pomocí ní bychom mohli určit činitele jakosti Q zatíženého obvodu i šířku propustného pásma B zatíženého obvodu. Z vypočítaných parametrů by vyplynulo, že kromě rozladění obvodu se zhorší i jeho selektivní vlastnosti. 5

16 Proto se v praxi budící zdroj i zátěž připojují k rezonančnímu obvodu jiným způsobem než je naznačeno na obr.., a to buď na odbočku cívky - autotransformátorová (indukční) vazba nebo pomocí kapacitního děliče - kapacitní vazba a nebo pomocí vazebního vinutí - transformátorová vazba. Ve všech těchto případech bude vliv připojených admitancí výrazně omezen. Příklady jednotlivých vazeb jsou nakresleny na obr.., kde je pro jednoduchost naznačeno pouze připojení zátěže. Obdobným způsobem je však možné k rezonančnímu obvodu připojit i budící zdroj. M L C M C G L L Y Z L G C Y Z C G L L V Y Z a) b) c) Obr... Způsoby připojení zátěže (nebo zdroje) k paralelnímu rezonančnímu obvodu a) autotransformátorová (indukční) vazba, b) kapacitní vazba, c) transformátorová vazba Za předpokladu, že modul admitance YZ (nebo YG ) je mnohem menší než modul admitance části rezonančního obvodu v bodech připojení a uvažujeme kmitočtové pásmo v okolí rezonance, můžeme pro každou vazbu definovat tzv. transformační činitel p. Pro autotransformátorovou vazbu (obr..a) je transformační činitel definován vztahem p L + M <, (.45) L kde L je indukčnost mezi odbočkou a uzemněným (studeným) koncem cívky, M je vzájemná indukčnost mezi částmi cívky L oddělenými odbočkou a L L + L je indukčnost celé cívky. Transformační činitel pro kapacitní vazbu (obr..b) lze určit ze vztahu p C <. (.46) C + C A konečně při transformátorové vazbě (obr..c) je transformační činitel definován vztahem 6 Obr..3. a) Oboustranně zatížený paralelní rezonanční obvod b) Ekvivalentní obvod s transformovanými admitancemi LV + M p L kde L V je indukčnost vazební cívky, M je vzájemná indukčnost mezi oběma cívkami a L je indukčnost cívky rezonančního obvodu. <, (.47) važujme nyní oboustranně zatížený paralelní rezonanční obvod, který je nakreslený na obr..3a. Budící zdroj s admitancí Y G je připojen k rezonančnímu obvodu kapacitní vazbou s transformačním činitelem p a zátěž Y Z je k obvodu připojena autotransformátorovou vazbou s činitelem p. Připojení obou admitancí vlivní opět parametry rezonančního obvodu, především

17 Q a B, avšak nyní již poněkud jiným způsobem než v případě naznačeném na obr... Jejich vliv si lze představit tak, jako by se obě připojené admitance transformovaly do rezonančního obvodu, a to s druhou mocninou transformačních činitelů. Ekvivalentní obvod s transformovanými admitancemi je nakreslen na obr..3b. Výslednou admitanci rezonančního obvodu po připojení obou admitancí lze určit ze vztahu kde Po dosazení do (.48) za YG a Y dostáváme Z Y p p Y, (.48) YG + Y + Z CC Y G + jω +. (.49) C + C jω L C C Y p ω p C. (.5) GG + jω pcg + G + jω + + pgz + j C + C jωl Transformované kapacity způsobí rozladění obvodu, ale protože oba transformační činitelé jsou menší než jedna, nebude toto rozladění tak výrazné, jako v případě naznačeném na obr... Pro celkovou vodivost obvodu lze psát G p G + G p. (.5) G + G Z Ze srovnání vztahů (.44) a (.5) vyplývá, že použití transformačních vazeb omezuje také vliv připojených vodivostí a tudíž nesnižuje výrazně činitel jakosti obvodu. Čím menší budou transformační činitelé, tj. připojené admitance budou navázány na rezonanční obvod volně, tím méně budou ovlivněny selektivní vlastnosti rezonančního obvodu. vedený případ transformace platí i v opačném směru, kdy se admitance připojená přímo k rezonančnímu obvodu transformuje na vstupní nebo výstupní odbočku prostřednictvím příslušné vazby. Na obr..4 je do rezonančního obvodu, který je vyladěn do rezonance, připojena admitance Y. Na vstupní odbočce obvodu se tato admitance jeví jako admitance Y, přičemž platí transformační vztah Y Y. (.5) p Obr..4. Transformace admitance Transformační vlastnosti rezonančních obvodů lze tedy využívat nejen k omezení vlivu připojených admitancí na parametry selektivního obvodu, ale i jako transformátoru admitancí na požadovanou hodnotu. Ve vysokofrekvenční technice se většinou využívá pouze transformace vodivostí neboť imaginární složky transformované do rezonančního obvodu můžeme eliminovat vyladěním obvodu do rezonance. Rezonanční obvody jsou obvykle konstruovány tak, že umožňují přesné doladění rezonančního kmitočtu buď pomocí dolaďovacího kondenzátoru nebo změnou polohy jádra cívky, případně roztažením nebo stlačením závitů u samonosné cívky. Paralelní rezonanční obvod tvoří velice často zátěž tranzistoru ve vysokofrekvenčních (vf) zesilovačích a současně bývá i vazebním členem mezi jednotlivými stupni vícestupňového vf zesilovače. Rovněž může být využit jako vazební obvod mezi anténou a vstupním tranzistorem vf zesilovače. Všechny uvedené případy můžeme znázornit obvodovým modelem nakresleným na obr..5. Proudovým zdrojem s vnitřní vodivostí G je modelován G Obr..5. Obvodový model oboustranně zatíženého paralelního rezonančního obvodu Z 7

18 výstupní obvod tranzistoru nebo náhradní obvod antény, vodivostí G Z je modelován vstupní obvod následujícího stupně nebo jakákoliv jiná zátěž. Po připojením zdroje s vodivostí G G k rezonančnímu obvodu v bodě X, dodává zdroj do rezonančního obvodu určitý výkon. Aby velikost výkonu dodaného do rezonančního obvodu byla maximální, musí být obě části obvodu v bodě X výkonově přizpůsobeny. Pro výkonové přizpůsobení zdroje a zátěže platí obecná podmínka zdroje Y zátěže Y, (.53) tj. admitance zdroje musí být komplexně sdružená k admitanci zátěže. Pro případ, kdy admitance zdroje i zátěže jsou reálné, se podmínka (.53) zjednoduší na tvar G zdroje G zátěže. (.54) Výkonové přizpůsobení v bodě X tedy nastane, jestliže po přerušení obvodu v tomto bodě se obě části obvodu budou jevit při pohledu ve směru A i B jako stejné vodivosti. Při pohledu ve směru A se obvod jeví jako vodivost G G, a proto i při pohledu ve směru B budeme požadovat, aby se obvod jevil také jako vodivost G. Proto musí být transformační činitelé a p navrženi tak, aby vodivost G transformovaná G do rezonančního obvodu s koeficientem p p (.48), sečtená s vodivostí G a transformovaná na odbočku X s koeficientem p (.5), se jevila jako vodivost G G. Podmínku výkonového přizpůsobení v bodě X lze proto matematicky vyjádřit vztahem pgz + G G G. (.55) p Podobně v bodě Y budeme požadovat, aby došlo k maximálnímu přenosu výkonu signálu z rezonančního obvodu (představuje nyní zdroj signálu) do zátěže. Přerušíme-li nyní obvod v bodě Y (v bodě X obvod opět spojíme), jeví se obvod při pohledu ve směru D jako vodivost G, a proto stejnou vodivost musí obvod vykazovat i při pohledu ve směru C. Transformační činitelé musí být navrženi tak, aby vodivost transformovaná do rezonančního obvodu s koeficientem Z Z G G (.48), sečtená s vodivostí G a transformovaná p na odbočku Y s koeficientem p (.5), se jevila jako vodivost G Z. Pro podmínku výkonového přizpůsobení v bodě Y můžeme psát G p GG + G Z. (.56) p Stanovili jsme dvě podmínky pro výkonové přizpůsobení obvodu v bodech X a Y. Ve vztazích (.55) a (.56) známe vodivosti G G, G i G Z, neznámé veličiny jsou transformační činitelé p a p. Řešíme tedy dvě rovnice o dvou neznámých. Za tím účelem obě rovnice upravíme do tvarů p GG pgz + G (.57) a G + p G p. (.58) G G Z Z (.57) a (.58) však vyplývá, že rovnice budou současně splněny pouze v případě, kdy G. Pro oboustranné výkonové přizpůsobení rezonančního obvodu bychom tedy museli použít ideální akumulační prvky, což je případ pouze teoretický, k němuž se v praxi můžeme pouze více nebo méně přiblížit. Proto se při praktických návrzích vazebních obvodů volí výkonové přizpůsobení pouze na jedné straně rezonančního obvodu, zatímco na druhé straně obvodu můžeme požadovat například šumové přizpůsobení, případně může být obvod výkonově nepřizpůsoben. V takovém případě pouze zkontrolujeme výpočtem, zda toto nepřizpůsobení vyhovuje požadavkům zadání (např. poměr stojatých vln na napáječi k anténě nepřekročí povolenou hodnotu, atd.)..5 Vázané rezonanční obvody Na obr..6 jsou nakresleny obecné příklady vazby dvou obvodů (dvou smyček). Obvod (smyčka) s napájecím zdrojem se nazývá primární obvod, obvod (smyčka) se zátěží se nazývá sekundární obvod. Impedance Z, která je společná oběma obvodům (obr..6a), a impedance Z, která oba obvody svazuje 8 V V

19 (obr..6b), se nazývají vazební impedance. Obvody nakreslené na obr..6a jsou navzájem svázány tzv. paralelní (vnitřní neboli proudovou) vazbou. Příklad nakreslený na obr..6b znázorňuje obvody navzájem svázané tzv. sériovou (vnější neboli napěťovou) vazbou. Poněvadž článek π (trojúhelník) tvořený impedancemi Z V, Z a Z lze nahradit podle známých vztahů ekvivalentním článkem T (hvězda) složeným z impedancí ZV, Z a Z (a naopak), lze oba příklady považovat za ekvivalentní a stačí popsat pouze jeden z nich, např. vázaný obvod nakreslený na obr..6a. a) b) Obr..6. Vazba dvou obvodů a) paralelní (vnitřní neboli proudová), b) sériová (vnější neboli napěťová).5. Činitel vazby a stupeň vazby Velikost vazby dvou obvodů se posuzuje podle činitele vazby k definovaného vztahem Z k V, (.59) ( V ) ( V ) Z. Z ( V ) ( V ) kde je modul vazební impedance a Z resp. Z jsou moduly impedancí primárního resp. Z V sekundárního obvodu, které mají stejný charakter jako vazební impedance. Vázané rezonanční obvody se používají ve vysokofrekvenční technice proto, že mají lepší vlastnosti než jednoduchý rezonanční obvod. Jejich rezonanční křivka má dostatečně široké a ploché maximum i strmé boky, což je potřebné pro nezkreslený přenos signálů v určitém kmitočtovém pásmu. Změnou vazby lze rovněž měnit ekvivalentní impedanci na vstupu i výstupu obvodu. vázaných rezonančních obvodů je vazba zprostředkována vazební reaktancí, protože přídavný vazební odpor by snižoval činitele jakosti primárního i sekundárního rezonančního obvodu. Pro vazbu vazební reaktancí přejde vztah (.59) do tvaru ( V ). ( V ) XV k, (.6) X X ( V ) ( V ) kde je vazební reaktance a X resp. X jsou reaktance primárního resp. sekundárního obvodu, které X V mají stejný charakter jako vazební reaktance. Příklady vázaných rezonančních obvodů pro různé vazební reaktance jsou uvedeny na obr..7. V případě, že vazebním prvkem je kapacitor C V (obr..7a), tzv. vazba elektrickým polem, je absolutní hodnota vazební reaktance rovna ωc V. Pro absolutní hodnotu reaktance (kapacitního charakteru) v primárním resp. sekundárním obvodu lze psát ( ) X V, kde ωc C C v C, resp. C + CV Dosazením těchto vztahů do (.6) vychází činitel vazby ve tvaru C V ( ) X V, kde ωc C C v C. (.6) C + CV C C k.. (.6) 9

20 Jeho hodnota může být nejvýše k, což je případ % vazby, která nastane pro C a C. Stejného výsledku lze dosáhnout i pro C V. V tomto případě se však už nejedná o vázané obvody, ale o jednoduchý kmitavý obvod. Je-li vazebním prvkem induktor L V (obr..7b), jedná se o tzv. vazbu magnetickým polem nebo vazbu autotransformátorovou neboli indukční, (existuje-li mezi induktory magnetická vazba). Pro jednotlivé reaktance ve vztahu (.6) nyní platí X X X ω, (.63a) V L V ( V ) ω L + LV ωl ( ) ( L + LV ) ( V ) ω ωl a činitel vazby má pro tento případ tvar, (.63b) (.63c) V k. (.64) L L.L Pro transformátorovou vazbu dvou rezonančních obvodů (obr..7c) platí a činitel vazby je X V ωm ( ) X V ω L ωl ( ) X V ω L ωl, (.65a), (.65b) (.65c) M k. (.66) Obr..7. Vazba rezonančních obvodů L.L a) vazebním kapacitorem (vazba elektrickým polem), b) vazebním induktorem (vazba magnetickým polem), Jeho hodnota bude tím větší, čím bude větší c) transformátorová vazba vzájemná indukčnost M. V praxi se pro dosažení co největší (nejtěsnější) vazby vinou cívky L a L na společné jádro. Přesto se u vysokofrekvenčního transformátoru bez feromagnetického jádra dosahuje činitele vazby pouze k <,6. Podle velikosti činitele vazby k se hovoří o vazbě velmi volné ( k,), volné ( k,, 5 ), těsné ( k,5,95 ) a velmi těsné ( k,95, ). Při velmi volné vazbě je vliv jednoho obvodu na druhý zanedbatelný. Při volné vazbě se projeví vliv sekundárního obvodu na primární tím, že se zvětší odpor primárního obvodu. Při těsné vazbě se mění nejen odpor primárního obvodu, ale i jeho reaktance, což má vliv na rezonanční kmitočet soustavy. velmi těsné vazby lze soustavu vázaných obvodů nahradit jediným obvodem. Popsané druhy vazeb rezonančních obvodů lze také vhodným způsobem kombinovat a tak dosáhnout optimálních přenosových vlastností obvodu pro danou aplikaci. Příklady vázaných rezonančních obvodů s kombinovanou vazbou jsou nakresleny na obr..8, kde pro jednoduchost nejsou zakresleny rezistory reprezentující ztráty reálných součástek. Kromě činitele vazby je možné posuzovat vlastnosti vázaných rezonančních obvodů také podle veličiny nazývané stupeň vazby, která je definovaná vz tahem X V κ, (.67) R.R

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

Zesilovače. Ing. M. Bešta

Zesilovače. Ing. M. Bešta ZESILOVAČ Zesilovač je elektrický čtyřpól, na jehož vstupní svorky přivádíme signál, který chceme zesílit. Je to tedy elektronické zařízení, které zesiluje elektrický signál. Zesilovač mění amplitudu zesilovaného

Více

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz)

Nízkofrekvenční (do 1 MHz) Vysokofrekvenční (stovky MHz až jednotky GHz) Generátory cm vln (až desítky GHz) Provazník oscilatory.docx Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné - bylo použito vžitých názvů, které vznikaly v různém období vývoje a za zcela odlišných

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Měření vlnové délky, impedance, návrh impedančního přizpůsobení

Měření vlnové délky, impedance, návrh impedančního přizpůsobení Měření vlnové délky, impedance, návrh impedančního přizpůsobení 1. Zadání: a) Změřte závislost v na kmitočtu pro f 8,12GHz. b) Změřte zadanou impedanci a impedančně ji přizpůsobte. 2. Schéma měřicí soupravy:

Více

Profilová část maturitní zkoušky 2015/2016

Profilová část maturitní zkoušky 2015/2016 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 26-41-M/01 Elektrotechnika Zaměření: počítačové

Více

1 Jednoduchý reflexní přijímač pro střední vlny

1 Jednoduchý reflexní přijímač pro střední vlny 1 Jednoduchý reflexní přijímač pro střední vlny Popsaný přijímač slouží k poslechu rozhlasových stanic v pásmu středních vln. Přijímač je napájen z USB portu počítače přijímaný signál je pak připojen na

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole

Měřená veličina. Rušení vyzařováním: magnetická složka (9kHz 150kHz), magnetická a elektrická složka (150kHz 30MHz) Rušivé elektromagnetické pole 13. VYSOKOFREKVENČNÍ RUŠENÍ 13.1. Klasifikace vysokofrekvenčního rušení Definice vysokofrekvenčního rušení: od 10 khz do 400 GHz Zdroje: prakticky všechny zdroje rušení Rozdělení: rušení šířené vedením

Více

Přenosová technika 1

Přenosová technika 1 Přenosová technika 1 Přenosová technika Základní pojmy a jednotky Přenosová technika je oblast sdělovací techniky, která se zabývá konstrukčním provedením, stavbou i provozem zařízení sloužících k přenášení,

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

1.1 Pokyny pro měření

1.1 Pokyny pro měření Elektronické součástky - laboratorní cvičení 1 Bipolární tranzistor jako zesilovač Úkol: Proměřte amplitudové kmitočtové charakteristiky bipolárního tranzistoru 1. v zapojení se společným emitorem (SE)

Více

Interakce ve výuce základů elektrotechniky

Interakce ve výuce základů elektrotechniky Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky TRANSFORMÁTORY Číslo projektu

Více

Účinky měničů na elektrickou síť

Účinky měničů na elektrickou síť Účinky měničů na elektrickou síť Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Definice pojmů podle normy ČSN

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Teoretický úvod: [%] (1)

Teoretický úvod: [%] (1) Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy Číslo úlohy ZESILOVAČ OSCILÁTOR 101-4R Zadání 1. Podle přípravku

Více

Jednoduché rezonanční obvody

Jednoduché rezonanční obvody Jednoduché rezonanční obvody Jednoduché rezonanční obvody vzniknou spojením činného odporu, cívky a kondenzátoru jedním ze způsobů uvedených na obr.. Činný odpor nemusí být bezpodmínečně připojen jako

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

1.1 Měření parametrů transformátorů

1.1 Měření parametrů transformátorů 1.1 Měření parametrů transformátorů Cíle kapitoly: Jedním z cílů úlohy je stanovit základní parametry dvou rozdílných třífázových transformátorů. Dvojice transformátorů tak bude podrobena měření naprázdno

Více

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory

ISŠ Nova Paka, Kumburska 846, 50931 Nova Paka Automatizace Dynamické vlastnosti členů členy a regulátory Regulátory a vlastnosti regulátorů Jak již bylo uvedeno, vlastnosti regulátorů určují kvalitu regulace. Při volbě regulátoru je třeba přihlížet i k přenosovým vlastnostem regulované soustavy. Cílem je,

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Oscilátory Oscilátory

Oscilátory Oscilátory Oscilátory. Oscilátory Oscilátory dělíme podle několika hledisek (uvedené třídění není zcela jednotné bylo použito vžitých názvů, které vznikaly v různých období vývoje a za zcela odlišných podmínek):

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

Semestrální práce z předmětu X37CAD (CAD pro vysokofrekvenční techniku)

Semestrální práce z předmětu X37CAD (CAD pro vysokofrekvenční techniku) NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE Semestrální práce z předmětu X37CAD (CAD pro vysokofrekvenční techniku) Číslo zadání 32 Jméno: Kontakt: Jan Hlídek hlidej1@feld.cvut.cz ( hlidek@centrum.cz ) ZADÁNÍ: Návrh

Více

Pracovní třídy zesilovačů

Pracovní třídy zesilovačů Pracovní třídy zesilovačů Tzv. pracovní třída zesilovače je určená polohou pracovního bodu P na převodní charakteristice dobou, po kterou zesilovacím prvkem protéká proud, vzhledem ke vstupnímu zesilovanému

Více

Usměrňovače, filtrace zvlněného napětí, zdvojovač a násobič napětí

Usměrňovače, filtrace zvlněného napětí, zdvojovač a násobič napětí Usměrňovače, filtrace zvlněného napětí, zdvojovač a násobič napětí Usměrňovače slouží k převedení střídavého napětí, nejčastěji napětí na sekundárním vinutí síťového transformátoru, na stejnosměrné. Jsou

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač

Obrázek č. 1 : Operační zesilovač v zapojení jako neinvertující zesilovač Teoretický úvod Oscilátor s Wienovým článkem je poměrně jednoduchý obvod, typické zapojení oscilátoru s aktivním a pasivním prvkem. V našem případě je pasivním prvkem Wienův článek (dále jen WČ) a aktivním

Více

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem

1.1. Základní pojmy 1.2. Jednoduché obvody se střídavým proudem Praktické příklady z Elektrotechniky. Střídavé obvody.. Základní pojmy.. Jednoduché obvody se střídavým proudem Příklad : Stanovte napětí na ideálním kondenzátoru s kapacitou 0 µf, kterým prochází proud

Více

Flyback converter (Blokující měnič)

Flyback converter (Blokující měnič) Flyback converter (Blokující měnič) 1 Blokující měnič patří do rodiny měničů se spínaným primárním vinutím, což znamená, že výstup je od vstupu galvanicky oddělen. Blokující měniče se používají pro napájení

Více

6. Návrh a konstrukce vf zesilovačů, oscilátorů, detektorů a směšovačů (X17AMO) Vf zesilovače

6. Návrh a konstrukce vf zesilovačů, oscilátorů, detektorů a směšovačů (X17AMO) Vf zesilovače 6. Návrh a konstrukce vf zesilovačů, oscilátorů, detektorů a směšovačů (X17AMO) Rozdělení: a) dle výstupního výkonu: Vf zesilovače zesilovače malého výkonu: zes. středního výkonu: výkonové zes.: b) dle

Více

1. Měření parametrů koaxiálních napáječů

1. Měření parametrů koaxiálních napáječů . Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].

Více

Zdroje napětí - usměrňovače

Zdroje napětí - usměrňovače ZDROJE NAPĚTÍ Napájecí zdroje napětí slouží k přeměně AC napětí na napětí DC a následnému předání energie do zátěže, která tento druh napětí (proudu) vyžaduje ke správné činnosti. Blokové schéma síťového

Více

Přenosový kanál dvojbrany

Přenosový kanál dvojbrany STŘEDNÍ PRŮMYSLOVÁ ŠKOLA NA PROSEKU EVROPSKÝ SOCIÁLNÍ FOND Přenosový kanál dvojbrany PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL

Více

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól

napájecí zdroj I 1 zesilovač Obr. 1: Zesilovač jako čtyřpól . ZESILOVACÍ OBVODY (ZESILOVAČE).. Rozdělení, základní pojmy a vlastnosti ZESILOVAČ Zesilovač je elektronické zařízení, které zesiluje elektrický signál. Má vstup a výstup, tzn. je to čtyřpól na jehož

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Integrovaná střední škola, Sokolnice 496 Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola

Více

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru

NÁVRH TRANSFORMÁTORU. Postup školního výpočtu distribučního transformátoru NÁVRH TRANSFORMÁTORU Postup školního výpočtu distribučního transformátoru Pro návrh transformátoru se zadává: - zdánlivý výkon S [kva ] - vstupní a výstupní sdružené napětí ve tvaru /U [V] - kmitočet f

Více

ELEKTRONICKÉ SOUČÁSTKY

ELEKTRONICKÉ SOUČÁSTKY ELEKTRONICKÉ SOUČÁSTKY VZORY OTÁZEK A PŘÍKLADŮ K TUTORIÁLU 1 1. a) Co jsou polovodiče nevlastní. b) Proč je používáme. 2. Co jsou polovodiče vlastní. 3. a) Co jsou polovodiče nevlastní. b) Jakým způsobem

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Elektronika ve fyzikálním experimentu

Elektronika ve fyzikálním experimentu Elektronika ve fyzikálním experimentu Josef Lazar Ústav přístrojové techniky, AV ČR, v.v.i. E-mail: joe@isibrno.cz www: http://www.isibrno.cz/~joe/elektronika/ Elektrický obvod Analogie s kapalinou Základními

Více

Měření na unipolárním tranzistoru

Měření na unipolárním tranzistoru Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů

Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Tranzistor je elektronická aktivní součástka se třemi elektrodami.podstatou jeho funkce je transformace odporu mezi

Více

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá

Ekvivalence obvodových prvků. sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá neboli sériové a paralelní řazení prvků Rezistor Ekvivalence obvodových prvků sériové řazení společný proud napětí na jednotlivých rezistorech se sčítá Paralelní řazení společné napětí proudy jednotlivými

Více

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování)

FYZIKA II. Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) FYZIKA II Petr Praus 10. Přednáška Elektromagnetické kmity a střídavé proudy (pokračování) Osnova přednášky činitel jakosti, vektorové diagramy v komplexní rovině Sériový RLC obvod - fázový posuv, rezonance

Více

Bipolární tranzistory

Bipolární tranzistory Bipolární tranzistory h-parametry, základní zapojení, vysokofrekvenční vlastnosti, šumy, tranzistorový zesilovač, tranzistorový spínač Bipolární tranzistory (bipolar transistor) tranzistor trojpól, zapojení

Více

Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS.

Měření vlastností jednostupňových zesilovačů. Návod k přípravku pro laboratorní cvičení v předmětu EOS. Měření vlastností jednostupňových zesilovačů Návod k přípravku pro laboratorní cvičení v předmětu EOS. Cílem měření je seznámit se s funkcí a základními vlastnostmi jednostupňových zesilovačů a to jak

Více

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů

FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů (elektrony nebo díry) pracují s kanálem jednoho typu vodivosti

Více

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.

2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω. A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty

Více

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka

Mgr. Jan Ptáčník. Elektrodynamika. Fyzika - kvarta! Gymnázium J. V. Jirsíka Mgr. Jan Ptáčník Elektrodynamika Fyzika - kvarta! Gymnázium J. V. Jirsíka Vodič v magnetickém poli Vodič s proudem - M-pole! Vložení vodiče s proudem do vnějšího M-pole = interakce pole vnějšího a pole

Více

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω

Střední od 1Ω do 10 6 Ω Velké od 10 6 Ω do 10 14 Ω Měření odporu Elektrický odpor základní vlastnost všech pasivních a aktivních prvků přímé měření ohmmetrem nepříliš přesné používáme nepřímé měřící metody výchylkové můstkové rozsah odporů ovlivňující

Více

1 VA-charakteristiky tranzistorů JFET a MOSFET. Úloha č. 7

1 VA-charakteristiky tranzistorů JFET a MOSFET. Úloha č. 7 1 A-charakteristik tranzistorů JFET a MOSFET Úloha č. 7 Úkol: 1. Změřte A charakteristik unipolárního tranzistoru (JFET - BF245) v zapojení se společnou elektrodou S 2. JFET v zapojení se společnou elektrodou

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.4 Prvky elektronických obvodů Kapitola

Více

9 Impedanční přizpůsobení

9 Impedanční přizpůsobení 9 Impedanční přizpůsobení Impedančním přizpůsobením rozumíme situaci, při níž činitelé odrazu zátěže ΓL a zdroje (generátoru) Γs jsou komplexně sdruženy. Za této situace nedochází ke vzniku stojatého vlnění.

Více

TRANSFORMÁTORY Ing. Eva Navrátilová

TRANSFORMÁTORY Ing. Eva Navrátilová STŘEDNÍ ŠOLA, HAVÍŘOV-ŠUMBAR, SÝOROVA 1/613 příspěvková organizace TRANSFORMÁTORY Ing. Eva Navrátilová - 1 - Transformátor jednofázový = netočivý elektrický stroj, který využívá elektromagnetickou indukci

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace TECHNICKÁ DOKUMENTACE Rozmístění a instalace prvků a zařízení Ing. Pavel Chmiel, Ph.D. OBSAH VÝUKOVÉHO MODULU 1. Součástky v elektrotechnice

Více

6 Měření transformátoru naprázdno

6 Měření transformátoru naprázdno 6 6.1 Zadání úlohy a) změřte charakteristiku naprázdno pro napětí uvedená v tabulce b) změřte převod transformátoru c) vypočtěte poměrný proud naprázdno pro jmenovité napětí transformátoru d) vypočtěte

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory

VY_32_INOVACE_ENI_2.MA_04_Zesilovače a Oscilátory Číslo projektu Číslo materiálu CZ..07/.5.00/34.058 VY_3_INOVACE_ENI_.MA_04_Zesilovače a Oscilátory Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Transformátory. Teorie - přehled

Transformátory. Teorie - přehled Transformátory Teorie - přehled Transformátory...... jsou elektrické stroje, které mění napětí při přenosu elektrické energie při stejné frekvenci. Používají se především při rozvodu elektrické energie.

Více

Střídavý proud, trojfázový proud, transformátory

Střídavý proud, trojfázový proud, transformátory Variace 1 Střídavý proud, trojfázový proud, transformátory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

9. Harmonické proudy pulzních usměrňovačů

9. Harmonické proudy pulzních usměrňovačů Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Měření transformátoru naprázdno a nakrátko

Měření transformátoru naprázdno a nakrátko Měření u naprázdno a nakrátko Měření naprázdno Teoretický rozbor Stav naprázdno je stavem u, při kterém je I =. řesto primárním vinutím protéká proud I tzv. magnetizační, jenž je nutný pro vybuzení magnetického

Více

E L E K T R I C K Á M Ě Ř E N Í

E L E K T R I C K Á M Ě Ř E N Í Střední škola, Havířov Šumbark, Sýkorova 1/613, příspěvková organizace E L E K T R I C K Á M Ě Ř E N Í R O Č N Í K MĚŘENÍ ZÁKLDNÍCH ELEKTRICKÝCH ELIČIN Ing. Bouchala Petr Jméno a příjmení Třída Školní

Více

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u

Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící, výpočetní a regulační technice. Má napěťové zesílení alespoň A u Fyzikální praktikum č.: 7 Datum: 7.4.2005 Vypracoval: Tomáš Henych Název: Operační zesilovač, jeho vlastnosti a využití Teorie úlohy: Operační zesilovač je elektronický obvod, který se využívá v měřící,

Více

Elektrická měření pro I. ročník (Laboratorní cvičení)

Elektrická měření pro I. ročník (Laboratorní cvičení) Střední škola informatiky a spojů, Brno, Čichnova 23 Elektrická měření pro I. ročník (Laboratorní cvičení) Studentská verze Zpracoval: Ing. Jiří Dlapal B R N O 2011 Úvod Výuka předmětu Elektrická měření

Více

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO.

Oscilátory. Návod k přípravku pro laboratorní cvičení v předmětu EO. Oscilátory Návod k přípravku pro laboratorní cvičení v předmětu EO. Měření se skládá ze dvou základních úkolů: (a) měření vlastností oscilátoru 1 s Wienovým členem (můstkový oscilátor s operačním zesilovačem)

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_ENI_3.ME_01_Děliče napětí frekvenčně nezávislé Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu..07/.5.00/34.058 Číslo materiálu VY_3_INOVAE_ENI_3.ME_0_Děliče napětí frekvenčně nezávislé Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

1.3 Bipolární tranzistor

1.3 Bipolární tranzistor 1.3 Bipolární tranzistor 1.3.1 Úkol: 1. Změřte vstupní charakteristiku bipolárního tranzistoru 2. Změřte převodovou charakteristiku bipolárního tranzistoru 3. Změřte výstupní charakteristiku bipolárního

Více

6. Střídavý proud. 6. 1. Sinusových průběh

6. Střídavý proud. 6. 1. Sinusových průběh 6. Střídavý proud - je takový proud, který mění v čase svoji velikost a smysl. Nejsnáze řešitelný střídavý proud matematicky i graficky je sinusový střídavý proud, který vyplývá z konstrukce sinusovky.

Více

FEKT VUT v Brně ESO / P9 / J.Boušek 1 FEKT VUT v Brně ESO / P9 / J.Boušek 2. Uzemněné hradlo - závislost na změně parametrů

FEKT VUT v Brně ESO / P9 / J.Boušek 1 FEKT VUT v Brně ESO / P9 / J.Boušek 2. Uzemněné hradlo - závislost na změně parametrů Unipolární tranzistory Řízení pohybu nosičů náboje elektrickým polem: FET [Field - Effect Transistor] Proud přenášen jedním typem nosičů náboje (unipolární): - majoritní nosiče v inverzním kanálu - neuplatňuje

Více

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory

- Stabilizátory se Zenerovou diodou - Integrované stabilizátory 1.2 Stabilizátory 1.2.1 Úkol: 1. Změřte VA charakteristiku Zenerovy diody 2. Změřte zatěžovací charakteristiku stabilizátoru se Zenerovou diodou 3. Změřte převodní charakteristiku stabilizátoru se Zenerovou

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry...

2 Teoretický úvod 3. 4 Schéma zapojení 6. 4.2 Měření třemi wattmetry (Aronovo zapojení)... 6. 5.2 Tabulka hodnot pro měření dvěmi wattmetry... Měření trojfázového činného výkonu Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Vznik a přenos třífázového proudu a napětí................ 3 2.2 Zapojení do hvězdy............................. 3 2.3 Zapojení

Více

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory

Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory K620ZENT Základy elektroniky Přednáška ř č. 6 Osnova: 1. Klopné obvody 2. Univerzálníobvod 555 3. Oscilátory Bistabilní klopný obvod Po připojení ke zdroji napájecího napětí se obvod ustálí tak, že jeden

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

Měřící přístroje a měření veličin

Měřící přístroje a měření veličin Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0556 III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Měřící přístroje a měření veličin Číslo projektu

Více

5. POLOVODIČOVÉ MĚNIČE

5. POLOVODIČOVÉ MĚNIČE 5. POLOVODIČOVÉ MĚNIČE Měniče mění parametry elektrické energie (vstupní na výstupní). Myslí se tím zejména napětí (střední hodnota) a u střídavých i kmitočet. Obr. 5.1. Základní dělení měničů 1 Obr. 5.2.

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,

Více

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND Analogové modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace Co je to modulace?

Více

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 4 název Záporná zpětná vazba v zapojení s operačním zesilovačem MAA741 Vypracoval Pavel Pokorný PINF Datum měření 9. 12. 2008 vypracování protokolu 14. 12. 2008

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek

Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Řídicí obvody (budiče) MOSFET a IGBT Hlavní požadavky na ideální budič Galvanické

Více

Kapitola 9: Návrh vstupního zesilovače

Kapitola 9: Návrh vstupního zesilovače Kapitola 9: Návrh vstupního zesilovače Vstupní zesilovač musí zpracovat celý dynamický rozsah mikrofonu s přijatelným zkreslením a nízkým ekvivalentním šumovým odporem. To s sebou nese určité specifické

Více

Zpětná vazba a linearita zesílení

Zpětná vazba a linearita zesílení Zpětná vazba Zpětná vazba přivádí část výstupního signálu zpět na vstup. Kladná zp. vazba způsobuje nestabilitu, používá se vyjímečně. Záporná zp. vazba (zmenšení vstupního signálu o část výstupního) omezuje

Více

1. Kondenzátory s pevnou hodnotou kapacity Pevné kondenzátory se vyrábí jak pro vývodovou montáž, tak i miniatrurizované pro povrchovou montáž SMD.

1. Kondenzátory s pevnou hodnotou kapacity Pevné kondenzátory se vyrábí jak pro vývodovou montáž, tak i miniatrurizované pro povrchovou montáž SMD. Kondenzátory Kondenzátory jsou pasivní elektronické součástky vyrobené s hodnotou kapacity udané výrobcem. Na součástce se udává kapacita [F] a jmenovité napětí [V], které udává maximální napětí, které

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 NAPÁJECÍ ZDROJE Použitá literatura: Kesl, J.: Elektronika I - analogová technika, nakladatelství BEN - technická

Více

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2

+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2 Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

Měření na výkonovém zesilovači 1kW/144MHz by OK1GTH

Měření na výkonovém zesilovači 1kW/144MHz by OK1GTH Měření na výkonovém zesilovači 1kW/144MHz by OK1GTH Ing.Tomáš Kavalír, Katedra aplikované elektroniky a telekomunikací FEL /ZČU kavalir.t@seznam.cz, http://ok1gth.nagano.cz Zadání měření: 1. Měření max.

Více

Základy elektrotechniky a výkonová elektrotechnika (ZEVE)

Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Základy elektrotechniky a výkonová elektrotechnika (ZEVE) Studijní program Vojenské technologie, 5ti-leté Mgr. studium (voj). Výuka v 1. a 2. semestru, dotace na semestr 24-12-12 (Př-Cv-Lab). Rozpis výuky

Více