Univerzita Karlova konference 2. dubna 2013 Matematicko fyzikální fakulta Katedra matematiky a didaktiky matematiky.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Univerzita Karlova konference 2. dubna 2013 Matematicko fyzikální fakulta Katedra matematiky a didaktiky matematiky."

Transkript

1 Univerzita Karlova konference 2. dubna 2013 Matematicko fyzikální fakulta Katedra matematiky a didaktiky matematiky Geometrie & Umění Geometrie očima Záznam přednášky Yvo Jacquier SROVNÁVACÍ GEOMETRIE / Pocta velkému pedagogu Janu Amosu Komenskému (Comenius) 1 on 37

2 Část I - čistá matematika 2 on 37

3 Myšlení očima Zlatý řez, původ Věnujte pozornost přiloženému obrázku. Dva přiléhající (dvojnásobné) čtverce, úhlopříčka, která je protíná a osa většího úhlu. Pokud osu úhlu prodloužíte, protne vodorovnou dělící čáru čtverců. Bod protnutí se označuje jako Zlatý řez (φ). Toto je první a nejstarší definice Zlatého řezu. V jednom okamžiku shrnuje : - konstrukci (nejjednodušší způsob) - definici (nejsrozumitelnější způsob) - vlastnosti za použití úhlů: Větší úhel úhlopříčky dvojnásobného čtverce je dvojnásobek menšího úhlu Zlatého řezu. Uvedený způsob myšlení se nazývá «Geometrie očima». Vznikl dlouhou dobu před výpočty, před písmem a koncepcí plochy. Možná již během pozdního paleolitu, ovšem v tomto případě můžeme přebudovat koncept jako "paleo", protože geometrie pokračuje dále. Použitá metoda má možnost dalších výkladů (následující stránka) a také matematické vyjádření. Nezjevila se z ničeho nic, patří do soudržného celku, kterým Thales a Pythagoras navázali na starověký Egypt. 3 on 37

4 Schémata v dílech Dürera Nejprve uvažujme kružnici se středem v bodu O střed dvojnásobného čtverce. Tato kružnice prochází bodem I, s AI = φ Doplňující částí průměru φ je 1/φ, přičemž φ + 1 / φ = 5 Další objevené vlastnosti zlatého obdélníku : zlatý obdélník : Pokud je jedna úhlopříčka vodorovná, druhá úhlopříčka je úhlopříčkou dvojnásobného čtverce. Albrecht Dürer použil tento princip v jeho famózním díle «Melencolia I». Mřížka Geometrie očima je vybudována na využití mřížky. V tomto rámci je umožněno vytvořit, demonstrovat a přitom mít na paměti všechny elementy. Nejzákladnějším vyjádřením tohoto postupu je jednoduchý trojúhelník Osami úhlu tohoto trojúhelníku jsou přirozené úhlopříčky jednoduchého, dvojnásobného a trojnásobného čtverce. Zlatý řez se nachází na druhé ose úhlu, mezi vrcholem a vepsanou kružnicí. 4 on 37

5 Trojúhelník Dalším vyjádřením vlastností «posvátného trojúhelníku» - je tzv. mapovací trojúhelník, který tyto vlastnosti využívá mnohem více. Součet pořadí (dle počtu čtverců odpovídajících ose úhlu) s hodnotou protilehlé strany je 6. Číslo 6 je základem číselné řady v esoterice. Kostka má šest stran, s šesti celými čísly od 1 do 6. Součet opačných stan je 7. Tento údaj je velmi důležitý, neboť jednoduše ukazuje, že pre-eukleidovská geometrie není nutně axiomatická a empirická. Strana 5 není konvence. Toto tvrzení je možné dokázat i s podobnými trojúhelníky. 5 on 37

6 Čtyři důkazy φ v trojúhelníku důkaz : jak jsme viděli, φ je určeno trojúhelníkem. Zlatý obdélník 2 x 2φ označený jako "klasický", se pohybuje po v pořadí druhé ose úhlu. 2.φ je vzdálenost mezi vrcholem trojúhelníku a jeho vepsanou kružnicí. 2. důkaz : první důkaz se týká rozměrů, druhý se týká úhlů. Osa úhlů 1. a 3. jsou přirozené úhlopříčky zlatého obdélníku. To vede k zobecnění popisu symbolů. 3. důkaz : klasický obdélník se může neomezeně dělit (ve skutečnosti se jedná o skryté zlaté obdélníky). Tímto způsobem lze tvořit zlaté spirály, které se sbíhají k bodu T umístěnému na přeponě jednu jednotku od vrcholu trojúhelníku. 6 on 37

7 4. důkaz : pentagram vychází z konfrontace vepsané kružnice a jejího obrazu. Druhá kružnice je vložena do středu dvou objektů nad základnou trojúhelníku (strana 4), ve vzdálenosti φ od strany 3. Pentagram je nakloněn podle úhlopříčky zlatého obdélníku. Demonstrace V ukázce je pouze několik základních požadavků. Je možné je označit jako Thaletovy věty. Důkazy prostřednictvím podobných trojúhelníků. Další aspekty jsou velmi jednoduché. Proces, kdy se důkaz neprovádí výpočty, ale dokládá se ukázkou, se nazývá «demonstrace». Součet úhlů trojúhelníku Je nezbytné pouze propojit tři různé úhly shodných trojúhelníků v bodě O, součet jejich úhlů v tomto bodě je 180 (také označováno symbolem π, nebo jako přímý úhel, poloměr) Dle Jean-Paul Guicharda lze použít ještě jednodušší způsob: Olivier Keller zmiňuje ve své knize «archeologie geometrie», sbírku kostěných rytin z období paleolitu. Jejich obrazce ukazují stejné struktury. 7 on 37

8 Obrazce sakrální geometrie Hexagram Když kruh umístíme do mřížky 4 x 4, jejich průniky ukazují dva trojúhelníky hexagramu - obrazce zvěrokruhu. Vesica Piscis mandle Vesica piscis je tvořena dvěma spojenými kružnicemi: střed každé z nich leží na druhé kružnici. Pythagorejci ji považovali za sakrální, archaický a původní symbol Venuše - dlouho předtím, než jí byly přisouzeny vlastnosti, které zakryly její skutečný status. 8 on 37

9 Doslovně mandlová pochva se ve francouzštině skromně nazývá "déïque" Představuje posvátný ženský prvek. Symbol je spojován s číslem 3, jeho význam v paleolitu není dosud odhalen Pozn.: Mandorla Krista není nikdy vesica piscis. Další podmínkou definující mandli je opsaný obdélník s poměrem 3. Hexagram a Vesica Piscis Na obrázku je hlavní byzantská mřížka Andreje Rubleva, která byla použita k vytvoření "Svaté Trojice". Tento obrazec sjednocuje celé dílo. Vnitřní šestihran hexagramu určuje vesica piscis, jejíž mandle je 2 čtverce na výšku. Kružnice vesica pisces má poloměr 2/ 3. Ostatní mandle (sklon 45 ) jsou umístěny v hexagramu. Pozn.: byzantská mřížka není triviální, dokonce i při použití φ... Pentagram a Vesica Piscis Deska je 1/2 Φ = (1 + 5) / 2 = 1/2 + 5/2 8 bodů z 10 pentagramu se nachází na Vesica Piscis. To znamená, že hlavní obrazce sakrální geometrie jsou přirozeně propojeny. 9 on 37

10 Od Gízy po Babylon Počty a písmo se objevuje během neolitu, přináší nové možnosti využití geometrie mřížky. Tato změna se týká všech civilizací, ale dá se říct, že Egypťané jsou sentimentálnější a umělecky zdatnější ve srovnání s Mezopotámií, více organizovanou a abstraktní. Je zjevné, že si vyměňovali své znalosti, ale jejich přístupy jsou odlišné. Babyloňané překládali své zkušenosti s geometrií do čísel. Tento nový vývoj se stal základem kabaly. První krok k objasnění je uveden níže. Paragonální obrazec V každém trojúhelníku je součet tří úhlů rovný přímému úhlu, nebo-li 180. Â1 + Â2 = 90 - Â3 je v libovolné posloupnosti Â1, Â2 a Â3. > Jeden z nich může být pravý úhel. Předcházející vlastnosti ukážeme na případu pravoúhlého trojúhelníku. Pokud vycházíme z modré osy pravého úhlu, je vazba mezi ostatními úhly následující Â1 + Â2 = 90 - Â3 s Â3 = 45. Z toho vyplývá Â2 = 45 - Â1. 10 on 37

11 V geometrii to znamená, že můžeme v pravoúhlém trojúhelníku zjistit druhou osu úhlu na základě první. První osu úhlu lze považovat za úhlopříčku obdélníku (DE). Tento obdélník lze otočit o 45 na úhlopříčku (EF) (EF a DE svírají pravý úhel). A nakonec úsečka (DF) odpovídá sklonu druhé osy úhlu. Tuto vlastnost pojmenoval francouzský matematik Raphaël Legoy během studia babylonské desky Plimpton Příklad - od trojitého k párovému Následující obrázek pomůže pochopit pravoúhlý trojúhelník. 11 on 37

12 V současné době jsme zvyklí na Pythagorovy věty, ale "geometrie očima» nevyžaduje teorii ploch čtverců k pochopení pravoúhlého trojúhelníku. Lze si ji představit prostřednictvím úhlů, stejně tak jako o zlatý řez. Jednoduchý příklad trojúhelníku , ukazuje všechny vztahy dvojic (p, q). Vidíme, že osa úhlu z vrcholu B trojúhelníku automaticky protíná osu úhlu z bodu A, (paragonála). V tomto případě jsou body B ' a B symetrické. V souvislosti s touto paragonálou (zelená) je úsečka B'O (červená) v pravém úhlu k červené úsečce BO. Obrázek dokazuje, že úhlopříčky žlutého a zeleného obdélníku v bodě O svírají pravý úhel (a jejich paragonál je ortogonální k OA). Tento obrázek nabízí předpoklady, které je možné potvrdit dalšími trojúhelníky. Poměr p a q zde je 5/2. To je nepřekonatelné. Poznámka: ke zjištění OB jsou nutné tři obdélníky. 3 = q-p Poznámka: OA lze zjistit pomocí dvou obdélníků 2=p Za těchto předpokladů lze rozměry trojúhelníku zjistit jednoduše. BA = B O + O A = (q-p)q + p(q+p) = q² + p² CA = CO + O A = (q-p)p + p(q+p) = 2pq CB = (q-p)p + (q-p)q = q² + p² Což odpovídá : a = q² - p² b = 2pq c = q² + p² Plimpton hypotéza Tajemství slavné desky Plimpton 322 (18th století př. n. l.) bylo prolomeno matematiky, a to včetně chybějících částí. Jednoduché výpočty mezi sloupci ukazují naprosto nečekaně řadu prvočísel. Díky tomuto překvapení si zaslouží nazývat «hypotéza Plimpton». Mějte oči na geometrii. 12 on 37

13 Část II - použití v umění 13 on 37

14 Malíři renesance Zvykli jsme si tvrdit, že použití perspektivy v období renesance je duchem pokroku. Samozřejmě, tento nový způsob ztvárnění reálných linií našel svá matematická pravidla v této době. Ovšem kromě tohoto neutrálního systému umělci renesance i nadále používali v oblasti symbolismu starší způsob vyjádření - sakrální geometrii. I bez znalosti kompozice si ji lze představit za pomoci velmi jednoduché definice: kompozice je soubor vzájemně propojených čar vyjádřitelný matematicky, kterým se řídí konečné výtvarné ztvárnění. Tužka umělce nebo architekta vyhledává tyto geometrické obrazce, a tyto obrazce jsou skrytou podstatou utváření díla, v průběhu jeho realizace se postupně jejich smysl zakrývá, až je zcela nepostřehnutelný. V případě sakrální geometrie umožňuje mřížka převést obrazce do čísel a naopak. Díky tomu lze odhalit skutečný význam vlastního díla. Perspektivní systém přináší realismus, ale neobjasňuje význam symbolů. Pro jejich pochopení je nutná znalost jejich základů. Ve své «Athénské škole» Raphael mísí dva systémy. Sakrální geometrii odpovídají linie perspektivy v jejich úhlech. 14 on 37

15 Např. dvě bílé přímky klesají pod úhlem 36 ke svislici, jako odkaz na pentagram. Pocit harmonie nezávisí na jediné skutečnosti. Tento úhel je součástí dalšího objektu. Měřítko φ je dáno Platónem, a potvrzeno rukou Aristotela. «Svatý Michal a ďábel» Sakrální geometrie v díle Raphaela je jednoduchá a jako vždy u tohoto malíře nebývale efektivní. Geometricky vytvořená šipka je mnohem účinnější než oštěp sám! 15 on 37

16 Dějiny umění «Velká Odaliska» Pozůstatky této kultury nacházíme až do XIX. století. [Geometrie očima je postavena na mřížce, která umožňuje vyjádření formy. Čísla otvírají cestu pro překlad symbolů do lidského jazyka]. V práci J. D. Ingrese, má velká kružnice průměr 3 číslo vyjadřující nebesa. Mřížka jako obvykle ukazuje trojúhelník Strana zeleného čtverce je 2.φ. Chrám Eanna - Uruk IV - IV tisíciletí př.n.l. Díky těmto principům lze objasnit architekturu Mezopotámie na počátku neolitu. 16 on 37

17 Planina Gíza let př. n.l. Stejné znalosti využívali i ve Starověkém Egyptě. Plimptonská deska století př.n.l. Slavná Plimptonská deska 322, z období 1800 př.n. l. je považována za seznam Pythagorejských trojic redukovaných na dvojice. Tyto dvojice tvoří seznam jednotek, přičemž i chybějící řádky desky respektují toto pravidlo! Princip je možné dále rozšiřovat, dvě hodnoty trojice se stávají dvojicí další trojice. Pythagorejci soustředili oba vlivy, mezopotámský a egyptský. V průběhu staletí bylo Řecko křižovatkou znalostí. 17 on 37

18 Sakrální geometrie se snaží proniknout do římského realismu, vyjádřeného v architektonickém díle Vitruvia 1. století př.n.l., a rozšířila se i do keltského světa. Vliv Pythagorejců v keltském světě. dokázali archeolog Jean-Loup Flouest a matematik Marc Bacault. Keltská phalera v Champagne, Francie K nakreslení prvků tohoto objektu je zapotřebí 190 kruhů a oblouků postavených na základě čísel 8 a 27. Tato čísla jsou zafixována v pythagorejské numerologii a také dokazují výměnu informací mezi latinskou vědeckou elitou a keltskými druidy, považovanými ve své době za Pythagorejce. Úroveň znalostí této matematiky vyžaduje čtyři roky vysokoškolského studia. Geometrické klíče Germigny - Francie 9. století V tomto období si mnoho umělců a stavitelů zachránilo život útěkem do západní části Evropy, čímž zároveň zachránili i svou kulturu. Do "oratoria" Germigny vložili v didaktickém měřítku základní informace o tvarech. 18 on 37

19 Kniha z Kellsu - Irsko - pozdní 8. století Ještě více extrémní řešení přijali v keltském svět. Irští mniši přijali tuto kulturu a "přepsali" Bibli. Mimochodem, o slavné «Knize z Kellsu» je známo, že s textem pracuje velmi svobodně, jako by mělo být z textu jasné, že hlavním účelem této práce je geometrie. Odmocnina 3 a Phi ( 3 & φ) 19 on 37

20 Ikona Matky Boží Vladimírské 12. století V raném středověku našla tato kultura přístav v Byzanci. V ikonách a keramice. Uspěla jako dar konstantinopolskému patriarchovi, velkému knížeti Kyjevskému v roce (Pravoslavná církev se oddělila od katolické v roce 1054). Tento tichý pravoslavný svět je otřesen ikonografií: mezi roky 730 a 787, a znovu mezi roky 813 a 843. Katedrála Dol-de-Bretagne - Francie převážně 13. a 14. století Francouzské katedrály jsou možná výsledkem této exploze ikonografie. Nová idea se objevila i v mém výzkumu, byl jsem tak posedlý zahraničními vlivy, že jsem neviděl, že i Francie se byla schopna podílet a zároveň i obohatit toto umění, stejně jako severní Itálie nebo Novgorod. 20 on 37

21 Opatství Conques století - vysoká škola umění římského 21 on 37

22 Heptagram tympanonu předcházející strana Kompozice v Conques je dokonalou ukázkou rozvoje využití mřížky. Různé systémy v jednotlivých vrstvách na stejné téma. Příkladem je heptagram připomínající byzantské znalosti. Neuvěřitelné. Klíč mandorla ztrojené čtverce Unikátní lekce geometrie v písmenu G! H je zde hodnota (1+ 3)/2, základ Zlatého řezu. Obrazec je tvořen kružnicí opsanou horní části rovnostranného trojúhelníku. 22 on 37

23 Trojúhelník je také použit pro vytvoření malého čtyřúhelníku v dolní části obrázku. I když to není na první pohled zřejmé, lze obrazec vyjádřit algebraicky ( 3-1) = 2/(1+ 3), avšak ( 3-1)( 3+1) = 3-1 = 2, což je mnohem srozumitelnější. Antikové vše dokázali demonstrovat pouze očima bez výpočtu. Jinými slovy, 3 čtyřúhelník je součtem čtverce a čtyřúhelníku H [H = (1 + 3) / 2] Pozdní středověk - francouzský vliv Dům u zvonu - Praze - ranné 14. století (úžasné) «Portrét Karla VII» (1450/55) - Jean Fouquet 23 on 37

24 A nyní k období vrcholu sakrální geometrie: období renesance. Tři díla ztělesňují vrchol: «Svatá Trojice» od Andreje Rubleva /28, «Zrození Venuše» od Sandra Botticelliho -1485, a «MELENCOLIA I» Albrechta Dürera Třetí dílo je součástí širšího projektu, který je závěrečným důkazem civilizace obrazu -Didaktický projekt Dürer. Perspektivní systém, který vznikl během renesance se zachoval jako jediný v kompozici, po období, kdy se objevoval společně se sakrální geometrií ve stejných dílech. Později se pokoušeli pro «umění úhlopříček» najít klasičtí malíři jednoduchá pravidla, ale bez ztracených znalostí skutečné geometrie. Alegorie pomalu převzaly místo symbolů... Mohli bychom mluvit o 20. století, ale obávám se, že po velkolepém ohňostroji renesance, budou vaše oči zklamány a vaše mysl matematika bude trochu dotčena. Raději ukáži více důkazů geometrie očima. 24 on 37

25 «Svatá Trojice» Andrej Rublev «Svatá Trojice» o Andreje Rubleva /28 Andreï Rublev použil ve své Svaté Trojici jednoduchý čtyřúhelník, namísto tradičního monogramu Krista, nebo věty z Bible. Tradiční znamení v díle není použito, není použitý ani podpis či ornament. Andrej Rublev vyjádřil spojení jednoduchým čtyřúhelníkem sakrální geometrie. Obdélník Andreje Rubleva Tento obdélník odpovídá zlatému řezu. Historický detail: Na počátku dvacátého století, britský kritik a šermíř Theodore Andrea Cook ( ) souhlasil se záměrem svého přítele - amerického matematika Marka Barra, zavést řecké písmeno φ jako matematický symbol zlatého řezu - jako odkaz na řeckého sochaře Phidiase (5. století před n.l.). 25 on 37

26 Přední část je ukázkou aritmetických hodnot. Začátek vyjádřený rovnicí φ2 = φ + 1, viz. Lekce aritmetiky Andreje Rubleva Toto čistě matematické vyjádření se rozvíjí ve spodní části díla. Potvrzuje, že základním prvkem Rublevova díla je obdélník. Horní část naopak odpovídá vyjádření geometrií očima. Nacházíme dualitu s očima boha Hóra jedno otevřené a zaměřené na cíl, druhé zavřené s vnitřním zrakem. Rublev empaticky definoval velikost využití mřížky dvěmi body, Alfa a Omega. Rozměry této ikony jsou přesně 4 jednotky na výšku, poměr Rublevova obdélníku je 2/7. Logika aritmetická se potkává s logikou geometrickou. 26 on 37

27 Potvrzení bodu Omega Omega je bodem, kde se protínají přímky vedené osvětlenými místy v úhlu odpovídajícímu způsobu jejich osvětlení. Duch svatý dává své požehnání na přímce vedené pod úhlem 45. Tři andělé představují zleva doprava otce, syna a Ducha svatého. Bod Alfa a další důkaz 27 on 37

28 Bod alfa a Omega jsou klíč k mřížce. Poznámka 1 : definice tabulky není nikdy užita jednoduchým způsobem. Jak vidíme na tomto příkladě, k definici potřebujeme úplnou sadu důkazů. Tento příklad je velmi důležitý, protože mřížka byla vždy základem sakrální geometrie. Všechny obrazce a linie jsou vytvářeny na základě mřížky. Poznámka 2 : bez měřítek by bylo nemožné vyjádřit symbolický význam. Z těchto důvodů je mřížka nenahraditelná. Poznámka 3 : Chcete-li porozumět tomuto umění, potřebujete znalost matematiky (část I). Potvrzení použití mřížky 28 on 37

29 Hrany schůdků vytváří dvě linie ve středu pod úhlem 8 a 9. 8 odpovídá π/45 a 9 je typický pro logiku pentagramu. Body protnutí přímky procházející bodem omega s přímkami procházejícími hranami schůdků určují poloměr kružnice, která odpovídá velikosti jednoho pole mřížky - kvadratura kruhu. Na spodní části ikony Rublev využívá aritmetické a v horní části geometrické principy. Duchovní a přitom pevně dané. Nyní je možné skutečně studovat obraz «Svatá Trojice» a další mistrovská díla. Ve svaté trojici se dva andělé klaní tomu, který by měl být zván otcem. Kristus je středem v klasické ikonografické pozici - "na trůnu". 29 on 37

30 Překladem tohoto obrázku by mohlo být : středem vepsané kružnice směřuje osa prvního úhlu na otce, druhá (zlatý řez) ukazuje na syna a třetí na Ducha svatého. Objevuje se zde i další symbolický význam, jednota přinášená z úhlu 1 ke straně 5 vyjadřující člověka, úhel 2 přináší inspiraci/víru na zemi (strana 4) a třetí úhel přináší nebesa (3) na nebe (3) v zrcadlovém efektu. Zlatý řez vepsané kružnice je umístěn na ruce Ducha svatého. Základní čtyřúhelník, který odpovídá velikosti vložené kružnice (2) a zlatý řez (2φ) dotýká horní části rámu. Tato ikona dává příležitost k přesnému vyjádření základních aspektů symbolismu: symboly neexistují nezávisle na geometrických obrazcích komunikujících prostřednictvím "analogických myšlenek". Tyto obrazy jsou skutečným jazykem s reálnými strukturami. Takže, co je struktura? Můžeme použít přirovnání k hudbě. Harmonie skládá jednotlivé akordy, jeden za druhým. Sakrální geometrie na sebe klade vrstvy. Vazby mezi různými hodnotami jsou jako ty mezi různými akordy. "hudba sfér" není fantazie, milý Plató. Mřížka je prvním krokem k vnímání této kultury. Poté můžeme přistoupit ke každému obrazci, každé vnitřní linii s měřítkem této mřížky. 30 on 37

31 Autoportrét A. Dürera Měřítko dokonalosti! Jak si být jistý kompozicí? Jak si být jistý při zkoumání? Věda přináší částečnou odpověď. První z nich je "měřítko dokonalosti". Čím větší přesnost, tím jste blíže k pravdě. Ilustračním příkladem tohoto aspektu je dílo, které zůstalo nepoškozeno a zároveň nebylo nikdy restaurováno. Autoportrét Dürera - datován Vysvětluje kombinaci zlatého řezu a kružnice 1/φ2. Srovnání různých děl Hlavní problém geometrie, zejména u organizovaných systémů, je v tom, co nazýváme v hudebním slovníku harmonií. Komplex geometrických forem přirozeně vytváří množství dalších. Ovšem ne každá další forma je původním záměrem autora. Přicházejí jako závan větru při pohybu. 31 on 37

32 Jen pro oči (v mém případě s brýlemi) Jen pro mozek (se zavřenýma očima) Klíč ke kompozici + 32 on 37

33 Zrození Venuše - S. Botticelli Vytvoření mřížky Syntaxe prvků v trojúhelníku 3-4-5, Zlatý řez v pupku Venuše 33 on 37

34 Úžasná konstrukce v sobě kombinuje dva nádherné vějíře vytvořené přímkami rozbíhajícími se pod úhlem 9. Druhým prvkem je vesica piscis tvořená průmětem dvou kružnic o průměru 5. Třetí prvek tvoří dva obdélníky 3 x 4 nakloněné k sobě v úhlu 27 - fundamentální číslo pythagorejců. Znamená čtyři trojúhelníky Klíčové je, že prodloužením jedné strany obdélníku získáme hrot symetrického trojúhelníku. Jde o velmi zvláštní vlastnost, která určuje vlastnosti pentagramu. Hlava Venuše je mimo střed oválu. Vesica piscis non caput. Piscis primum a capite foetet. Ryba smrdí od hlavy. Původní název vychází ze stejného duchu (Vénus anadyomène) Na další stránce: V díle «Zrození Venuše» od Botticelliho, je jedna z důležitých informací ukryta v druhu zobrazené mušle nazývané ve Francii Cyprée - (// Kypr). Stejně jako Dürer ve svém autoportrétu hovoří i Botticelli hovoří o zlaté logice, ale tentokrát prostřednictvím úhlů. Toto je druhá klíčová informace k pochopení díla. 34 on 37

35 Použití zlatého řezu 35 on 37

36 MELENCOLIA I - A. Dürer Příběh tohoto díla v dějinách umění je vysvětlený na 250 stránkách. Pokusím se je shrnout, ale pouze tím dokončím zmiňovanou knihu, zpřístupněnou na mé webové stránce jacquier.org a melencoliai.org. Bohužel, pouze ve francouzštině... «DÜRER A TAROT» Proslov: Melencolia, slavné dílo Albrechta Dürera, existuje již 500 let! V době svého vzniku slavnější než Mona Lisa, skrývá více tajemství ve svých liniích než v úsměvu. Melencolia je klíčem k jazyku, dědicem egyptských, řeckých a mezopotámských znalostí. Ve středověku můžeme nalézt pokračování této tradice v Byzanci, a to až do pádu Konstantinopole v roce 1453, který znamenal počátek renesance. Italští umělci převzali pochodeň encyklopedie symbolů. Ve svém umění kompozice využívali zlatý poměr trojúhelníku 3-4-5, a obrazce skládali jako puzzle. Stejné principy přenesl do rytecké tvorby Dürer. Čtyři grafická díla a sada karet nazvaných "Tarots de Marseille" přinesla tyto znalosti do praktického života. Melencolia je portálem ke ztracené civilizaci, která si pro vyjádření zvolila obraz. K obnovení znalostí této zapomenuté kultury bylo zapotřebí deset let výzkumu ve spolupráci s vědci a symbolisty. A Dürer poskytl vše! Úvod (základní anglická verze) : 36 on 37

37 Informace Konference na Univerzitě Karlově «Geometrie a Umění» 2. dubna 2013 Sokolovská 49/83, Praha 8 Yvo Jacquier na pozvání: Mgr. Zdeněk Halas, DiS. & Ph.D. et PhDr. Alena Šarounová, CSc. Konference Francouzská verze Anglická verze Česká verze sakralni_geometrie.pdf Rozšířená verze matematického korpusu Francouzská verze Anglická verze Česká verze Egyptske_Geometrie 2014.pdf 37 on 37

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Matematický KLOKAN 2005 kategorie Junior

Matematický KLOKAN 2005 kategorie Junior Matematický KLOKAN 2005 kategorie Junior Vážení přátelé, v následujících 75 minutách vás čeká stejný úkol jako mnoho vašich vrstevníků v řadě dalších evropských zemí. V níže uvedeném testu je zadáno čtyřiadvacet

Více

Geometrie a zlatý řez

Geometrie a zlatý řez Geometrie a zlatý řez Pythagorova věta Podívejme se na několik geometrických důkazů Pythagorovy věty využívajících různých druhů myšlení. Úvaha o začátku vyučování, je nutná a prospěšná rytmická část na

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole

2.1. 50 bodů 2.1 Pokyny otevřeným úlohám. je uveden na záznamovém archu. Je-li požadován celý postup řešení, uveďte. výrazů. mimo vyznačená bílá pole MATEMATIKA MATEMATIKA DIDAKTICKÝ TEST DIDAKTICKÝ TEST DIDAKTICKÝ TEST MAMZD14C0T01 MAMZD14C0T01 MAMZD14C0T01 Maximální bodové hodnocení: 50 bodů 2.1 Pokyny k otevřeným úlohám Maximální Hranice úspěšnosti:

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Podpora výuky a vzd lávání na GVN J. Hradec Kružnice

Podpora výuky a vzd lávání na GVN J. Hradec Kružnice Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: IV/2 Číslo dokumentu: VY_42_INOVACE_M.S2.01 Typ výukového materiálu: Pracovní list pro žáka Název

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

Více

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce:

OSOVÁ SOUMĚRNOST. Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: OSOVÁ SOUMĚRNOST Lekce je navržená pro dvě vyučovací hodiny, 90 minut. Průběh lekce: EVOKACE Metoda: volné psaní Každý žák obdrží obrázek zámku Červená Lhota. Obrázek je také možné promítnout na interaktivní

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Davidova (Betlémská) hvězda

Davidova (Betlémská) hvězda Davidova (Betlémská) hvězda P.A.Semi, 2014-02-12 Seskupení planet do Davidovy hvězdy se čas od času stává... Uvádíme zde nejvýraznější výskyty v antickém období, s centrem na Zemi nebo na Slunci, řazené

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD11C0T04 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 1 Matematika Hodinová dotace Matematika 4 4 4 4 Realizuje obsah vzdělávacího oboru Matematika a její aplikace RVP ZV. Matematika

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014

Více

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed.

Ročník VI. Matematika. Období Učivo téma Metody a formy práce- kurzívou. Kompetence Očekávané výstupy. Průřezová témata. Mezipřed. Přirozená čísla Desetinná čísla IX. X. Přirozená čísla opakování všech početních výkonů, zobrazení čísel na číselné ose, porovnávání a zaokrouhlování čísel. Metody- slovní, názorně demonstrační a grafická.

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

5.2.1. Matematika pro 2. stupeň

5.2.1. Matematika pro 2. stupeň 5.2.1. Matematika pro 2. stupeň Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět matematika se vyučuje jako samostatný předmět v 6., 8. a 9. ročníku 4 hodiny

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou OD NULY K NEKONEâNU Poãítej jako EgypÈan Nejstarší známý početní systém založený na čísle 10 zavedli před 5 000 lety v Egyptě. Egypťané používali skupinu čar pro vyjádření čísel do devítky. Vypadala asi

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Předmět: Matematika. 5.2 Oblast: Matematika a její aplikace. 5.2.1 Obor: Matematika a její aplikace. Charakteristika předmětu matematika 2.

Předmět: Matematika. 5.2 Oblast: Matematika a její aplikace. 5.2.1 Obor: Matematika a její aplikace. Charakteristika předmětu matematika 2. 5.2 Oblast: Matematika a její aplikace 5.2.1 Obor: Matematika a její aplikace Předmět: Matematika Charakteristika předmětu matematika 2. stupeň Obsah vyučovacího předmětu matematika vychází ze vzdělávacího

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ V Úžlabině 320, Praha 10 Sbírka úloh z technického kreslení pracovní listy I. Praha 2011 Ing. Gabriela Uhlíková Sbírka úloh z technického kreslení Tato sbírka

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Záznamový arch matematika

Záznamový arch matematika Záznamový arch matematika Název školy Číslo projektu Název šablony klíčové aktivity 432 DUM (12 sad) 105 Pořad Kód TřídaTéma hodiny Anotace: využití DUM (zkvalitnění) Sada čís.sady 9 VY_42_inovace_9_PL2

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika 9. Matematika 104 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika vyučovacího předmětu Obsahové, časové a organizační

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

Planimetrie úvod, základní pojmy (teorie)

Planimetrie úvod, základní pojmy (teorie) Planimetrie úvod, základní pojmy (teorie) Geometrie (původně zeměměřictví) nyní část matematiky, zabývající se studiem geometrických objektů Planimetrie rovinná geometrie Stereometrie prostorová geometrie

Více