Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 1. část. Ing. Jana Mansfeldová

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY. 1. část. Ing. Jana Mansfeldová"

Transkript

1 Střední průmyslová škola zeměměřická GEODETICKÉ VÝPOČTY 1. část Ing. Jana Mansfeldová

2 Úvod Tento text je určen pro studenty. až 4. ročníku středních průmyslových škol se zaměřením na geodézii. Jedná se o přepracovanou učebnici Geodetické počtářství do elektronické podoby s ohledem na dnešní technické vybavení a platné předpisy. Nejdůležitější změnou je označení souřadnicových rozdílů a s tím související úprava používaných výpočetních zápisníků. Místo dříve používaných souřadnicových rozdílů y BA = y B y A, x BA = x B x A je nyní používáno y AB = y B y A, x AB = x B x A. Stejné označení je používáno i ve skriptech, které studenti často využívají. Veškeré upravené zápisníky jsou v tomto textu zařazeny jako přílohy. Souhrnný seznam souřadnic daných bodů pro cvičení označená * je uveden v příloze 1. Pro jednodušší zpracování cvičení na PC je vhodné si tyto souřadnice nejprve uložit a pak je využívat v průběhu výpočtů. Tento text bude dle potřeby průběžně aktualizován.

3 Obsah: 1. Základní souřadnicové výpočty Výpočet směrníku a délky Výpočet rajónu Výpočet souřadnic bodů polární metodou Výpočet souřadnic bodů ortogonální metodou Výpočet souřadnic bodů na měřické přímce Výpočet souřadnic bodů na kolmici Polygonové pořady Volný polygonový pořad Připojený a orientovaný Ve vlastní soustavě Vetknutý, oboustranně orientovaný polygonový pořad Vetknutý, jednostranně orientovaný polygonový pořad Nepřímé připojení polygonového pořadu Vetknutý polygonový pořad Uzavřený polygonový pořad Připojený, orientovaný Ve vlastní soustavě Souřadnicové řešení vytyčovacích úloh Vytyčení spojnice AB Prodloužení směru za překážku Transformace souřadnic Polární a pravoúhlé souřadnice Transformace pravoúhlých souřadnic posunutím a pootočením Transformace podobnostní Obecný případ podobnostní transformace Protínání vpřed Protínání vpřed z úhlů Protínání vpřed z orientovaných směrů Protínání z délek Speciální souřadnicové výpočty Hansenova úloha Určení nepřístupné vzdálenosti Krasovského řešení Protínání zpět Výpočet pomocným bodem (Collinsův způsob) Cassiniho řešení Centrační změny Výpočet centračních změn δα na excentrickém stanovisku Výpočet centračních změn δα při excentrickém cíli

4 Přílohy upravené zápisníky 1. Seznam souřadnic. Výpočet směrníků, stran a směrových činitelů 3. Výpočet souřadnic bodů měřických přímek 4. Výpočet souřadnic bodů polygonových pořadů 5. Transformace 6. Protínání vpřed z úhlů 7. Výpočet orientovaných směrů 8. Protínání vpřed z orientovaných směrů 9. Protínání vpřed z délek 10. Protínání zpět 11. Výpočet centračních změn směrů 4

5 1. Základní souřadnicové výpočty 1.1. Výpočet směrníku a délky Známe-li souřadnice dvou bodů (y,x), pak z těchto souřadnic můžeme vypočítat směrník a délku mezi těmito body. Dáno: A,B [y,x] Úkol: σ AB, s AB Obr Směrník je orientovaný úhel, který udává směr spojnice dvou bodů vzhledem k osám souřadnicové soustavy. Směrník v souřadnicové soustavě, jejíž osa +X směřuje k jihu, nazýváme jižník. Směrník označujeme řeckým písmenem σ doplněným indexy čísel bodů. Směrník σ AB strany AB je úhel naměřený na bodě A od rovnoběžky s osou +X ve směru hodinových ručiček až ke straně AB. Směrník σ BA je úhel na bodě B. Mezi oběma směrníky téže strany platí vztah: σ AB = σ BA ± R. Použijeme takové znaménko, aby platilo 0 σ 4R. Postup výpočtu: Velikost směrníku záleží na vzájemné poloze bodů A a B. Nabývá hodnot od 0 do 4R, může tedy ležet v prvním až čtvrtém kvadrantu.pro výpočet směrníku musíme vypočítat tzv. souřadnicové rozdíly. Souřadnicový rozdíl je rozdíl souřadnic dvou bodů a označujeme ho řecký písmenem doplněným indexy čísel bodů: y AB = y B - y A x AB = x B - x A. Souřadnicové rozdíly nabývají různých znamének. Směrník vypočteme pomocí úhlu φ, což je ostrý úhel při vrcholu A (obr.1.1.1). Pro všechny kvadranty platí: tgφ = y x AB AB 5

6 Výpočet směrníku v jednotlivých kvadrantech (obr.1.1.): 1. směrník leží v prvním kvadrantu, tj. y AB > 0 a x AB > 0 potom: σ AB = φ.. směrník leží ve druhém kvadrantu, tj. y AB > 0 a x AB < 0 potom: σ AB = R - φ. 3. směrník leží ve třetím kvadrantu, tj. y AB < 0 a x AB < 0 potom: σ AB = R + φ. 4. směrník leží ve čtvrtém kvadrantu, tj. y AB < 0 a x AB > 0 potom: σ AB = 4R - φ. Obr

7 Kvadrant y x σ I + + σ = φ II + - σ = R - φ III - - σ = R + φ IV - + σ = 4R φ Celý výpočet můžeme provést ve výpočetním formuláři (ve starším typu i s tzv. směrníkovou zkouškou). Délka strany AB se vypočte jako přepona v pravoúhlém trojúhelníku. Vypočtená délka je vodorovná a budeme ji označovat písmenem s doplněným indexy čísel tj s AB. s AB = y + AB x AB V dnešní době používáme kapesní kalkulátory, které jsou vybaveny převodem pravoúhlých souřadnic (souřadnicových rozdílů) na polární souřadnice (směrník a délku). Převody jsou označeny na různých kalkulátorech různými tlačítky, proto si musíme pozorně přečíst návod pro daný kalkulátor. Před výpočtem směrníku nesmíme zapomenout nastavit požadovanou úhlovou míru. Příklad Vypočtěte jižník σ 4-73 a délku strany s, jsou-li dány souřadnice koncových bodů: 73 (y = ,47, x = ,95), 4 (y = ,81, x = ,84). Nejprve vypočteme souřadnicové rozdíly: y 4-73 = +55,66 m x 4-73 = -367,89 m Potom vypočteme pomocný úhel: y4 73 tgφ = x 4 73 φ = 38,6631 g. Podle tabulky (viz. výše) se hledaný jižník bude nacházet ve druhém kvadrantu, tedy: σ 4-73 = R φ = 161,3369 g. Délku vypočteme podle Pythagorovy věty: s = y + x = 448,00 m. 7

8 Příklad 1.1. Vypočtěte směrníky σ , σ , délky stran s , s a úhel ω (obr.1.1.3). Jsou dány souřadnice bodů: ČB Y X , , , , , ,6 Postup výpočtu: Vypočteme oba směrníky na bodě 103. Nejprve vypočteme souřadnicové rozdíly. y = - 740,18 m x = ,6 m Směrník σ tedy leží ve třetím kvadrantu. σ = R + 31,7377 g = 31,7377 g, s = 1548,04m. y = +1866,51 m x = - 53,56 m Směrník σ tedy leží ve druhém kvadrantu. σ = R 98,1737 g = 101,863 g, s = 1867,8m. Obr Vrcholový úhel vypočteme jako rozdíl dvou směrů (pravé rameno úhlu mínus levé rameno úhlu): ω = σ σ =101,863 g 31,7377 g + 4R = 70,0886 g. Výpočet směrníků a délek můžeme provést ve výpočetním formuláři i se směrníkou zkouškou. Při výpočtu s je větší nesouhlas ve vypočtené straně. Délku strany vypočteme Pythagorovou větou. Správná délka je 1 867,8 m vypočtená z většího souřadnicového rozdílu. Délku 1 867,18 m považujeme za kontrolní. 8

9 VÝPOČET SMĚRNÍKŮ, STRAN A SMĚROVÝCH SOUČINITELŮ Př.1.1. B YB XB XB + YB XB - YB tg ϕ = Y X AB AB tg ψ = p q A YA XA XA + YA XA - YA cotg ϕ = X Y AB AB cotg ψ = q p YAB XAB σab = YAB = YB - YA XAB = XB - XA p = XAB + YAB q = XAB - YAB ϕ ψ ρsin ϕ ρcosϕ + + = ϕ sin ϕ cos ϕ a = b = g c cc g c cc s s - - = R + ϕ YAB XAB s = s = = sin ϕ cos ϕ Y + X AB (1) () (3) (4) (5) (6) (7) , , , ,60 0, , , , ,04 0,95000 Předepsal: -740, ,6-099,80-619,44 Vypočetl: 0, , AB a = b tgϕ kontr. b = a cotgϕ σab kontrola: 103 Předepsal: , , , , , ,97 0, , , , ,04 0, ,51-53, , ,07 Vypočetl: 0, , , , , Cvičení: * Vypočtěte všechny možné kombinace směrníků a délky stran mezi body: ČB Y X , , , , , , , , , , , , , ,48 9

10 1.1.. Jsou dány souřadnice trigonometrických bodů, vypočtěte úhly ω (obr.1.1.4). ČB Y X , , , , , , , ,95 Obr

11 1.. Výpočet rajónu Výpočtem rajónu rozumíme úlohu, ve které určujeme souřadnice koncového bodu úsečky dané souřadnicemi počátečního bodu, směrníkem a délkou. Dáno: P [y,x], σ PK, s PK Úkol: K [y,x] Obr.1..1 Postup výpočtu: Souřadnice bodu K vypočteme součtem zadané souřadnice a příslušného souřadnicového rozdílu, který vypočteme z pravoúhlého trojúhelníka: y K = y P + y PK = y P + s PK.sin σ PK, x K = x P + x PK = x P + s PK.cos σ PK. Souřadnicové rozdíly mají znaménko + nebo -, záleží na velikosti směrníku. Směrník sin cos y x v kvadrantu σ σ I II III IV V dnešní době používáme kapesní kalkulátory, které jsou vybaveny převodem polárních souřadnic (směrník a délka) na pravoúhlé souřadnice (souřadnicové rozdíly). Převody jsou označeny na různých kalkulátorech různými tlačítky, proto si musíme pozorně přečíst návod pro daný kalkulátor. Před výpočtem nesmíme zapomenout nastavit požadovanou úhlovou míru. Příklad 1..1 Vypočtěte souřadnice bodu 534, je-li dáno: 33 (y = ,74, x = ,63), σ = 373,5036 g, s = 115,65m. 11

12 Nejprve vypočteme souřadnicové rozdíly: y = s sin σ = -46,76 m, x = s cos σ = +105,78 m. Potom: y 534 = y 33 + y = ,98 m x 534 = x 33 + x = ,41 m. V praxi většinou neznáme přímo potřebný směrník, ale známe další bod v souřadnicích, jehož směrník můžeme vypočítat. Změříme úhel mezi daným bodem a bodem určovaným. Z toho pak vypočteme hledaný směrník. V případě určování bodů PBPP pomocí rajónu, by měla být orientace provedena na dva body ZBPP nebo PBPP a hledaný směrník se vypočítá tzv. orientací osnovy (viz.kap.6.). Příklad 1.. Vypočtěte souřadnice bodu 401, který je zaměřen z bodu 343 s orientací na bod 181. Byl naměřen úhel ω a vzdálenost s (obr.1..). ČB Y X , , , ,90 ω = 1,1570 g s = 113,78 m. Nejprve vypočteme σ = 387,7091 g, potom vypočteme σ = σ ω (-4R), σ = 199,8661 g. Nyní vypočteme souřadnice: y 401 = y s sin σ = ,10 m x 401 = x s cos σ = ,1 m. Obr.1.. Cvičení: Vypočtěte souřadnice bodu 4101 pokud znáte: 13 (y = ,45, x = ,45) a) σ = 55,3475 g, s = 145,78 m, b) σ = 155,3475 g, s = 145,78 m, c) σ = 55,3475 g, s = 145,78 m, d) σ = 355,3475 g, s = 145,78 m. Proveďte náčrt bodů. 1

13 1..* Vypočtěte souřadnice bodu 4001, který je zaměřen z bodu 181 s orientací na bod 343. Byl naměřen úhel ω a vzdálenost s (obr.1..3). ČB Y X , , , ,90 ω = 31,1570 g s = 13,78m. Obr

14 . Výpočet souřadnic bodů polární metodou Polární metoda je nejčastější způsob určování souřadnic podrobných bodů. Každý bod je určen polárními souřadnicemi, tj. úhlem a délkou. Úhel je měřen na stanovisku od orientačního směru po určovaný bod. Jedná se tedy o výpočet rajónu, který jsme si vysvětlili v předchozí kapitole. Měřené hodnoty se zapisují do zápisníku podrobného měření. V této kapitole budeme počítat pouze body měřené na pevném stanovisku (známe jeho souřadnice). Volné stanovisko viz. kap. 5. Příklad.1 Vypočtěte souřadnice podrobných bodů 1,,3 zaměřených na stanovisku 4001 (obr..1). ČB Y X , , , ,3 Obr..1 Výpis ze zápisníku měřených hodnot: Typ úlohy Číslo bodu Vzdálenost Úhel [m] [g] ,46 0, ,67 46,78 45,08 78, ,1 156,1 Nejprve vypočteme směrník σ a zkontrolujeme délku: σ = 104,8875 g s-vypočtená = 156,46 m (rozdíl je v přípustných mezích). Souřadnice podrobných bodů vypočteme podle předchozí kapitoly nebo využijeme zápisník pro polygonové pořady. (Př..1) VÝPOČET SOUŘADNIC BODŮ POLYGONOVÝCH POŘADŮ Str.: Př..1 Číslo pořadu Číslo bodu Úhly a úhlové vyrovnání Směrníky σ Strany s Souřadnice a souřadnicové vyrovnání g c cc g c cc m Y X (1) () (3) (4) (5) (6) (7) (8) , , ,67 10,79-11, , , ,08 11,34-43, , , ,1-31,19-1, , ,40 14

15 Příklad. Vypočtěte souřadnice podrobných bodů 1,,3,4 zaměřených ze stanoviska 103 (obr..). ČB Y X , , , ,79 Výpis ze zápisníku měřených hodnot: Typ úlohy Číslo bodu Vzdálenost Úhel [m] [g] , ,53 18,88 44,6 18, ,18 37, ,85 5,77 Při výpočtu musíme vzít v úvahu, že na orientaci nebyla nastavena přesná nula, proto musíme od všech úhlů odečíst čtení na bod 51. Výpočet můžeme opět provést v zápisníku pro výpočet polygonového pořadu (Př..). Obr.. VÝPOČET SOUŘADNIC BODŮ POLYGONOVÝCH POŘADŮ Str.: Př.. Číslo pořadu Číslo bodu Úhly a úhlové Směrníky Strany Souřadnice a souřadnicové vyrovnání σ s vyrovnání g c cc g c cc m Y X (1) () (3) (4) (5) (6) (7) (8) , , ,53 33,46 7, , , ,6 33,46-8, , , ,18 18,13-8, , , ,85 18,13-54, , ,88 15

16 Cvičení:.1.* Vypočtěte souřadnice bodů 1,,3,4,5 zaměřených polární metodou. Veškeré údaje jsou ve výpisu ze zápisníku. Výpis ze zápisníku měřených hodnot: Typ úlohy Číslo bodu Vzdálenost [m] Úhel [g] ,80 1,50 1 5,17 3,08 34,77 55, ,18 80, ,1 91, ,08 317,49 ČB Y X , , , ,7..* Vypočtěte souřadnice bodů 1,,3,4,5 zaměřených polární metodou. Nakreslete náčrt bodů, zkontrolujte oměrné a vypočtěte výměru vzniklého obrazce. Je dán výpis ze zápisníku podrobného měření: Typ úlohy Číslo bodu Vzdálenost [m] Úhel [g] , ,6 4,63 58,9 94, ,5 17,74 4 7,04 09, ,1 84,67 ČB Y X , , , , , , ,0 5 73, ,10 16

17 3. Výpočet souřadnic bodů ortogonální metodou Díky rychlému technickému rozvoji měřických přístrojů (totální stanice) je ortogonální metoda dnes již méně využívána. Tuto úlohu můžeme rozdělit do dvou částí. Nejprve na výpočet bodů na měřické přímce a poté na body na kolmici. (V této části se nebudeme zabývat volnou měřickou přímkou viz. kap.5.) 3.1. Výpočet souřadnic bodů na měřické přímce Poloha bodů 1,,3 na měřické přímce je určena staničením, tj. vzdáleností od počátku P. Dáno: P,K [y,x] Měřeno: s Úkol: 1,,3 [y,x] Obr. 3.1 Postup výpočtu: a) Změřenou délku s m PK porovnáme s délkou vypočtenou ze souřadnic, musí platit: O s s, kde O s = s PK - s m PK, s budeme používat mezní odchylku pro dvojí měření pásmem tj. s = 0,01 s + 0,0. b) Nyní budeme předpokládat, že všechny délky jsou měřeny se stejnou přesností jako délka konečná, proto je třeba pro další výpočty měřené délky přepočítat ve stejném poměru tj. v si spk =, pro jednotlivé výpočty budeme používat konkrétní s v m m i. si spk c) Souřadnice bodu 1 vypočteme pomocí rajónu: y 1 = y P + x 1 = x P + s sinσ y sin σ =, v, PK 1 PK PK spk v s 1 cosσ, xpk PK cos σ PK =. spk 17

18 Po dosazení: m spk ypk y 1 = y P + s1, m spk spk m spk xpk x 1 = x P + s1, m spk spk tj. m ypk y 1 = y P + s1, m spk m xpk x 1 = x P + s1. spk Označíme-li: y PK xpk = k m y a = k m x, spk spk kde k y i k x jsou pro jednu měřickou přímku konstantní, můžeme potom psát: y i = y P + x i = x P + s k, m i m i y s k. x Celý výpočet můžeme provést ve formuláři. Body Vzdálenosti dané určované náčrt. č. Výpočet souřadnic bodů měřických přímek Souřadnice dané Body Vzdálenosti Souřadnice s y x s y x (1) () (3) (4) (5) (6) (1) () (3) (4) (5) (6) určované náčrt. č. P y P x P s 1 m s 1 m.k y s 1 m.k x 1 y 1 x 1 s m s m.k y s m.k x y x K s PK m y K x K s PK y PK x PK o s s k y k x 18

19 Příklad 3.1 Vypočtěte souřadnice bodů 4331,433,4333 na měřické přímce (obr.3.). CB Y X , , , ,50 Obr.3. Výpočet provedeme ve formuláři: Výpočet souřadnic bodů měřických přímek Př.3.1 Body Vzdálenosti dané určované náčrt. č. Souřadnice dané Body Vzdálenosti určované náčrt. č. Souřadnice s y x s y x (1) () (3) (4) (5) (6) (1) () (3) (4) (5) (6) , ,15 19,07 7,64 17, , ,61 9,58 11,85 7, , , 66,68 6,71 61, , , , , ,50 s PK =115,00 y PK =+46,11 x PK =+105,35 o s = -0,10 s =±0,13 k y =+0, k x =+0,

20 3.. Výpočet souřadnic bodů na kolmici Poloha bodů 1, je určena ortogonálními souřadnicemi, tj. staničením a kolmicemi. Dáno: P,K [y,x] Měřeno: s, k Úkol: 1, [y,x] Obr.3.4 Bod 1 leží vpravo od měřické přímky a bod leží vlevo. Paty kolmic jsou označeny 1 a. Postup výpočtu: a) Souřadnice bodů 1 a vypočteme jako body na měřické přímce (odst. 3.1). b) Souřadnice bodu 1 vypočteme z rovnic pro rajón s počátkem v 1 (obr.3.4), stejně jako u bodu na měřické přímce dosadíme do rovnice k v 1 (opravené v příslušném poměru). v ki spk =, m m ki spk y 1 = y 1 + k v 1.sin(σ PK +R), x 1 = x 1 + k v 1.cos(σ PK +R), tj. y 1 = y 1 + k v 1.cosσ PK = y P + m m spk xpk s1 k y + k1 = y m P + s m 1 k y + k m 1 k x, s s x 1 = x 1 - k v 1.sinσ PK = x P + m m spk ypk s1 k x - k1 = x m P + s m k x k spk spk c) Souřadnice bodu vypočteme z rovnic pro rajón s počátkem v (obr.3.4). PK PK k 1 - m 1 y. tj. y = y + k v.sin(σ PK +3R), x = x + k v.cos(σ PK +3R), y = y - k v.cosσ PK = y P + s k m y - m s xpk k = y P + s m k y s s PK m PK PK - k m k x, 0

21 x = x + k v.sinσ PK = x P + m m spk ypk s k x + k = x m P + s m k x + k m k y. spk spk Pokud dodržíme pravidlo, že kolmice vlevo je záporná, pak můžeme napsat obecnou rovnici pro všechny body: y i = y P + x i = x P + m m si k y + i k x k, k k. m m si k x - i y Výpočet můžeme provést ve formuláři. Výpočet souřadnic bodů měřických přímek dané Body určované Vzdálenosti náčrt. č. Souřadnice dané Body určované Vzdálenosti náčrt. č. Souřadnice s y x s y x (1) () (3) (4) (5) (6) (1) () (3) (4) (5) (6) P y P x P m s 1 s m 1.k y s m 1.k x m k 1 k m 1.k x -k m 1.k y 1 y 1 x 1 m s m k s m.k y s m.k x k m.k x -k m.k y y x K s PK m y K x K s PK y PK x PK o s s k y k x Příklad 3. Vypočtěte souřadnice bodů 1,,3 zaměřených ortogonální metodou (obr.3.5). ČB Y X , , , ,10 Obr.3.5 1

22 Celý výpočet je ve formuláři. Výpočet souřadnic bodů měřických přímek Př.3. Body Vzdálenosti dané určované náčrt. č. Souřadnice dané Body Vzdálenosti určované náčrt. č. Souřadnice s y x s y x (1) () (3) (4) (5) (6) (1) () (3) (4) (5) (6) , ,4 5,1 30,31-4,35-3,10 6,08 18, , ,74 73,8 4,61-59,55 3,03-6,03-18, , ,4 98,87 57,50-80,34-39,1 31,79, , , , , ,10 s PK =141,81 y PK =+8,53 x PK =-115,3 o s = -0,11 s =±0,14 k y =+0,58155 k x =-0,81570 Cvičení: 3.1. Je dán náčrt měřické sítě (obr.3.6) a souřadnice polygonových bodů: ČB Y X , , , , , , , ,50 Vypočtěte souřadnice měřických bodů: a) 1,, b) 3, c) 4,5,6, d) 7, e) 8,9,10, f) 11, g) 1,13, h) průsečíky se sekčními čarami p1, p, p3, p Podrobný bod 43 byl zaměřen ze dvou měřických přímek (obr.3.7). Zjistěte, zda výsledky obojího zaměření souhlasí. CB Y X , , , , , , , ,93

23 Obr.3.6 Obr.3.7 3

24 3.3.* Vypočtěte souřadnice bodů 11,1,13,14,15 zaměřených ortogonální metodou. Nakreslete náčrt bodů, porovnejte oměrné a vypočtěte výměru vzniklého uzavřeného obrazce. Je dán výpis ze zápisníku podrobného měření: Typ úlohy Číslo bodu Staničení Kolmice ,00 0,00 16,0 0, ,05-10, ,84 1, ,93-15, ,06 18, ,73-5,0 ČB Y X , , , , , , ,45 1 9, ,5 4

25 4. Polygonové pořady Polygonový pořad je lomená čára spojující dva měřické body. Vrcholy lomené čáry nazýváme polygonové body, spojnice polygonových bodů tvoří polygonové strany. V polygonovém pořadu se měří levostranné úhly a délky polygonových stran. Levá strana se posuzuje podle směru výpočtu. Polygonové pořady jsou jednou z metod určujících souřadnice bodů podrobného bodového pole. Požadavky na měření, geometrické parametry a kritéria přesnosti polygonových pořadů jsou náplní předmětu Geodézie. Rozdělení polygonových pořadů: - volný polygonový pořad - vetknutý a oboustranně orientovaný polygonový pořad, - vetknutý a jednostranně orientovaný polygonový pořad, - vetknutý polygonový pořad, - uzavřený polygonový pořad Volný polygonový pořad Připojený a orientovaný Z bodu P o známých souřadnicích můžeme určit souřadnice dalších bodů tak, že zacílíme na bod Q, kde známe σ PQ nebo jej můžeme vypočítat. Na bodě P změříme úhel ω P a stranu s P1. Souřadnice bodu 1 vypočteme pomocí rajónu (viz.kap. 1). Obdobně můžeme pokračovat dál, na bodě 1 změříme úhel ω 1 a stranu s 1 a vypočteme souřadnice bodu. Následně vypočteme souřadnice bodu K. Koncový bod K není vázán žádnými podmínkami, proto mluvíme o volném polygonovém pořadu. Polohové připojení znamená,že známe souřadnice počátečního bodu, orientace pořadu je dána známým směrníkem σ PQ a úhelem ω P. Budeme-li určovat levostranné úhly ze zápisníku, vypočteme je jako rozdíl směrů, kdy od směru na bod vpřed odečtu směr na bod vzad. Celý výpočet se tedy bude skládat z výpočtu několika na sebe navazujících rajónů. Podle platných norem by volný polygonový pořad neměl mít více než tři nové vrcholy a neměl by být delší než 50 m. Abychom lépe látku procvičili, nejsou v tomto učebním textu vždy tyto podmínky dodrženy. 5

26 Dáno: P,Q [y,x] Měřeno: s, ω Úkol: 1,,K [y,x] Obr Postup výpočtu: U všech rajónů vypočteme nejdříve směrníky σ, potom všechny souřadnicové rozdíly y a x a nakonec souřadnice všech polygonových bodů. 1. Výpočet směrníků: σ P1 = σ PQ + ω P σ 1 = σ P1 + ω 1 R σ K = σ 1 + ω R Směrník první polygonové strany σ P1 se rovná připojovacímu směrníku σ PQ zvětšenému o orientační úhel ω P (pokud je σ P1 >4R, odečteme 4R). Směrník každé další polygonové strany se rovná směrníku strany předcházející zvětšenému o levostranný vrcholový úhel a zmenšenému o R (pokud je σ<0, přičteme 4R). Kontrola výpočtu směrníků: σ P1 = σ PQ + ω P σ 1 = σ P1 + ω 1 R σ K = σ 1 + ω R tj. σ K = σ PQ + [ω].r. Obecně platí, že směrník poslední polygonové strany se rovná připojovacímu směrníku zvětšenému o součet levostranných vrcholových úhlů a zmenšenému o příslušný počet R. σ nk = σ PQ + [ω] i.r. Číslo i je rovno počtu vrcholových úhlů mimo ω P.. Výpočet souřadnicových rozdílů: y P1 = s P1.sinσ P1 x P1 = s P1.cosσ P1 y 1 = s 1.sinσ 1 x 1 = s 1.cosσ 1 y K = s K.sinσ K x K = s K.cosσ K. 6

27 3. Výpočet souřadnic polygonových bodů: y 1 = y P + y P1 x 1 = x P + x P1 y = y 1 + y 1 x = x 1 + x 1 y K = y 1 + y K x K = x + x K. Kontrola výpočtu souřadnic: y K = y P + [ y] x K = x P + [ x]. Příklad Vypočtěte souřadnice polygonových bodů 1,,K, jsou-li dány souřadnice bodu P (y = ,56 m, x = ,1 m), měřené délky a úhly a připojovací směrník σ PQ (obr.4.1.). ω P = 77,7560 g ω 1 = 194,5080 g ω = 187,4550 g s P1 = 78,43 m s 1 = 85,54 m s K = 67,39 m σ PQ = 50,5753 g Obr.4.1. Celý výpočet provedeme v tiskopisu (Př.4.1.1).Nejprve vyplníme sloupce,3 a 5 a ve sloupcích 7,8 zapíšeme souřadnice bodu P. Potom vypočteme jednotlivé směrníky ve sloupci 4 a poslední směrník překontrolujeme. Následně vypočteme souřadnicové rozdíly ve sloupcích 7,8 (píšeme doprostřed), nakonec vypočteme výsledné souřadnice v sl. 7,8 (silně orámovaná spodní část řádku pro bod) a zkontrolujeme souhlas souřadnicových rozdílů. 7

28 Str.: Př VÝPOČET SOUŘADNIC BODŮ POLYGONOVÝCH POŘADŮ Číslo pořadu Číslo bodu Úhly a úhlové Směrníky Strany Souřadnice a souřadnicové vyrovnání vyrovnání σ s g c cc g c cc Y X (1) () (3) (4) (5) (6) (7) (8) P , ,1 1 K ,43 70,79-33, , , ,54 80,09-30, , , ,39 66,51-10, , ,48 Má být y = 17,39 x = -74,64 [ y ]= 17,39 [ x ]= -74,64 Jest Příklad 4.1. Vypočtěte souřadnice polygonových bodů 158, 159, 160. Pořad vychází z bodu 19 s orientací na bod 18 (obr.4.1.3). Bod 19 (y = ,76 x = ,94). ω 19 = 110,530 g ω 158 = 15,3450 g ω 159 = 171,350 g s = 138,11 m s = 14,74 m s = 114,95 m σ = 88,1518 g Výpočet je proveden ve formuláři (Př.4.1.). Obr

29 VÝPOČET SOUŘADNIC BODŮ POLYGONOVÝCH POŘADŮ Str.: Př.4.1. Číslo pořadu Číslo bodu Úhly a úhlové vyrovnání Směrníky σ Strany s Souřadnice a souřadnicové vyrovnání g c cc g c cc Y X (1) () (3) (4) (5) (6) (7) (8) , , ,11 -,86 138, , , ,74 31,0 139, , , ,95-6,37 111, , ,19 Má být y = 1,97 x = 389,5 [ y ]= 1,97 [ x ]= 389,5 Jest Ve vlastní soustavě V praxi se někdy vyskytuje volný polygonový pořad, který není ani na počátečním, ani na koncovém bodě polohově připojen a ani orientován. Známe pouze délky stran a levostranné vrcholové úhly. Úlohu proto počítáme ve vlastní soustavě, kde zpravidla za počátek soustavy volíme první polygonový bod a osu +X vkládáme do první polygonové strany. Obr

30 Příklad Vypočtěte souřadnice polygonových bodů P,1,,3,4,K ve vlastní souřadnicové soustavě podle obr ω 1 = 3,337 g ω = 64,7306 g ω 3 = 164,796 g ω 4 = 7,7113 g Obr s P1 = 100,93 m s 1 = 11,31 m s 3 = 88,70 m s 34 = 18,05 m s 4K = 116,3 m Výpočet je proveden ve formuláři (Př.4.1.3). Str.: Př VÝPOČET SOUŘADNIC BODŮ POLYGONOVÝCH POŘADŮ Číslo Úhly a úhlové Směrníky Strany Souřadnice a souřadnicové Číslo vyrovnání σ s vyrovnání bodu g c cc g c cc Y X (1) () (3) (4) (5) (6) (7) (8) pořadu P K 0,00 0, ,93 0,00 100, ,00 100, ,31 54,47 98, ,47 199, ,70 88,60 4, ,07 03, ,05 105,05 73, ,1 76, ,3 114,57 0,08 36,69 96,69 Má být y = 36,6 x = 96,69 [ y ]= 36,69 [ x ]= 96,69 Jest

31 Cvičení: * Vypočtěte souřadnice polygonových bodů 4101, 410, 4103, je-li počátečním bodem pořadu bod 111. Pořad je orientován na bod 7 (obr.4.1.6). Obr ČB Y X , , , ,1 ω 111 = 166,5383 g ω 4101 = 194,506 g ω 410 = 08,0463 g s = 98,43 m s = 75,54 m s = 68,65 m * Vypočtěte souřadnice polygonových bodů 4104, 4105, Pořad začíná na bodě 30, orientace je na bod 185 (obr.4.1.7). CB Y X , , , ,70 ω 30 = 110,530 g ω 4104 = 15,3450 g ω 4105 = 171,350 g s = 88,11 m s = 7,74 m s = 84,95 m Obr * Vypočtěte souřadnice polygonových bodů 4107, 4108, 4109, 4110, 4111, 411. Pořad je připojen na bod 8 a orientován na bod 111 (obr.4.1.8). 31

32 Zápisník měřených úhlů a vzdáleností Číslo Výsledná Vodorovné úhly vzdálenost průměr redukovaný s průměr g c cc m cm (1) () (3) (4) (5) (6) I II stanoviska cílového bodu Řada I 4107 II I 8 II I 4108 II I 4107 II I 4109 II I 4108 II I 4110 II I 4109 II I 4111 II I 4110 II I 411 II ČB Y X , , , ,69 Obr Při zaměření sklepních prostorů byl zvolen polygonový pořad připojený na povrchu na polygonovou stranu (obr.4.1.9). ČB Y X , , , ,96 Obr ω 86 = 84,984 g ω 1011 = 95,049 g ω 101 = 76,654 g ω 1013 = 118,351 g ω 1014 = 111,38 g s = 14,585 m s = 13,906 m s = 8,973 m s = 15,065 m s = 16,987 m 3

33 V polygonovém pořadu jsou dány levostranné úhly a délky polygonových stran. Vypočtěte polygonový pořad ve vlastní soustavě (obr ). ω 1 = 161,301 g ω = 10,653 g ω 3 = 170,981 g ω 4 = 153,086 g ω 5 = 08,379 g s P1 = 10,04 m s 1 = 119,38 m s 3 = 109,76 m s 34 = 15,39 m s 45 = 84,06 m s 5K = 86,97 m Obr

34 4.. Vetknutý, oboustranně orientovaný polygonový pořad Nejčastěji se vyskytuje takový polygonový pořad, u kterého známe souřadnice počátečního i koncového bodu a známe orientaci na počátečním i koncovém bodě pořadu. Měříme délky polygonových stran a levostranné úhly. Podle dřívějšího označení se tento polygonový pořad nazýval oboustranně připojený, oboustranně orientovaný. Dáno: P,K,Q,M [y,x] Měřeno: s, ω Úkol: 1,,3 [y,x] Obr.4..1 Vypočteme-li u tohoto pořadu souřadnice bodu K, měly by souhlasit se souřadnicemi danými. Protože měřené délky a úhly jsou zatíženy nevyhnutelnými chybami, liší se vypočtené souřadnice koncového bodu od souřadnic daných, tj. při výpočtu se dostaneme do bodu K místo do daného bodu K. Abychom tento nesouhlas odstranili, musíme provést úhlové a souřadnicové vyrovnání. Postup výpočtu: 1. Úhlové vyrovnání: σ P1 = σ PQ + ω P σ 1 = σ P1 + ω 1 R σ 3 = σ 1 + ω R σ 3K = σ 3 + ω 3 R σ KM = σ KM + ω K R σ KM = σ PQ + [ω] 4.R. σ KM porovnáme s daným směrníkem σ KM, O ω = σ KM - σ KM. Rozdíl O ω se nazývá úhlová odchylka. Tato odchylka nesmí překročit tzv. mezní úhlovou odchylku ω. Velikost této odchylky je dána přesností počítaných bodů. V našich případech budeme používat 34

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

6.16. Geodetické výpočty - GEV

6.16. Geodetické výpočty - GEV 6.16. Geodetické výpočty - GEV Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 8 Platnost učební osnovy: od 1.9.2010 1) Pojetí vyučovacího

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

Úlohy domácí části I. kola kategorie C

Úlohy domácí části I. kola kategorie C 62. ročník Matematické olympiády Úlohy domácí části I. kola kategorie C 1. Čtvercová tabulka je rozdělena na 16 16 políček. Kobylka se po ní pohybuje dvěma směry: vpravo nebo dolů, přičemž střídá skoky

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0

Příklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0 Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014

Z MATEMATIKY VE SVĚTLE TESTOVÝCH. Martin Beránek 21. dubna 2014 Elementární matematika - výběr a vypracování úloh ze sbírky OČEKÁVANÉ VÝSTUPY V RVP ZV Z MATEMATIKY VE SVĚTLE TESTOVÝCH ÚLOH Martin Beránek 21. dubna 2014 1 Obsah 1 Předmluva 4 2 Žák zdůvodňuje a využívá

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách

Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Prioritní osa: 1 Počáteční vzdělávání Oblast podpory: 1.4 Zlepšení podmínek pro vzdělávání na základních školách Registrační číslo projektu: CZ.1.07/1.4.00/21. 0918 Název projektu:inovace vzdělávání v

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Návod na zpracování vzorové úlohy

Návod na zpracování vzorové úlohy Přenos dat s využitím moderních registračních zařízení včetně zpracování naměřených dat a následné propojení s grafickým programem Návod na zpracování vzorové úlohy Ukázka zpracování měřených dat GNSS

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

M - Goniometrie a trigonometrie

M - Goniometrie a trigonometrie M - Goniometrie a trigonometrie Určeno jako učební text pro studenty dálkového studia a jako shrnující učební text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Písemná práce k modulu Statistika

Písemná práce k modulu Statistika The Nottingham Trent University B.I.B.S., a. s. Brno BA (Hons) in Business Management Písemná práce k modulu Statistika Číslo zadání: 144 Autor: Zdeněk Fekar Ročník: II., 2005/2006 1 Prohlašuji, že jsem

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Popis základního prostředí programu AutoCAD

Popis základního prostředí programu AutoCAD Popis základního prostředí programu AutoCAD Popis základního prostředí programu AutoCAD CÍL KAPITOLY: CO POTŘEBUJETE ZNÁT, NEŽ ZAČNETE PRACOVAT Vysvětlení základních pojmů: Okno programu AutoCAD Roletová

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

1.1 Oslunění vnitřního prostoru

1.1 Oslunění vnitřního prostoru 1.1 Oslunění vnitřního prostoru Úloha 1.1.1 Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR

K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR K metodám převodu souřadnic mezi ETRS 89 a S-JTSK na území ČR Vlastimil Kratochvíl * Příspěvek obsahuje popis vlastností některých postupů, využitelných pro transformaci souřadnic mezi geodetickými systémy

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208

III. 4.2.12 Rychlé určování hodnot funkcí sinus a cosinus. Předpoklady: 4207, 4208 4.. Rychlé určování hodnot funkcí sinus a cosinus Předpoklady: 4, 48 Pedagogická poznámka: Tato kapitola nepřináší nic nového a nemá ekvivalent v klasických učebnicích. Cílem hodiny je uspořádat v hlavách

Více

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL GA01 M01 VYBRANÉ ČÁSTI A APLIKACE VEKTOROVÉHO POČTU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE S KOMBINOVANOU FORMOU STUDIA

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních.

Protokol č. 7. Jednotné objemové křivky. Je zadána výměra porostu, výška dřevin a počty stromů v jednotlivých tloušťkových stupních. Protokol č. 7 Jednotné objemové křivky Zadání: Pro zadané dřeviny stanovte zásobu pomocí JOK tabulek. Součástí protokolu bude tabulka obsahující střední Weisseho tloušťku, Weisseho procento, číslo JOK,

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více