Kapitola 1. Formální jazyky. 1.1 Formální abeceda a jazyk. Cíle kapitoly: Cíle této části: Klíčová slova: abeceda, slovo, jazyk, operace na jazycích

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Kapitola 1. Formální jazyky. 1.1 Formální abeceda a jazyk. Cíle kapitoly: Cíle této části: Klíčová slova: abeceda, slovo, jazyk, operace na jazycích"

Transkript

1 Kpitol 1 Formální jzyky Cíle kpitoly: Po prostudování kpitoly máte plně rozumět pojmům jko(formální) beced, slovo, jzyk, operce n slovech jzycích; máte zvládt práci s těmito pojmy n prktických příkldech. Klíčová slov: beced, slovo, jzyk, operce n jzycích Komentář: Kpitol má dvě výukové části jednu procvičovcí. U kždé výukové části jsou uvedeny podrobnější cíle, klíčová slov, orientční čs ke studiu n závěr shrnutí. 1.1 Formální beced jzyk Orientční čs ke studiu této části: 1 hod. Cíle této části: Po prostudování této části máte rozumět pojmům jko je formální slovo, beced, jzyk. Máte je být schopni vysvětlit, uvádět příkldy, rozumět popisům jzyků jko množin slov chrkterizovných nějkou podmínkou. Tké máte zvládnout elementární pojmy operce jko je délk slov, prefix, sufix, podslovo, zřetězení slov td. 1

2 2 Kpitol 1. Formální jzyky Klíčová slov: beced, slovo, znk, jzyk, zřetězení, prefix, sufix, podslovo Teoretická informtik poskytuje formální zákldy nástroje pro prktické informtické plikce(jko progrmování či softwrové inženýrství). Jedním z jejích důležitých úkolů je mtemticky popst různé typy lgoritmických problémů výpočtů. Pro mtemtický popis vstupů výstupů problémů (výpočtů) je užitečné nejprve zvést pojmy jko jsou(formální) beced, slovo, jzyk. Použitá symbolická beced pro vstupy výstupy výpočtů závisí n dohodnuté formě zápisu. V počítčové prxi využíváme npř. binární becedu {0,1},hexdecimálníbecedu {0,1,...,9, A,..., F }nebo textovou becedu, npř. v kódování ASCII či nověji UTF-8. Mtemticky můžeme z becedu povžovt libovolnou(dohodnutou) konečnou množinu symbolů; převody zápisů mezi různými becedmi jsou přímočré.(v konkrétním přípdě obvykle volíme becedu, která se přirozeně hodí k dnému problému.) Důležitýmpojmemje(formální) slovo,cožznmenálibovolnýkonečnýřetězec symbolů nd dnou becedou; pokud je v becedě mezer, nemá žádný zvláštní význm.(jkkoli vymezená) množin slov se nzývá(formálním) jzykem.jkopříkldyslovvbecedě {0,1}můžemeuvésttřebslovo slovo Příkldem jzyk s becedou {0, 1} je třeb množinvšechslov(vbecedě {0,1}),kteréobshujísudýpočetznků0 (správněji řečeno: sudý počet výskytů znku 0); první výše uvedené slovo do tohoto jzyk ptří, druhé nikoliv. Všimněme si tké, že tento jzyk je nekonečný nemohli bychom ho tedy zdt výčtem jeho prvků. Uvedené pojmy nyní přesně ndefinujeme zároveň zvedeme důležité operceseslovyjzyky. Definice 1.1 Abecedou myslíme libovolnou konečnou množinu; čsto ji oznčujeme Σ. Prvky becedy nzýváme symboly(či písmen, znky pod.). (Npř.becedΣ={,b}obshujedvěpísmen.) Slovem, neboli řetězcem, nd becedou Σ(též říkáme: v becedě Σ) rozumímelibovolnoukonečnouposloupnostprvkůmnožinyσ.proσ={,b}je to npříkld,b,b,,b; pokud nemůže dojít k nedorozumění, píšeme tkovou posloupnost obvykle bez čárek, jko bbb. Prázdnéslovo jetkéslovemznčíse ε.

3 1.1 Formální beced jzyk 3 Důležitá poznámk k znčení. V konkrétních příkldech budeme typicky používt becedy jko {, b}, {,b,c}, {0,1}pod.ČstoovšembudemehovořitoobecnébeceděΣ budeme třeb popisovt nějkou konstrukci, která se má provést pro kždé písmeno ze Σ. Řekneme tedy npř.: prokždé Σprovedemenásledující... To neznmená, že fyzický symbol je prvkem Σ. V této souvislosti prostě předstvuje proměnnou, kterou používáme při nšem popisu situce. Když tedy npř. příkz postupněprokždé Σvypiš plikujemenbeceduσ={0,1},jepříslušnýmvýpisem0011.ideálníby bylo, kdybychom typogrficky odlišovli používli npř. jen jko prvek konkrétní becedy jen jko onu proměnnou. Upozorňujeme n to, že náš text to nedodržuje(čsto používáme becedu Σ = {, b}, čili používáme iproprvekkonkrétní becedy); ndruhéstrněbymělbýt význm konkrétního použití symbolu vždy jsný z kontextu). Ve smyslu proměnných budou mlá písmen ze zčátku nglické becedy(, b, c,...)spřípdnými indexypředstvovt znkyzkoumnébecedy (která bude v kontextu zřejmá či tiše předpokládná). Jko proměnné pro slov budeme obvykle používt mlá písmen z konce becedy (u, v, w, x, y, z). Ilustrujme si toto použití proměnných npř. u zvedení následujícího znčení. Znčení: Délkuslov w,tj.početpísmenve w,znčíme w ;slovo εmá pochopitelnědélku0,tedy ε =0. Výrzem w oznčujemepočetvýskytůsymbolu veslově w. Symbol w v předchozí úmluvě je tedy proměnná, z niž můžeme dosdit libovolné slovo(v jkékoli zvolené becedě). Všichni jsme tk jistě pochopili, ženpř =5.Vevýrzu w sevyskytujídvěproměnné;z wtk můžeme dosdit libovolné slovo ve zvolené becedě z libovolný prvek tétobecedy.ztohotoobecnéhopopisujenámtkjsné,ževkonkrétním přípdějenpř =2.

4 4 Kpitol 1. Formální jzyky Znčení: VýrzemΣ znčímemnožinuvšechslovndbecedouσ;někdy použijemeσ + promnožinuvšechneprázdnýchslov vbeceděσ.(jetedy Σ =Σ + {ε}.)? Množin všech slov nd konečnou becedou je spočetná; slov v dné becedě můžeme totiž přirozeně seřdit(uspořádt): nejprve podle délky v rámci stejné délky podle becedy, tj. podle zvoleného uspořádání n prvcích becedy. Tk jsou slov seřzen do jedné posloupnosti, ve které je lze po řdě očíslovt přirozenými čísly. Kontrolníotázk: Jkbystevtomtopořdívypisovli(generovli)slovz becedyσ={0,1}sbecednímuspořádáním0 <1? Jistě jste nezpomněli n prázdné slovo, zčli jste tedy posloupnost ε,0,1,00,01,10,11,000,001,.... Znčení: Příslušnéuspořádáníslovbudemeoznčovt < L (npř.11 < L 001). Přirozenou opercí se slovy je jejich zřetězení, tj. jejich spojení z sebou do jednoho výsledného slov: Definice 1.2 Zřetězeníslov u= n, v= b 1 b 2...b m oznčujeme u v,stručněji uv, definujeme uv= n b 1 b 2...b m.výrzem u n oznčujeme n-násobné zřetězeníslov u;tedy u 0 = ε, u 1 = u, u 2 = uu, u 3 = uuutd. Poznámk: Uvědomme si, že operce zřetězení slov je socitivní(tzn.(u v) w= u (v w));protojenpř.zápis u v w(či uvw)jednoznčnýibez uvedení závorek. Je tké přirozené se dohodnout, že exponent váže silněji(má větší prioritu) než zřetězení. Pkjejsné,ženpř.zápisem 3 bc 4 myslímeslovo bcccc.chceme-li, by se zde npř. exponent 4 vzthovl ke slovu bc, musíme použít závorky: 3 (bc) 4 znmenáslovo bcbcbcbc. Někdy potřebujeme mluvit jen o určitých částech slov. Úsek znků, kterým nějké slovo zčíná, budeme nzývt předponou, neboli odborně prefixem.

5 1.1 Formální beced jzyk 5 Obdobně se úsek znků, kterým slovo končí, budeme nzývt příponou, odborně sufixem. Jkoukoliv část slov budeme nzývt podslovem(nebo podřetězcem). Definice 1.3 Slovo ujeprefixemslov w,pokudlzepsát w= uvpronějkéslovo v. Slovo ujesufixemslov w,pokudlzepsát w= vupronějkéslovo v. Slovo ujepodslovemslov w,pokudlzepsát w=v 1 uv 2 pronějká slov v 1 v 2. Všimněmesi,žepodslovo umůžemítve wněkolikvýskytů;kždývýskyt jeurčensvoupozicí,tj.délkoupříslušného v 1 zvětšenouo1.dávátosmysl ipropodslovo u=ε,byťvtomtopřípděsijednotlivé výskyty nikdy nebudeme uvžovt.(poznmenejme ještě, že konkrétní prefix či sufix u má smozřejmě jen jeden výskyt ve w.) Příkld: Vezměmesinpříkldslovo bcdbcdc.pkslovo bc jejedním zjehoprefixů,kdežto bc prefixemnení.dále bcdc jejednímzjehosufixů. Slovo bc jepodslovemuvedenéhoslov,sdvěmvýskyty npozicích2 6;neníleprefixemnisufixem.? Prefixůslov wjeočividně w +1;stejnějetospočtemsufixů.Kždýprefixi kždý sufix dného slov je i jeho podslovem. Prázdné slovo ε je pochopitelně prefixem, sufixem i podslovem kždého slov. Kontrolníotázk: Kolikjepodslovslov w? To je komplikovnější otázk; počet nezávisí jen n délce slov w, npř. slovo májenjednopodslovodélky1,kdežto bmádvě.podslovslov wje určitělespoň w +1jistěnevícenež w 2 +1;horníhrniciovšemjistě můžete snížit. Jiná věc je počet výskytů dného podslov ve slově; npř. slovo má tři výskyty podslov dv výskyty podslov. Cvičení 1.1: )Vypištevšechnslovvbecedě {, b},kterámjídélku3. b) Npište explicitně slovo u(posloupnost písmen), které je určeno výrzem v 3 b (bb) 2,kde v=b(slovo ujetedyvýsledkemprovedeníopercí uvedených ve výrzu).

6 6 Kpitol 1. Formální jzyky c) Vypište všechn slov délky 2, které jsou podslovy slov 00010(v becedě {0,1}). d) Vypište všech pět prefixů slov e) Vypište všech pět sufixů slov Definice 1.4 Formální jzyk, stručně jzyk nd becedou Σ je libovolná množin slov vbeceděσ,tedylibovolnápodmnožinσ. Znčení: Jzyky obvykle oznčujeme L(s indexy). Říkáme-li pouze jzyk,rozumímetím,žepříslušnábecedjebuďzřejmázkontextunebo může být libovolná. Poznámk: U přirozeného jzyk(jko je češtin) mluvíme o slovech, z nichž se skládjí věty. U formálních jzyků ze slov žádné věty netvoříme, nopk smotná slov(řetězce ptřící do jzyk) je možné chápt jko věty ( někdysetkinzývjí).pokudsenpř.njzyk češtin dívámejkon množinu všech českých grmticky správných vět, je kždá tto vět slovem tkto chápného formálního jzyk češtin.? Poznámk: Byť v prktických přípdech jzyků má jejich beced npř. desítky prvků, v nšich příkldech bude beced čsto(jen) dvouprvková(většinou {, b}či {0,1}).Uvědomme si,žetonenízásdníomezení, jelikož písmen víceprvkové becedy lze přirozeně zkódovt řetězci dvouprvkové becedy. Kontrolníotázk: Jkdlouhéřetězcezbecedy {0,1}bystepoužilipřikódování becedy, která má 256 prvků? (Pochopitelně stčí osm bitů, tedy jeden symbol 256-ti prvkové becedy reprezentujeme řetězcem délky 8 v dvouprvkové becedě.) Příkld: Příkldy formálních jzyků nd becedou {0, 1} jsou: L 1 = {ε,01,0011,1111,000111} L 2 jemnožinvšech(konečných)posloupnostívbecedě {0,1}obshujícíchstejnýpočetsymbolů0jko1,tedy L 2 = {w {0,1} w 0 = w 1 }

7 1.2 Některé operce s jzyky 7 L 3 = {w {0,1} číslosbinárnímzápisem wjedělitelné3} Jzyk L 1 jezdekonečný,kdežtozbylédvjsounekonečné.slovo101100ptří dojzyk L 2,le10100do L 2 neptří,neboťobshujevícenulnežjedniček. Slovo110binárněvyjdřuječíslo6,protoptřídojzyk L 3,kdežto1000 vyjdřující8do L 3 neptří. Cvičení1.2:Vypišteprvníchdesetslovzjzyk L={w {, b} kždý výskytpodslov jeve wihnednásledovánznkem b }.(Pochopitelněse odkzujemekuspořádání < L,kdepředpokládámebecedníuspořádání < b.) Shrnutí: Tkže už chápeme, že formální jzyk je něco jiného než přirozený. Je to prostě množin slov neboli konečných řetězců písmen z nějké konečné becedy. Mlé konečné jzyky lze zdávt výčtem, nekonečné jen vhodnou chrkterizcí slov jzyk podmínkou, kterou splňují. Prefixy, sufixy, podslov,zřetězení,znčenídélky,počtuvýskytůsymboluveslovětd...to vše není pro nás žádný problém. 1.2 Některé operce s jzyky Orientční čs ke studiu této části: 1 hod. Cíle této části: Po prostudování této části máte rozumět běžným opercím s jzyky, nejen klsickým množinovým, le i zřetězení, iterci, zrcdlovému obrzu (levému) kvocientu jzyk podle slov( obecně podle jzyk). Máte je být schopni definovt, vysvětlit, uvádět řešit příkldy. Klíčová slov: operce s jzyky, sjednocení, průnik, doplněk, rozdíl, zřetězení, iterce, zrcdlový obrz, kvocient Někdy je výhodné definovt složitější jzyk prostřednictvím dvou jednodušších nějké operce, která je spojí. Protože jsou jzyky definovány jko

8 8 Kpitol 1. Formální jzyky množiny, můžeme používt běžné množinové operce(definovné v Sekci??). Máme tedy: Zjzyků L 1, L 2 lzetvořitjzyky L 1 L 2 (sjednocení), L 1 L 2 (průnik), L 1 L 2 (rozdíl). NezmiňovlijsmebecedyΣ 1,Σ 2 jzyků L 1, L 2 ;pokudnejsoustejné,můžeme výslednýjzykcháptjkojzyksbecedouσ 1 Σ 2.Dálemáme Projzyky Ljejzykemijehodoplněk L;rozumísepropříslušnou beceduσ,tj. L=Σ L. Dále můžeme definovt nové operce speciálně pro práci s jzyky. Npř. je to zřetězení jzyků(odvozené od zřetězení slov) či iterce(tedy opkovné řetězení): Zřetězeníjzyků L 1, L 2 jejzyk L 1 L 2 = {uv u L 1, v L 2 }, tj.jzykvšechslov,kterélzerozdělitndvěčásti,znichžprvníjez jzyk L 1 druházjzyk L 2. Itercejzyk L,znčená L,jejzykvšechslov,kterálzerozdělit nněkolikčástí,znichžkždáptřídojzyk L;do L ovšemvždy zřzujeme ε(chápné jko zřetězení 0 slov). Induktivně můžeme tké definovt L 0 = {ε}, L 1 = L, L 2 = L L,..., L n+1 = L n L,... Iterce L je pk rovn L = L 0 L 1 L 2 L 3... Příkld: Uveďme si následující ukázky opercí s jzyky nd becedou {0, 1}; zkuste vždy uvedenou otázku nejdříve smi zodpovědět. )Cojesjednocenímjzyk L 0 všechslovobshujícíchvíce0než1(tedy L 0 = { w {0,1} w 0 > w 1 })jzyk L 1 všechslovobshujících více1než0(tedy L 1 = { w {0,1} w 0 < w 1 })? Jetojzykvšechslovmjícíchpočet1různýodpočtu0.(Tedy L 0 L 1 = { w {0,1} w 0 w 1 }.)

9 1.2 Některé operce s jzyky 9 b)jkýjzyk L 0 L 1 vzniklýzřetězenímjzykůzpředchozíukázky()? Ptří sem všechn možná slov? Všechn slov do tohoto jzyk neptří, npříkld sndno zjistíme, že npř.10 L 0 L 1.Neptřítmtkénpř obecnětmjistě neptříkždéslovo,kterénemáprefix,vněmžjevíce0než1.přesné vystižení celého zřetězení není úplně jednoduché. Podle definice tm leprostěptřívšechntslov,vnichžexistujeprefixmjícívíce0 než1,přičemžzbytekslovmánopkvíce1než0. c)jeprvd,že L 0 L 1 = L 1 L 0 vpředchozíukázce? Není,npříkld,jkužbylouvedeno,10 L 0 L 1,lesndnovidíme, že10 L 1 L 0. d)covznikneitercíjzyk L 2 = {00,01,10,11}? Tktovzniknejzyk L 2všechslovsudédélky,včetněprázdnéhoslov. Zdůvodněníjesndné,slovvL 2 musímítsudoudélku,protoževznikjí postupným zřetězením úseků délky 2. Nopk kždé slovo sudé délkyrozdělímenúsekydélky2kždýúsekbudemítzřejmějeden ztvrůvl 2. Poznámk: Všimněme si, že jsme npř. n výše uvedených jzycích ukázli, žeopercezřetězeníjzykůneníkomuttivní,tj.obecněnepltí L 1 L 2 L 2 L 1.(Použilijsmesiceprooznčeníopercezřetězenístejnýznkjko užíváme pro násobení(tedy ), to le pochopitelně neznmená, že operce zřetězení má stejné vlstnosti jko násobení.) Poznámk: Všimněme si tké, že znčení pro iterci odpovídá nšemu znčenímnožinyvšechslovσ ndbecedouσ nbecedujemožnésedívt jko n množinu všech jednopísmenných slov; kždé(neprázdné) konečné slovondbecedouσlzerozdělitnčástidélky1,znichžkždápochopitelně ptřídoσ. Definiceiterce L námtkéříká,žeprázdnéslovodoníptřívždy(vznikne zřetězenímnulslovzl ). Tedymj.pltí = {ε}. Dlší zjímvou opercí definovnou pro jzyky je zrcdlový obrz.

10 10 Kpitol 1. Formální jzyky Definice 1.5 Zrcdlovýobrzslov u= n je u R = n n ,zrcdlovýobrz jzyk Lje L R = {u v L:u=v R },stručnějipsáno L R = {u R u L}. Příkld: Zrcdlovýmobrzemjzyk L 1 = {ε,, bb, bb}jejzyk L R 1 = {ε,, bb, bb}. Zrcdlovýmobrzemjzyk L 2 = {w w mod2=0}jejzyk L 2,neboli L R 2 = L 2.? Kontrolníotázk: Pltíobecně(uv)R = u R v R? Smozřejmě,žene(dosďtenpř. u=, v=b).jistěsndnonhlédnete,že obecněpltí(uv) R = v R u R ;podobnětké(l 1 L 2 ) R =(L 2 ) R (L 1 ) R. Poslední operce, kterou si uvedeme, může n první pohled působit komplikovně, le pro výkld v dlších kpitolách je velmi užitečné jí důkldně porozumět(přinejmenším tedy její jednoduché formě). Záměrně zčněme obecnou definicí: Definice 1.6 (Levý)kvocientjzyk L 1 podle L 2 jedefinovántkto: L 2 \L 1 = { v u L 2 : uv L 1 }. Když se setkáme s definicí, které ihned neporozumíme, vždy je užitečné si definici nejdříve osht n konkrétních jednodušších příkldech. Uvžme třebpřípd,kdyobjzykyobshujíjedinéslovo,tedy L 1 = {v 1 }, L 2 = {v 2 }.Podledefinice {v 2 }\{v 1 }={ v u {v 2 }:uv {v 1 } }.Tedylibovolné slovo vptřído {v 2 }\{v 1 }právětehdy,kdyžexistuje u {v 2 },tedynutně u=v 2,tkové,že uv=v 2 vjeprvkem {v 1 },tedynutně v 2 v=v 1.Dojzyk {v 2 }\{v 1 }tedyptřívůbecnějkéslovojentehdy,když v 2 jeprefixem v 1 ;v tompřípděptřído {v 2 }\{v 1 }právěto(jediné)slovo,kterévzniknezv 1 odtržením(umzáním)prefixu v 2. Npř. {b}\{bbb}={bb},kdežto {b}\{bbb}=. Teď už si sndno odvodíme onu vizovnou jednoduchou formu, kterou je velmi záhodno důkldně pochopit: (levý) kvocient jzyk podle slov {w}\l, psný tké zkráceně w\l,

11 1.2 Některé operce s jzyky 11 jeprostěsjednoceníjzyků w\{v}provšechnslov v L.Jinýmislovy: jzyk w\l dostneme tk, že vezmeme všechn slov z L mjící prefix w pkjimtenprefix wumžeme.ještějinkřečeno:slovo vptřídojzyk w\lprávětehdy,kdyžpopřidání wnzčátekptřívýslednéslovo wvdo L. Zvlášť důležitý bude pro nás zákldní přípd, kdy w je rovno jedinému písmenu. Příkld: Pohrjme si trochu s kvocienty; jko vždy, zkuste smozřejmě uvedené otázky nejdříve smi zodpovědět. )Jká slov ptří do jzyk w\l, kde w = L = {bb, b,, bbb}? Jsoutoslov b,. b)jkjetovpředchozímpříkldu,je-li w= ε? Jistějstesiuvědomili,že ε\l=lprokždýjzyk L,tkžesprávná odpověď v nšem konkrétním přípdě je bb, b,, bbb. c)jkjetovpřípdě w=b?acovpřípdě w= bb? V prvním přípdě se w\l rovná {ε}, v druhém přípdě se w\l rovná (žádnéslovozltotižnemáprefix bb). d) Chci-li zjistit b\l, mohu s výhodou využít již zjištěný \L? Určitě no, jelikož b\l je vlstně b\(\l); obecně pltí uv\l = v\(u\l).(promyslete si důkldně, proč je pořdí u, v prohozeno.) VnšemkonkrétnímpřípděsezjímámeoslovzL,kterámjíprefix b(kterýpkhodlámeumzt).kdyžužlevíme,jkvypdjíslovz Lzčínjící poté,cojimonenprefix umžeme,tedy \L={b, }, stčísezdepodívtnslovzčínjící btenprefix bjimumzt: Mámetedy b\{bb, b,, bbb}=b\(\l)=b\{b, }={}. e) Smozřejmě se není třeb omezovt n konečné jzyky. Jk byste chrkterizovlinpř.slovzjzyků0\l1\l,kde L={w {0,1} w 1 jeliché }? Jesndnénhlédnout,že0\L=L1\L={w {0,1} w 1 jesudé }.

12 12 Kpitol 1. Formální jzyky f)jkbystechrkterizovlislovzjzyků \L, b\lkde L = {w {, b} kždývýskytpodslov jeve wihnednásledovánznkem b }? Určitěrychlevidíme,že b\l=l:kždéslovozb\lzjistémusísplňovt, že kždý výskyt podslov je v něm ihned následován znkem b(tedy b\l L);ovšemkdyžklibovolnémuslovu u Lpřidámen zčátek b,tkvýsledné bujistěptřído L tedy L b\l. Pro jetojink:siceizdepltí \L L,lemámenpř. L (\L).(Proč?) Jzyk \L můžeme chrkterizovt jko {w {, b} kždývýskytpodslov jeve wihnednásledovánznkem b(nvíc)pokud wzčínáznkem,pkponěmhnednásleduje b }. Po pochopení jednoduché vrinty w\l není smozřejmě problémem ni obecná definice kvocientu, když si uvědomíme, že L 2 \L 1 = w L 2 w\l 1. Ale pro tuto chvíli postčí, že plně rozumíme kvocientu podle slov(či dokonce jen podle písmene). Shrnutí: Operce s jzyky už pro nás nejsou problémem. Plně rozumíme definicím umíme je plikovt. Speciálně jsme si dobře promysleli trochu zpeklitou operci kvocientu. 1.3 Cvičení Orientční čs ke studiu této části: 1 hod. Cíle této části: Ttočástobshujepouzeotázkypříkldy.Tymjípřispětkprohloubení všeho porozumění látce celé této kpitoly.

13 1.3 Cvičení 13? Otázky: Otázk 1.3: Můžeme množinu všech přirozených čísel povžovt z becedu v nšem smyslu? Otázk 1.4: Můžeme množinu všech přirozených čísel(lespoň v nějké reprezentci) povžovt z formální jzyk v nšem smyslu? Otázk 1.5: Lze konečným počtem opercí sjednocení /nebo zřetězení z konečných jzyků vytvořit nekonečný jzyk? Otázk1.6:Jkýjerozdílmeziprázdnýmjzykem prázdnýmslovem ε? Otázk1.7:Kdyjeiterce L jzyk Lkonečnýmjzykem? Otázk1.8 :Můžemedvojíitercíjzykdosttvíceslovnežjednouitercí,tj.existujejzyk,pronějž L (L )? Cvičení 1.9: Která slov jsou zároveň prefixem i sufixem slov ? (Njdete všechn tři tková?) Cvičení 1.10: Vypište slov ve zřetězení jzyků {110, 0111} {01, 000}. Cvičení 1.11: Uvžujme jzyky L 1 = {w {, b} wobshujesudýpočetvýskytůsymbolu }, L 2 = {w {, b} wzčínákončístejnýmsymbolem }. Vypišteprvníchšestslov(rozumísevuspořádání < L )postupněprojzyky L 1 L 2, L 1 L 2, L 1 L 2, L 1. Cvičení 1.12: Njděte dv různé jzyky, které komutují v operci zřetězení, tj. L 1 L 2 = L 2 L 1. Cvičení1.13 :Covznikáitercíjzyk {00,01,1}?Ptřítmvšechnslov nd {0,1}? Cvičení1.14:Uvžujmejzykyndbecedou {0,1}.Nechť L 1 jejzykem všechtěchslovobshujícíchnejvýšepět(výskytůznku)1l 2 jejzykem

14 14 Kpitol 1. Formální jzyky všechtěchslov,kteráobshujístejně0jko1.kolikjeslovvprůniku L 1 L 2? Cvičení 1.15: Uvžujme jzyky nd becedou {, b}. Vypište všechn slov vezřetězeníjzyků L 1 = {ε, bb, bb}l 2 = {, b, bb}. Cvičení1.16 :Uvžujmejzykyndbecedou {c, d}.nechť L 0 jejzyk všech těch slov, která obshují různé počty výskytů symbolu c výskytů symbolu d. Snžte se co nejjednodušeji popst, která slov ptří do zřetězení L 0 L 0. Cvičení 1.17: Předstvme si následující elektrický obvod s dvěm přepínči A B.(Přepínče jsou provedeny jko retční tlčítk, tkže jejich polohu zvnějšku nevidíme, le kždý stisk je přehodí do druhé polohy.) N počátku žárovk svítí. Pokusme se schemticky popst, jké posloupnosti stisků A, B vedou k opětovnému rozsvícení žárovky. + A B Cvičení 1.18: Obdobně jko v předchozím příkldě si vezměme následující obvodspřepínči A, B, Cjednoužárovkou.(Přepínč Cmádvspolečně ovládné kontkty, z nichž je spojený vždy právě jeden.) N počátku žárovk nesvítí. Jké posloupnosti stisků A, B, C vedou k rozsvícení žárovky? + A C B

15 1.3 Cvičení 15 Cvičení 1.19: Uvžujme jzyky nd becedou {0, 1}. Popište(slovně) jzyk vzniklýitercí {00,111}. Cvičení1.20:Uvžujmejzykyndbecedou {0,1}.Nechť L 1 jejzykem všechtěchslovobshujícíchnejvýšejedenznk1l 2 jejzykemvšechtěch slov, která se čtou stejně zepředu jko zezdu(tzv. plindromů) tedy všech slov u,proněžpltí u=u R.Kterávšechnslovjsouvprůniku L 1 L 2? Poznámk: Pozor, průnik obou jzyků je nekonečný. Cvičení1.21:Pročobecněnepltí(L 1 L 2 ) L 3 =(L 1 L 3 ) (L 2 L 3 )?

16 16 Kpitol 1. Formální jzyky

17 Kpitol 2 Konečné utomty regulární jzyky Cíle kpitoly: Po prostudování této kpitoly budete znát pojmy konečný utomt regulární výrz. Budete umět nvrhnout konečný utomt rozpoznávjící dný jzyk rovněž budete umět tento jzyk popst regulárním výrzem. Budete umět provádět určité operce s konečnými utomty. Budete tké rozumět pojmu nedeterminismus budete ho umět vyžít při návrhu utomtů. Rovněž pochopíte, proč některé jzyky nemohou být rozpoznávány konečným utomtem. Klíčová slov: konečné utomty, regulární výrzy 2.1 Motivční příkld Orientční čs ke studiu této části: 2 hod. Cíle této části: Nkonkrétnímjednoduchém progrmátorském příkldubysteměli nejdříve intuitivně pochopit jeden z motivčních zdrojů, který vcelku 17

18 18 Kpitol 2. Konečné utomty regulární jzyky přirozeně vede k pojmu návrhu konečného utomtu jko rozpoznávče jzyk. Teprve potom(v dlších sekcích) přistoupíme k precizci tkto získné intuice. Snžíme se tím přispět k demonstrci obecného fktu,žeteoreticképojmy(vinformticejinde) nepdjíznebe, le snží se co nejprecizněji nejužitečněji zchytit objsnit podsttu skutečných prktických problémů přispět k jejich řešení. Klíčová slov: vyhledávání vzorku v textu Podívejmesennásledujícílgoritmus,zpsnýjko psclský progrm. procedure SEARCH (vr F: file) const length = 6 (* delk hledneho retezce *) const P = [,b,,,b, ] (* hledny retezec *) vr A: rry [ 1..length ] of chr begin for i:=1 to length do red( A[i], F ); if EOF (* end of file *) then return endfor while true do if EQUAL(P,A) then vypis misto vyskytu for i:=1 to length-1 do A[i]:=A[i+1] endfor red( A[length], F ); if EOF then return endwhile end Procedur EQUAL je nprogrmován následovně. function procedure EQUAL (vr S1,S2: rry [ 1..length ] of chr): boolen begin for i:=1 to length do if not( S1[i] = S2[i] ) then return FALSE endfor return TRUE end

19 2.1 Motivčnípříkld 19? Progrmátorsky zběhlý čtenář jistě nemá problémy s pochopením uvedeného (pseudo)kódu, byť sám třeb progrmuje v jzycích jiného typu. Kontrolníotázk: JkbystechrkterizovličinnostprocedurySEARCH,je-li spuštěn n soubor obshující(dlouhou) sekvenci znků z množiny {, b}? (Sekvence je zkončen speciálním znkem, npř. < EOF >.) Ano, jistě jste pochopili, že procedur vypíše všechny výskyty řetězce(tedy slov) bb ve vstupním souboru. Pod výpisem si npř. předstvme výpis pozice konce nlezeného řetězce; tto technická otázk teď pro nás není podsttná, i když u kompletního počítčového progrmu by se smozřejmě musel tké dotáhnout. Z progrmátorskéhohledisk sijistěhnedvšimnememožnostízmenšení čsové náročnosti uvedeného progrmu. Npř. prováděný posun obshu pole A před přečtením dlšího znku není jistě nejlepší řešení.(npdá vás něco elegntnějšího?) Dále si všimneme, že čtení z vnějšího souboru znk po znku bymohlobýtzdrojemvelkéztrátyčsu.(proč?)mělibychomsibýtjisti,že tento problém ve skutečnosti tiše řeší knihovní procedury pro čtení pod.; pk se nemusíme tímto problémem dále zbývt. Vžijmeseteďdosituce,kdymámezesebevydtmximumnpstprogrm, který je z hledisk čsové náročnosti podsttně lepší než t uvedená procedur SEARCH, byť vylepšená o přímočré progrmátorské nápdy. To je možné jen tehdy, jde-li úkol relizovt principiálně lepším lgoritmem. Existuje tkový lgoritmus? Poznámk: Nejde nám pochopitelně prvořdě o hledání speciálního řetězce bb, le obecněji o hledání výskytů vzorku v souboru(npř. textu). Vzorek bb nám teď slouží jen jko mlý konkrétní příkld. Podívejme se n jiné řešení procedury SEARCH. procedure SEARCH1 (vr F: file) const length = 6 type stte = 0.. length type lphbet = (,b) const A: rry [ stte, lphbet ] of stte = [ [1,0], [1,2], [3,0], [4,2], [1,5], [6,0], [4,2] ] vr q: stte begin

20 20 Kpitol 2. Konečné utomty regulární jzyky q:=0 while true do if q=6 then vypis misto vyskytu red( ch, F ); if EOF then return q := A[ q, ch ] endwhile end Bez dlšího komentáře, tj. bez pochopení, jk tento progrm vznikl, není smozřejmě vůbec jsné, že SEARCH1 relizuje tentýž úkol jko SEARCH(tj., že pro stejnou vstupní sekvenci symbolů,b vydá stejný výstup). Ihned le můžeme ověřit, že procedur SEARCH1 poběží jistě rychleji než SEARCH.(Proč?) Jkmůžemedojítkoné zázrčnétbulce (tj.dvourozměrnémupoli)a zpsnévsearch1zároveňkpřesvědčení,žejetosprávně,tedyžesearch1 děláto,coodníočekáváme?nejednásesmozřejměozázrk,leopoužití obecně pltného postupu, který můžeme nznčit npř. tkto: prvořdé je důkldné porozumění zdání úkolu, jeho přesná specifikce (n správné úrovni bstrkce), promyšlení z různých úhlů, nejprve n jednoduchých přípdech pod., řešení pk(jkoby smo) vychází z(důkldně promyšlené) podstty úkolu, stejně jko důkz jeho správnosti. Tento ideál se v nšem konkrétním příkldu můžeme pokusit relizovt následovně.specifikujmesinášúkol,oznčený U 0,npř.tkto: U 0 (specifikce):vdnéposloupnostiznků,b(zkončenéspeciálnímznkem),připrvenéksekvenčnímučtení, ohlš kždý výskyt bb. Je zřejmé, že budeme muset přečíst první znk posloupnosti. Přečtení speciálního koncového znku bude v nšem přípdě vždy znment ukončení práce, tkže tuto možnost nebudeme dále explicitně zmiňovt. Když je přečteným znkem, je očividně nším zbývjícím úkolem U 1 ( zbytek úkolu U 0 popřečtení;specifikce):vdnéposloupnosti(což je nepřečtený zbytek původní posloupnosti) ohlš

21 2.1 Motivčnípříkld 21 kždý výskyt bb, le n zčátku tké přípdný výskyt prefixu bb(proč?). Úkol U 1 jeočividnějinýnež U 0,protojsmejejoznčilijink(vnšempřípdě dlším dosud nepoužitým indexem). Promyslíme-lisi zbytek úkolu U 0,kterýmámevykontvpřípdě,žeprvním znkem je b, zjistíme, že se zbytkem posloupnosti máme vlstně udělt zseúkol U 0 ;nenítedyteďtřebzvádětnovýúkol(u 2 ),protožejejvyřešíme (rekurzivním)voláním U 0. Máme tedy: U 0 (relizce):přečtidlšíznk; kdyžjeto,tk(proveď) U 1,kdyžjetob,tk(proveď) U 0. Jkrelizujemevýšespecifikovnýúkol U 1? Přečtemepochopitelnědlšíznk.Kdyžjeto,tkprvníčástspecifikce U 1 (ohlš kždý výskyt bb) nám ukládá, že ve zbytku máme ohlásit kždý výskytbbtképřípdnýprefixbb,druháčástspecifikce U 1 (přípdný výskyt prefixu bb) nám už neukládá nic, protože přečtené pohřbilo nděje n prefix bb. Kdyžjetob,tkprvníčástspecifikce U 1 (ohlškždývýskytbb) námukládá,ževezbytkumámeohlásitkždývýskytbbjinknic, druháčástspecifikce U 1 (přípdnývýskytprefixubb)námukládáohlásit přípdný prefix b. Tkže máme U 1 (relizce):přečtidlšíznk; kdyžjeto,tk(proveď) U 1,kdyžjetob,tk(proveď) U 2 U 2 (specifikce):vdné( zbývjící )posloupnostiohlškždý výskyt bb, le n zčátku tké přípdný výskyt prefixu b. Všimněmesi,ženšerelizce U 0, U 1 korespondujesprvnímidvěmřádky tbulky v SEARCH1. Cvičení2.1:Pečlivědokončetekonstrukcivznikjícího progrmu (svzá-

22 22 Kpitol 2. Konečné utomty regulární jzyky jemněserekurzivněvoljícímiprocedurmi U 0, U 1, U 2,...).Asivásnpdne, že zchycovt vznikjící strukturu můžete zároveň tbulkou i určitým grfem, kterývásjistěpřirozeněnpdne.(uzlygrfujsouoznčeny U 0, U 1, U 2,..., korientovnýmhrnám(tedy šipkám )jsoupřipsányznky,b.(udělejte to!) Doufejme,žejstevystčilis procedurmi U 0, U 1, U 2,...,U 6 žestruktur nvržené relizce přesně koresponduje s tbulkou v SEARCH1. Speciálně by vám mělo vyjít U 6 (specifikce): v dné (zbývjící) posloupnosti ohlš kždý výskyt bb, le n zčátku tké přípdné prefixy ε, b, bb. V relizci U 6 dáme pochopitelně před přečtením dlšího znku povel OHLAŠ, neboť kždá posloupnost má prefix ε. TkževzniktbulkyvSEARCH1užjenámjsný!Nvícbychomjistěbyli schopni tkovou tbulku sestrojit pro kždý zdný vzorek(řetězec), byť by to u delších řetězců mohl být docel fušk. Poznámk: Později se k problému vrátíme uvidíme, že tvorb tkových tbulek k zdným vzorkům se dá zlgoritmizovt( tedy nprogrmovt). Všimněmesi,ženrelizcinšehoúkolu U 0 sedáhledětjkončtenízdné posloupnosti znků(tedy zdného slov) zlev doprv, přičemž před přečtenímdlšíhosymboluvždyblikne zelenésvětlo,jestližedosudpřečtené slovo(tedy dosud přečtený prefix zdné posloupnosti) splňuje podmínku mámsufixbb, blikne červenésvětlo,jestližedosudpřečtenýprefixtutopodmínkunesplňuje. Zkusme teď ještě nvrhnout podobnou tbulku pro přípd, kdy čteme soubor (tedy slovo) obshující znky 0,1 máme tentokrát(zeleným světlem) ohlásit všechny prefixy, které splňují podmínku obshujipodslovo010nebo#1vemnějesudý.

23 2.1 Motivčnípříkld 23 Zdevýrzem#1oznčujemepočetvýskytůznku1; nebo myslímepochopitelně v nevylučovcím smyslu(tedy obě podmínky mohou pltit součsně). Specifikovnýúkolsitentokrátoznčme q 0 všimněmesi,žerelizce q 0 bude zčínt povelem OHLAŠ(proč?). Jistě nás již npdlo, že komplikovné vyjdřování úkol, který máme vykontvezbytku,kdyžpřiplněníúkolu qpřečteme jevhodnénhrdit dohodnutou stručnou notcí, npř. δ(q, ). Cojetedyvnšemkonkrétnímpřípdě δ(q 0,0)?Jistěsndnopřijdemen to,že δ(q 0,0)(specifikce):ohlš(vezbytkukpřečtení)všechnyprefixy, kteréobshují010nebozčínjí10nebo#1jevnichsudý. Tentoúkoljeočividnějinýnež q 0,oznčímejejproto q 1 ;mámetedy δ(q 0,0)= q 1. Všimněme si, že kždý úkol(který vzniká při nšich nynějších úvhách) je typu ohlš(ve zbylé posloupnosti) všechny prefixy, které splňují jistou podmínku Proto se nbízí zjednodušení znčení i při specifikci jednotlivých úkolů. Úkol q zdáme prostě vhodným popisem množiny těch slov(potenciálních prefixů posloupnosti zbývjící k přečtení), které splňují onu podmínku. Oznčme tkovou množinu L toacc q. Je to tedy jzyk(tj. množin) obshující právě t slov, po jejichž přečtení máme zsvítit zeleně, plníme-li úkol q. Přečtení tkového slov má vést k ohlášení ;říkámetké,žeslovoje přijto, vedekpřijetí (nglicky to Acceptnce ) odtudjepoužitázkrtk. V nšem příkldu tedy máme L toacc q 0 = { w {0,1} wobshujepodslovo010nebo w 1 je sudé } L toacc q 1 = { w {0,1} wobshujepodslovo010nebomáprefix 10nebo w 1 jesudé }

24 24 Kpitol 2. Konečné utomty regulární jzyky (Připomínáme,že w 1 oznčujepočetvýskytůznku1ve w.) Podívejmeseteďnúkol δ(q 0,1);specifikceúkoluvlstněznmenávhodnou chrkterizcijzyk L toacc δ(q 0,1).Jistěrychlezjistíme,že L toacc δ(q 0,1) = { w {0,1} wobshujepodslovo010nebo w 1 je liché } cožjejistějinýjzyk(úkol)než L toacc q 0, L toacc q 1 (proč?).tkžezvedemenový úkol q 2 definujeme δ(q 0,1)=q 2 L toacc q 2 = { w {0,1} wobshujepodslovo010nebo w 1 je liché } Poznámk: Je užitečné si všimnout, že nše činnost se dá chrkterizovt jko určitá konstrukce jednoduchých kvocientů jzyků.(kvocient je t složitá jzykováopercezmíněnádříve.)npř.popst L toacc δ(q 0,1) vlstněznmená popst1\l toacc q 0.Pozdějisektomuještěvrátíme. Celkové vytvářené schém(funkci δ) pochopitelně můžeme zse zdt tbulkou grfem. Ztím jsme vytvořili následující frgment tbulky: 0 1 q 0 q 1 q 2 q 1 q 2 Vstupní šipkou jsme oznčili onen výchozí(počáteční) úkol(říkejme tké stv ),výstupnímišipkmi oznčujemestvy,kterézčínjí ohlášením (zelenýmsvětlem) říkámejimtké přijímjícístvy.jkvidíme,ipočáteční stv může být přijímcí přijímjících stvů může být více než jeden.? Kontrolníotázk: Pročje q 1přijímjícíq 2 ne? Ano, máte prvdu, jistě jste si uvědomili, že q je přijímjící právě tehdy, když ε L toacc q (tedy když prázdné slovo splňuje příslušnou podmínku). Cvičení 2.2: Dokončete výše zpočtou tbulku. Popište přitom pečlivě

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz

Příručka k portálu. Katalog sociálních služeb v Ústeckém kraji. socialnisluzby.kr-ustecky.cz Příručk k portálu Ktlog sociálních služeb v Ústeckém krji socilnisluzby.kr-ustecky.cz Uživtelská příručk k portálu socilnisluzby.kr-ustecky.cz 0 BrusTech s.r.o. Všechn práv vyhrzen. Žádná část této publikce

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

Studijní materiál PASCAL

Studijní materiál PASCAL Obsh Studijní mteriál PASCAL /76 Obsh Obsh Algoritmus 5 Vlstnosti lgoritmu 5 Metod návrhu lgoritmu 5 3 Rekurzivní lgoritmy 5 4 Překldč jeho struktur 6 4 Druhy překldčů 6 4 Hlvní části překldče 6 Jzyk Pscl

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou

Cílem tohoto textu je shrnout teorii do jediného celku. Text také nabízí oporu v oblastech, které jsou MATMATIKA (NJN) PRO KRAJINÁŘ A NÁBYTKÁŘ Robert Mřík 26. říjn 2012 KAT. MATMATIKY FAKULTA LSNICKÁ A DŘVAŘSKÁ MNDLOVA UNIVRZITA V BRNĚ -mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik ABSTRAKT. Předkládný

Více

PŘEDSTAVENÍ APLIKACE SMARTSELLING

PŘEDSTAVENÍ APLIKACE SMARTSELLING PŘEDSTAVENÍ APLIKACE SMARTSELLING CO JE TO SMARTSELLING SmartSelling je první kompletní nástroj n[ českém [ slovenském trhu, který pod jednou střechou spojuje všechny nezbytné nástroje moderního online

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

Český jazyk a literatura

Český jazyk a literatura Český jzyk litertur Chrkteristik předmětu Předmět je rozdělen n tři disciplíny literární výchovu, jzykovou výchovu ční slohovou výchovu, které tvoří svébytné celky, le zároveň jsou ve výuce čsto propojovány.

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Virtuální svět genetiky 1

Virtuální svět genetiky 1 Chromozomy obshují mnoho genů pokud nejsou rozděleny crossing-overem, pk lely přítomné n mnoh lokusech kždého homologního chromozomu segregují jko jednotk během gmetogeneze. Rekombinntní gmety jsou důsledkem

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Podmínky externí spolupráce

Podmínky externí spolupráce Podmínky externí spolupráce mezi tlumočnicko překldtelskou genturou Grbmüller Jzykový servis předstvující sdružení dvou fyzických osob podniktelů: Mrek Grbmüller, IČO: 14901820, DIČ: CZ6512231154, místo

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui Stvební firm Díky nám si postvíte svůj svět. 1.D Klár Koldovská Šárk Bronová Lucie Pncová My Anh Bui Obsh 1) Úvod 2) Přesvědčení bnky 3) Obchodní jméno, chrkteristik zákzník, propgce 4) Seznm mjetku 5)

Více

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu

Studijní informační systém. Elektronický zápis předmětů a rozvrhu. I. Postup zápisu předmětů a rozvrhu Studijní informční systém Elektronický zápis předmětů rozvrhu V odoí elektronického zápisu předmětů proíhá tzv. předěžný zápis. Student má předměty zpsné ztím pouze předěžně může je po celé odoí elektronického

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

5. Učební osnovy. 5. 1 Vzdělávací oblast Jazyk a jazyková komunikace

5. Učební osnovy. 5. 1 Vzdělávací oblast Jazyk a jazyková komunikace 5. Učební osnovy 5. 1 Vzdělávcí oblst Jzyk jzyková komunikce 5. 1. 1 Chrkteristik vzdělávcí oblsti Vzdělávcí oblst Jzyk jzyková komunikce je relizován v povinných vyučovcích předmětech český jzyk litertur,

Více

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school Technická univerzit v Liberci FAKULTA PŘÍRODOVĚDNĚHUMANITNÍ A PEDAGOGICKÁ Ktedr: Studijní progrm: Studijní obor: Ktedr mtemtiky didktiky mtemtiky N750 Učitelství pro zákldní školy Učitelství fyziky pro.

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti

Hilbertův prostor. Kapitola 5. 5.1 Základní vlastnosti Kpitol 5 Hilbertův prostor 5.1 Zákldní vlstnosti Historická poznámk 5.1.1. Prostor X se sklárním součinem je strukturou n lineárnímprostorus nejsilnějšími xiomy.jetonormovnýlineárníprostor,vněmžje norm

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

PÍSEMNÁ ZPRÁVA ZADAVATELE. "Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice

PÍSEMNÁ ZPRÁVA ZADAVATELE. Poradenství a vzdělávání při zavádění moderních metod řízení pro. Město Klimkovice PÍSEMNÁ ZPRÁVA ZADAVATELE pro zjednodušené podlimitní řízení n služby v rámci projektu Hospodárné odpovědné město Klimkovice, reg. č. CZ.1.04/4.1.01/89.00121, který bude finncován ze zdrojů EU "Pordenství

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla Dobývání znlostí z dtbází (MI-KDD) Přednášk číslo 4 Asociční prvidl (c) prof. RNDr. Jn Ruch, CSc. KIZI, Fkult informtiky sttistiky VŠE zimní semestr 2011/2012 Evropský sociální fond Prh & EU: Investujeme

Více

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak

Věta (princip vnořených intervalů). Jestliže pro uzavřené intervaly I n (n N) platí I 1 I 2 I 3, pak Reálná čísl N přirozená čísl: {,, 3, } Z celá čísl: {, ±, ±, ±3, } Q rcionální čísl: { b : Z, b N} R reálná čísl C komplení čísl: { + jy :, y R}, j R \ Q ircionální čísl, π, e, ) Tvrzení Mezi kždými dvěm

Více

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT

SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT POLICEJNÍ AKADEMIE ČESKÉ REPUBLIKY V PRAZE AKADÉMIA POLICAJNÉHO ZBORU V BRATISLAVE pořádjí ČTVRTOU VIRTUÁLNÍ VĚDECKOU KONFERENCI s mezinárodní účstí SCIENTIFIC REFLECTION OF NEW TRENDS IN MANAGEMENT PRAHA

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Uživatelská příručka

Uživatelská příručka Uživtelská příručk Symboly, Upozornění Způsob Zobrzení Položek v této Příručce Bezpečnostní symboly V tomto dokumentu n projektoru jsou použity grfické symboly, které ukzují, jk používt projektor bezpečně.

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: se sídlem: Koterovská 633/29, 326 00 Plzeň, ustnovený prvomocným Usnesením č.j. KSPL 54 INS 378/2012-A-19 ze dne 29.3.2012, insolvenčním správcem dlužník:. prvomocným

Více

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ

SMLOUVU O UZAVŘENÍ BUDOUCÍ SMLOUVY KUPNÍ Níže uvedeného dne, měsíce roku uzvřeli: KOPPA, v.o.s., se sídlem Mozrtov 679/21, 460 01 Liberec, ustnovená prvomocným Usnesením č.j. KSUL 44 INS 5060/2014-A-13, ze dne 04. dubn 2014, insolvenčním správcem

Více

HOBBY PREZENTACE inels. www.elkoep.cz

HOBBY PREZENTACE inels. www.elkoep.cz HOBBY PREZENTACE inels www.elkoep.cz Chytré ŘÍZENÍ DOMU Chytrý dům s jeden DŮM jeden SYSTÉM jeden OVLADAČ n VŠE Technologie v domě si rozumí Technologie prcují z Vás Přináší mximální užitek Čsové finnční

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

zájemce, kterým službu nemůžeme nabídnout a vedeme je v seznamu čekatelů. Tento

zájemce, kterým službu nemůžeme nabídnout a vedeme je v seznamu čekatelů. Tento V Slovo úvodem Vážení spoluprcovníci, přátelé příznivci Textilní dílny Gwin, připrvili pro Vás výroční zprávu z rok 2009. Co všechno v tomto roce zžili? Zčl bych nšimi uživteli nší služby, protože pro

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES)

NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) NAŘÍZENÍ EVROPSKÉHO PARLAMENTU A RADY (ES) č. 178/2002 ze dne 28. ledn 2002, kterým se stnoví obecné zásdy poždvky potrvinového práv, zřizuje se Evropský úřd pro bezpečnost potrvin stnoví postupy týkjící

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Sbírka příkladů do IFJ. Petr Zemek

Sbírka příkladů do IFJ. Petr Zemek Sírk příkldů do IFJ Petr Zemek 11. ledn 2012 Osh Předmluv 1 1 Aeedy, řetěze jzyky 3 2 Úvod do překldčů 5 3 Modely regulárníh jzyků 6 4 Speiální konečné utomty 8 5 Lexikální nlýz 10 6 Modely ezkontextovýh

Více

grafický manuál květen 2004 verze 1.0

grafický manuál květen 2004 verze 1.0 květen 2004 verze 1.0 grfický mnuál Úvodní slovo Tento dokument slouží jko mnuál pro používání log Fondu soudržnosti. Součástí mnuálu je i zákldní grfický design pro tištěné elektronické mteriály sloužící

Více

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík

Základy vyšší matematiky(nejen) pro arboristy. Robert Mařík Zákldy vyšší mtemtiky(nejen) pro rboristy Robert Mřík 2.září2014 Ústv mtemtiky lesnická dřevřská fkult Mendelov univerzit v Brně E-mil ddress: mrik@mendelu.cz URL: user.mendelu.cz/mrik Podpořeno projektem

Více

Základní poznatky z matematiky

Základní poznatky z matematiky Zákldní pozntky z mtemtiky Obsh. Zákldní pozntky z mtemtiky.... Číselné obory..... Celá čísl..... Reálná čísl.... Odmocniny.... Mocniny... 5.. Mocniny se zákldem 0... 5.. Mocniny s přirozeným mocnitelem...

Více

Úvod do politiky soudržnosti EU pro období 2014-2020

Úvod do politiky soudržnosti EU pro období 2014-2020 Úvod do politiky EU pro období 2014-2020 Politik Červen 2014 Co je politik? Politik je hlvní investiční politik EU Cílí n všechny měst v Evropské unii. Jejím cílem je podpor vytváření prcovních míst, konkurenceschopnosti

Více

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku

- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ OSTRAVSKÁ UNIVERZITA V OSTRAVĚ REGULÁRNÍ A BEZKONTEXTOVÉ JAZYKY I HASHIM HABIBALLA OSTRAVA 2005 Tento projekt byl spolufinancován Evropskou unií a českým státním rozpočtem Recenzent: Doc. Ing. Miroslav

Více

Algoritmy I, složitost

Algoritmy I, složitost A0B36PRI - PROGRAMOVÁNÍ Algoritmy I, složitost České vysoké učení technické Fakulta elektrotechnická v 1.01 Rychlost... Jeden algoritmus (program, postup, metoda ) je rychlejší než druhý. Co ta věta znamená??

Více

E V R O P S K Á Ú M L U V A O K R A J I NĚ

E V R O P S K Á Ú M L U V A O K R A J I NĚ E V R O P S K Á Ú M L U V A O K R A J I NĚ Sdělení Ministerstv zhrničníh věí č. 13/2005 S.m.s. Ministerstvo zhrničníh věí sděluje, že dne 20. říjn 2000 yl ve Florenii přijt Evropská úmluv o krjině. Jménem

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň

Více

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace

teorie elektronických obvodů Jiří Petržela zpětná vazba, stabilita a oscilace Jiří Petržel zpětná vzb, stbilit oscilce zpětná vzb, stbilit oscilce zpětnou vzbou (ZV) přivádíme záměrněčást výstupního signálu zpět n vstup ZV zásdně ovlivňuje prkticky všechny vlstnosti dného zpojení

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

Úvod 1. Pojetí canisterapie 1.1 Zvířata lidem 1.2 Vznik canisterapie ve světě 1.3 Rozvoj canisterapie v ČR 1.4 Metody a formy canisterapie

Úvod 1. Pojetí canisterapie 1.1 Zvířata lidem 1.2 Vznik canisterapie ve světě 1.3 Rozvoj canisterapie v ČR 1.4 Metody a formy canisterapie Obsh Úvod 1. Pojetí cnisterpie 1.1 Zvířt lidem 1.2 Vznik cnisterpie ve světě 1.3 Rozvoj cnisterpie v ČR 1.4 Metody formy cnisterpie 1. Shrnutí 2. Zákldní terminologie indikce cnisterpie v sociální práci

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

VÝROČNÍ ZPRÁVA O ČINNOSTI ŠKOLY

VÝROČNÍ ZPRÁVA O ČINNOSTI ŠKOLY Střední škol strojní, stvební doprvní Liberec II, Truhlářská 360/3 příspěvková orgnizce 488 880 400 red@sslbc.cz www.sslbc.cz VÝROČNÍ ZPRÁVA O ČINNOSTI ŠKOLY z školní rok 2009/2010 Zprcovl : J. Folkrtová

Více

2 Strukturované datové typy 2 2.1 Pole... 2 2.2 Záznam... 3 2.3 Množina... 4

2 Strukturované datové typy 2 2.1 Pole... 2 2.2 Záznam... 3 2.3 Množina... 4 Obsah Obsah 1 Jednoduché datové typy 1 2 Strukturované datové typy 2 2.1 Pole.................................. 2 2.2 Záznam................................ 3 2.3 Množina................................

Více

Z Á P I S. ze 7. zasedání zastupitelstva obce Albrechtice nad Vltavou konaného dne 15. prosince 2014.

Z Á P I S. ze 7. zasedání zastupitelstva obce Albrechtice nad Vltavou konaného dne 15. prosince 2014. Albrechtice nd Vltvou Z Á P I S ze 7. zsedání zstupitelstv obce Albrechtice nd Vltvou konného dne 15. prosince 2014. Místo konání: OÚ Albrechtice n. Vlt. Zčátek: 19,00 hodin Zsedání řídil: strost ing.

Více

UNIKACE zpravodaj pro klienty společnosti EKO-KOM, a. a. s. s.

UNIKACE zpravodaj pro klienty společnosti EKO-KOM, a. a. s. s. zprvodj pro klienty společnosti EKO-KOM,.. s. s. 12/2010 SLOVO editoril ŘEDITELE KLIENTSKÉHO ODDĚLENÍ Vážení klienti, Kromě možnosti třídění odpdů n místě motivčních soutěží budou mít návštěvníci možnost

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem:

S M L O U V A O S M L O U VĚ BUDOUCÍ. Níže uvedeného dne, měsíce a roku byla uzavřena mezi těmito smluvními stranami: obchodní společnost se sídlem: Níže uvedeného dne, měsíce roku byl uzvřen mezi těmito smluvními strnmi: obchodní společnost se sídlem: IČ: DIČ: zpsná zstoupen (dále jen jko budoucí strn prodávjící ) v obchodním rejstříku vedeném, oddíl,

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

Základní pravidla pro psaní

Základní pravidla pro psaní Zákldní prvidl pro psní 1. Zákldní principy Je nutné volit typ písm který je vhodný pro příslušný druh dokumentu. Celý dokument by měl být pokud možno sáen jednoho typu popř. jedné rodiny písm nebo lespoň

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky.

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky. SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ Hilti. Splní nejvyšší nároky. Spřhovcí prvky Technologie spřhovcích prvků spočívá v připevnění prvků přímo k pásnici ocelového nosníku, nebo připevnění k pásnici přes

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více