1 Vektorové prostory.

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Vektorové prostory."

Transkript

1 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které každé uspořádané dvojici (a, b) V V přiřazuje prvek a + b V tak, že platí: (a) (b) (c) (d) a, b V : a + b = b + a a, b, c V : a + (b + c) = (a + b) + c o V, a V : a + o = a a V, ( a) V : a + ( a) = o Prvky množiny V budeme nazývat vektory, zobrazení V V V nazýváme sčítání na množině V, vektor a + b se nazývá součet vektorů a, b 2 Je dáno zobrazení R V V, které každé uspořádané dvojici (c, a) (R V ) přiřazuje vektor ca V tak, že platí: (a) a V : 1a = a (b) c, d R, a V : c(d a) = (cd) a (c) c, d R, a V : (c + d) a = c a + d a (d) c R, a, b V : c (a + b) = c a + c b Toto zobrazení budeme nazývat násobením vektorů reálným číslem, vektor c a se nazývá c - násobek vektoru a Množina V je neprázdná, neboť je zaručena existence prvku o, tento prvek nazýváme nulový vektor Podobně vektor ( x) nazýváme vektor opačný k vektoru x Aritmetický vektorový prostor R n Jde o vektorový prostor všech uspořádaných n tic reálných čísel Snadno ověříte, že pokud definujeme operace sčítání dvou uspořádaných n tic jako sčítání po složkách, tj (a 1, a 2,, a n ) (b 1, b 2,, b n ) = = (a 1 + b 1, a 2 + b 2,, a n + b n ) a násobení vektoru reálným číslem jako násobení po složkách, tj α (a 1, a 2,, a n ) = (α a 1, α a 2,, α a n ), tak tímto způsobem definované operace vyhovují definici vektorového prostoru Jedná se nejdůležitější příklad vektorového prostoru Příklad Vypočtěte souřadnice vektoru w, pro který platí: Řešení w = 3(2, 6, 4, 3) 2( 3, 1, 2, 4) + 4(7, 6, 3, 2) w = 3(2, 6, 4, 3) 2( 3, 1, 2, 4) + 4(7, 6, 3, 2) = (6, 18, 12, 9) + (6, 2, 4, 8) + (28, 42, 12, 8) = = (40, 58, 20, 7) Definice Nechť S = {u 1, u 2,, u n } je skupina vektorů ve vektorovém prostoru V Potom vektor v = α 1 u 1,, α n u n, kde všechna α i R, se nazývá lineární kombinace skupiny vektorů S Vektor w je tedy podle definice lineární kombinací vektorů (2, 6, 4, 3), ( 3, 1, 2, 4) a (7, 6, 3, 2) Definice Nechť S = {u 1, u 2,, u n } je skupina vektorů ve vektorovém prostoru V (1) Nechť n > 1 Potom o skupině vektorů S řekneme, že je lineárně závislá, jestliže alespoň jeden ze skupiny vektorů je lineární kombinací ostatních vektorů této skupiny V opačném případě říkáme, že skupina S je lineárně nezávislá 1

2 (2) Nechť n = 1 O skupině S řekneme, že je lineárně závislá, jestliže u 1 = o V opačném případě řekneme, že S je lineárně nezávislá Definice Nechť ve vektorovém prostoru V existuje skupina vektorů B = {a 1,, a n } těchto dvou vlastností: (1) B je lineárně nezávislá skupina vektorů, (2) každý vektor x V je lineární kombinací skupiny vektorů B Potom V nazýváme konečně rozměrným vektorovým prostorem a B nazýváme bází vektorového prostoru V Definice Dimenzí vektorového prostoru rozumíme číslo, které označujeme dim V a které definujeme takto: (1) dim V = 0 právě tehdy, když V je triviální vektorový prostor (2) dim V = n právě tehdy, když V má bázi složenou z n vektorů Definice Nechť W je neprázdná podmnožina vektorového prostoru V Jestliže vzhledem k operacím sčítání vektorů a násobení vektoru reálným číslem je W vektorovým prostorem, potom W nazýváme vektorovým podprostorem vektorového prostoru V a píšeme W V Definice Množinu všech lineárních kombinací skupiny vektorů W = {w 1,, w n } z vektorového prostoru V budeme nazývat lineárním obalem skupiny vektorů W a označovat ji 2 Matice a její hodnost Definice Schéma mn reálných čísel A = (a mn ) = L w 1,, w n a 11, a 12,, a 1n a 21, a 22,, a 2n a m1, a m2,, a mn nazýváme maticí typu (m, n) Poznámky: Čísla a ij nazýváme prvky matice (1) Prvky a ii se nazývají diagonální prvky a v matici tvoří hlavní diagonálu Matice (1) se skládá z m řádků, každý z nich můžeme chápat jako n rozměrný aritmetický vektor Dále se matice skládá z n sloupců, každý z nich můžeme chápat jako m rozměrný aritmetický vektor Jestliže jsou v matici všechny diagonální prvky různé od nuly a všechny prvky pod hlavní diagonálou rovny nule, mluvíme o horní lichoběžníkové matici (ve speciálním případě m = n o horní trojúhelníkové matici) Jsou-li všechny prvky matice (1) rovny nule, nazýváme ji nulovou maticí a označuje ji O mn nebo stručně O Jestliže m = n, nazývá se matice (1) čtvercová matice Čtvercová matice, jejíž všechny diagonální prvky se rovnají jedné a jejíž ostatní prvky se rovnají nule, se nazývá jednotková matice Budeme ji značit J Definice Dvě matice A, B se sobě rovnají (značíme A = B), jestliže jsou stejného typu a pro všechny uspořádané dvojice (i, j) platí a ij = b ij Definice Hodností matice A typu (m, n) nazýváme číslo, které je rovné dimenzi lineárního obalu řádků matice chápaných jako n-rozměrné aritmetické vektory Hodnost matice A označujeme h(a) Z této definice vyplývá, že hodností matice rozumíme číslo udávající maximální počet jejích lineárně nezávislých řádkových vektorů Definice Dvě matice se nazývají ekvivalentní, jestliže mají stejný počet sloupců a stejnou hodnost Úpravy, které převádějí matici v matici s ní ekvivalentní nazýváme ekvivalentní úpravy Věta Následující operace patří mezi ekvivalentní úpravy: a) Změna pořadí řádkových vektorů b) Vynásobení řádkového vektoru nenulovým číslem c) K libovolnému řádkovému vektoru přičteme lineární kombinaci zbývajících řádkových vektorů (1) 2

3 d) Jestliže je některý řádkový vektor lineární kombinací ostatních řádkových vektorů, potom jej vynecháme e) Připojení dalšího řádkového vektoru, který je lineární kombinací řádkových vektorů matice f) Záměna pořadí sloupcových vektorů Gaussův algoritmus výpočtu hodnosti matice spočívá v tom, že danou matici převedeme pomocí ekvivalentních úprav na horní lichoběžníkovou matici Hodnost (tj počet řádků) této horní lichoběžníkové matice je rovna hodnosti původní matice Poznámka Gaussova metoda umožňuje rozhodnout o dané skupině vektorů v aritmetickém vektorovém prostoru, zda je či není lineárně závislá, vypočítat dimenzi vektorového prostoru určeného skupinou generátorů, popřípadě stanovit bázi takového podprostoru Příklad Určeme hodnost matice A: A = Řešení: Použijeme Gaussův algoritmus A 0, 4, 1, 3, 9 0, 8, 9, 2, 9 0, 4, 1, 3, 9 2, 6, 3, 0, 1 1, 1, 3, 1, 5 2, 2, 13, 2, 1 0, 4, 1, 3, 9 0, 8, 9, 2, 9 0, 4, 1, 3, 9 Získali jsme horní lichoběžníkovou matici, která má hodnost 3 Proto je h(a) = 3 3 Soustavy lineárních algebraických rovnic Definice Soustava rovnic a 11 x 1 + a 12 x a 1n x n = b 1, a 21 x 1 + a 22 x a 2n x n = b 2, a m1 x 1 + a m2 x a mn x n = b m, (2) kde a ij, b i jsou reálná čísla a x i neznámé, se nazývá soustava m lineárních algebraických rovnic o n neznámých, stručně soustava lineárních rovnic Definice Matice a 11, a 12,, a 1n a 21, a 22,, a 2n a m1, a m2,, a mn je tzv matice soustavy (2) a matice se nazývá rozšířená matice soustavy (2) a 11, a 12,, a 1n a 21, a 22,, a 2n a m1, a m2,, a mn b 1 b 2 b m 3

4 Definice Řešením soustavy (2) nazýváme každý aritmetický vektor u = (u 1, u 2,, u n ) R n, jehož složky u i dosazeny za neznámé x i přemění soustavu m rovnic (2) v soustavu m rovností Definice Charakteristický vektor lineární rovnice je vektor, jehož složky jsou tvořeny koeficienty rovnice a pravou stranou této rovnice Definice Dvě soustavy lineárních rovnic se nazývají ekvivalentní, jestliže obě soustavy mají tytéž neznámé a jestliže množina všech řešení první soustavy je rovna množině všech řešení druhé soustavy Věta Každé řešení soustavy lineárních rovnic (2) je zároveň řešením každé rovnice, jejíž charakteristický vektor náleží do lineárního obalu všech řádků rozšířené matice soustavy (2) Věta Předpokládejme, že dvě soustavy lineárních rovnic mají tytéž neznámé zapsané v tomtéž pořadí Jestliže lineární obaly řádků rozšířených matic obou soustav jsou si rovny, potom obě soustavy rovnic jsou ekvivalentní Věta (Frobeniova) Soustava lineárních rovnic má alespoň jedno řešení právě tehdy, když matice soustavy a rozšířená matice soustavy mají tutéž hodnost Jestliže soustava lineárních rovnic o n neznámých má matici soustavy a rozšířenou matici soustavy téže hodnosti rovné číslu h, potom platí: 1 Jestliže h = n, soustava má právě jedno řešení 2 Jestliže h < n, soustava má nekonečně mnoho řešení Přitom všechna řešení dostaneme tak, že jistých n h neznámých volíme (všemi možnými způsoby) a zbývajících h neznámých (jednoznačně) vypočítáme 4 Soustavy homogenních lineárních algebraických rovnic Definice Soustava lineárních rovnic, jejichž pravé strany jsou rovny nule, se nazývá homogenní soustava lineárních rovnic Každou takovou soustavu můžeme zapsat ve tvaru: a 11 x 1 + a 12 x a 1n x n = 0, a 21 x 1 + a 22 x a 2n x n = 0, a m1 x 1 + a m2 x a mn x n = 0 (3) Poznámka: Soustava (3) je pouze speciálním případem soustavy (2) Má však některé speciální zajímavé vlastnosti Nejdůležitější z nich jsou obsahem následující věty Věta Soustava homogenních lineárních algebraických rovnic má vždy řešení Množina všech jejích řešení je vektorovým prostorem, jehož dimenze je rovna číslu n h, kde n je počet neznámých a h je hodnost matice soustavy Věta Množina M všech řešení soustavy lineárních rovnic (2) je vektorovým podprostorem vektorového prostoru R n Množina M je rovna součtu m + V libovolného (pevného) řešení m soustavy (2) s vektorovým prostorem V všech řešení příslušné soustavy homogenních rovnic (3) 5 Determinanty Uvažujme jednoduchou soustavu dvou lineárních rovnic o dvou neznámých x a y a snažme se nalézt nějaký vzorec vhodný k výpočtu této soustavy Budeme postupovat pomocí sčítací metody ax + by = p ax + by = p cx + dy = q cx + dy = q acx bcy = pc acx + ady = aq (ad bc)y = aq pc y = aq cp ad bc adx + bdy = pd bcx bdy = bq (ad bc)x = pd bq x = dp bq ad bc 4

5 Získané vztahy lze zobecnit i na soustavy vyšších řádů Při jejich odvozování budeme potřebovat determinanty Permutace Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,, n} Každá uspořádaná n-tice (k 1, k 2,, k n ) (4) sestavená ze všech čísel množiny M se nazývá permutace množiny M Inverze Jestliže pro dva prvky z (4) platí i < j a současně k i > k j, potom se uspořádaná dvojice (k i, k j ) nazývá inverze v permutaci (4) Permutace, která má lichý, resp sudý počet všech inverzí, se nazývá lichá, resp sudá permutace PříkladJe dána množina M = {1, 2, 3} Určeme všechny možné permutace množiny M a rozhodněme, zda jsou sudé nebo liché Řešení: (1, 2, 3) sudá permutace bez inverzí, (1, 3, 2) lichá permutace s inverzí (3, 2), (2, 1, 3) lichá permutace s inverzí (2, 1), (2, 3, 1) sudá permutace s inverzemi (2, 1), (3, 1), (3, 1, 2) sudá permutace s inverzemi (3, 1), (3, 2), (3, 2, 1) lichá permutace s inverzemi (3, 2), (3, 1), (2, 1) Věta Jestliže v permutaci (4) zaměníme vzájemně dva prvky, změní se permutace z liché na sudou, resp ze sudé na lichou Determinant matice Předpokládejme, že je dána čtvercová matice Součet A = K=(k 1,,k n) a 11 a 12 a 1n a 21 a 22 a 2n a n1 a m2 a nn ( 1) α a 1k1 a 2k2 a nkn (5) n! součinů, v němž se sčítá přes všechny permutace K = (k 1,, k n ) množiny M = {1,, n} a v němž α značí počet inverzí v permutaci K, nazýváme determinantem matice A a značíme jej det A Poznámka: Pro determinant užíváme tato další označení: a 11 a 12 a 1n a 21 a 22 a 2n det A = det (a ij ) = A = a ij = a n1 a m2 a nn Příklad Vypočtěme determinant třetího stupně b 11 b 12 b 13 det B = b 21 b 22 b 23 b 31 b 32 b 33 Řešení: Pro n = 3 existuje 6 permutací množiny {1, 2, 3} Použijeme-li předchozí příklad a vzorec (5), můžeme psát: det B = b 11 b 22 b 33 + b 12 b 23 b 31 + b 13 b 21 b 32 (b 13 b 22 b 31 + b 11 b 23 b 32 + b 12 b 21 b 33 ) 5

6 Tento vzorec vyjadřuje tzv Sarussovo pravidlo pro výpočet determinatu třetího stupně; lze si jej snadno zapamatovat podle schématu b 11 b 12 b 13 b 11 b 12 b 21 b 22 b 23 b 21 b 22 b 31 b 32 b 33 b 31 b 32 Věta Vyměníme-li ve čtvercové matici dva řádky, resp dva sloupce, je determinant nové matice roven minus determinantu původní matice Věta Je-li některý řádek, resp sloupec čtvercové matice A násobkem jiného řádku, resp sloupce, potom det A = 0 Věta Jestliže některý řádek, resp sloupec čtvercové matice je lineární kombinací ostatních řádků, resp sloupců, potom determinant této matice je roven nule Subdeterminant a doplněk Definice Ve čtvercové matici A vynechme i-tý řádek a j-tý sloupec Obdržíme tak matici typu (n 1, n 1) Její determinant označíme S ij a nazveme subdeterminantem prvku a ij v matici A Číslo D ij = ( 1) i+j S ij nazýváme doplňkem prvku a ij v matici A Příklad Vypočtěte doplňky k prvkům a 12, a 23, a 33 v matici A = Řešení Pro S 12 platí, že příslušný determinant vznikne vynecháním prvního řádku a druhého sloupce z matice A Je tedy S 12 = = = 2 Analogicky se dopočítá, že D 12 = ( 1) 2+1 S 12 = ( 1) ( 2) = 2 D 23 = ( 1) D 33 = ( 1) = ( 1)5 4 = 4, = ( 1)6 1 = 1 Věta Nechť je dána čtvercová matice A = (a ij ) typu (n, n), nechť i, j {1,, n} Potom platí vzorec pro tzv rozvinutí determinantu podle prvků i-tého řádku det A = a i1 D i1 + a i2 D i2 + + a in D in (6) a vzorec pro tzv rozvinutí determinantu podle prvků j-tého sloupce det A = a 1j D 1j + a 2j D 2j + + a nj D nj (7) Příklad Pomocí rozvinutí podle prvků třetího řádku vypočítejme determinant matice A: det A = Řešení: Hodnotu determinantu určíme rozvinutím podle 3 řádku = 2 ( 1) ( 1)

7 +0 ( 1) = = 6 Často je výhodné počítat hodnotu determinantu pomocí rozvoje podle řádku či sloupce až po jistých úpravách Během těchto úprav využíváme dříve vyslovené věty i dvě následující věty Věta Vynásobíme-li některý řádek, resp sloupec čtvercové matice číslem α R, potom determinant nové matice se rovná α-násobku determinantu původní matice Věta Jestliže k některému řádku, resp sloupci čtvercové matice přičteme lineární kombinaci zbývajících řádků, resp sloupců, potom determinant nové matice se rovná determinantu původní matice Tyto dvě věty umožňují urychlit výpočet Je výhodné upravit determinant tak, aby se v nějakém řádku či sloupci nacházelo co nejvíce nulových prvků Doplňky k těmto prvkům pak není nutné počítat, protože při výpočtu hodnoty determinantu jsou násobeny nulou Příklad Vypočtěte hodnotu determinantu Řešení: Pro přehledný výpočet upravíme determinant tak, aby jej bylo možné rozvinout podle prvního sloupce, přičemž se snažíme, aby se v levém horním rohu nacházelo číslo 1 Nejdříve prohodíme první a druhý sloupec, čímž se budou postupně měnit znaménka u determinantu Tím získáme = ( 1) = Dále postupně upravíme druhý, třetí a čtvrtý řádek tak, že k nim přičteme lineární kombinaci prvního řádku (tedy jeho reálný násobek) a to takovým způsobem, aby všechny tyto tři řádky měly na začátku nulový prvek První řádek opíšeme beze změny, k druhému řádku přičteme ( 1) násobek prvního řádku - touto operací dosáhneme nuly na počátku druhého řádku Analogicky k třetímu řádku přičteme ( 2) násobek prvního řádku a k poslednímu řádku přičteme ( 3) násobek prvního řádku Tím postupně dostaneme = Následným rozvinutím podle prvního sloupce získáme D D D 41 = = = = = = 6 11 ( 11 1) = 55 Věta (Cramerovo pravidlo) Nechť je dána soustava n rovnic o n neznámých a 11 x a 1n x n = b 1, a n1 x a nn x n = b n (8) Nechť determinant matice A této soustavy je různý od nuly, tj det A = 0 Potom soustava (8) má právě jedno řešení a platí: x i = det B i det A pro všechna i {1,, n}, (9) 7

8 kde B i je matice, která vznikne z matice A tak, že i-tý sloupec matice A nahradíme aritmetickým vektorem pravých stran soustavy (8) a ostatní sloupce ponecháme beze změny Příklad Nalezněte řešení soustavy rovnic: x + 2y z = 3 2x + z = 7 x 2y + z = 7 Řešení: Postup je zcela mechanický Vypočtěme hodnoty jednotlivých determinantů 1, 2, 1 det A = 2, 0, 1 1, 2, 1 = 4, det B 3, 2, 1 1 = 7, 0, 1 7, 2, 1 = 8, Tedy: det B 2 = 1, 3, 1 2, 7, 1 1, 7, 1 = 4, det B 3 = 1, 2, 3 2, 0, 7 1, 2, 7 = 12 x = det B 1 det A = 8 4 = 2, y = det B 2 det A = 4 4 = 1, z = det B 3 det A = 12 4 = 3 Z uvedeného výpočtu lze snadno odvodit následující větu Věta Hodnota determinantu horní trojúhelníkové matice je rovna součinu prvků na diagonále matice Příklad Vypočtěte hodnotu determinantu a b c d Řešení: Postupným rozvojem determinantů podle prvního sloupce budeme dostávat následující rovnosti a b 2 5 b c 2 = a 0 c d 0 0 d = a b c 2 0 d = a b c d Získaný výsledek je zdůvodněním poslední uvedené věty Lze snadno zobecnit na determinanty o jiných rozměrech 8

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer

Determinanty. Determinanty. Přednáška MATEMATIKA č. 3. Jiří Neubauer Přednáška MATEMATIKA č. 3 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 21. 10. 2010 Uvažujme neprázdnou množinu přirozených čísel M = {1, 2,..., n}. Z kombinatoriky

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

VĚTY Z LINEÁRNÍ ALGEBRY

VĚTY Z LINEÁRNÍ ALGEBRY VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí: Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc.

ALGEBRA A TEORETICKÁ ARITMETIKA. 1. část - Lineární algebra. doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc. ALGEBRA A TEORETICKÁ ARITMETIKA 1. část - Lineární algebra doc.rndr. Jarmila Novotná, CSc. doc.rndr. Milan Trch, CSc. Obsah 1 Aritmetické vektory 2 1.1 Základní pojmy............................ 2 1.2

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0 Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

ftp://math.feld.cvut.cz/pub/olsak/linal/

ftp://math.feld.cvut.cz/pub/olsak/linal/ Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

z textu Lineární algebra

z textu Lineární algebra 2 Úvodní poznámky Petr Olšák Výcuc z textu Lineární algebra určeno pro promítání na přednášce Úvod do algebry http://www.olsak.net/linal.html ftp://math.feld.cvut.cz/pub/olsak/linal/ http://math.feld.cvut.cz/skripta/ua/

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

3 Lineární kombinace vektorů. Lineární závislost a nezávislost

3 Lineární kombinace vektorů. Lineární závislost a nezávislost 3 Lineární kombinace vektorů. Lineární závislost a nezávislost vektorů. Obrázek 5: Vektor w je lineární kombinací vektorů u a v. Vektory u, v a w jsou lineárně závislé. Obrázek 6: Vektor q je lineární

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

2. Lineární algebra 2A. Matice a maticové operace. 2. Lineární algebra

2. Lineární algebra 2A. Matice a maticové operace. 2. Lineární algebra 2 Lineární algebra 2A Matice a maticové operace 2 Lineární algebra Verze října 201 Teorie matic a determinantů představuje úvod do lineární algebry Nejrozsáhlejší aplikace mají matice a determinanty při

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,

Více

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti: Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )

Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa

Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa 2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY

2. ZÁKLADY MATICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY 2. ZÁKLADY MAICOVÉ ALGEGRY 2.1. ZÁKLADNÍ POJMY V této kapitole se dozvíte: jak je definována reálná nebo komplexní matice a co rozumíme jejím typem; co jsou to prvky matice, co vyjadřují jejich indexy

Více

3. Matice a determinanty

3. Matice a determinanty . Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl

Více

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Vektory a matice. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Vektory a matice Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon). Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem

Více

předmětu MATEMATIKA B 1

předmětu MATEMATIKA B 1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný

Více

1. Algebraické struktury

1. Algebraické struktury 1. Algebraické struktury Definice 1.1 : Kartézský součin množin A,B (značíme A B) je množina všech uspořádaných dvojic [a, b], kde a A, b B. N-tou kartézskou mocninou nazveme A n. Definice 1.2 : Nechť

Více

6. Vektorový počet Studijní text. 6. Vektorový počet

6. Vektorový počet Studijní text. 6. Vektorový počet 6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Gymnázium, Brno, třída Kapitána Jaroše 14. Matice. Konzultant: Mgr. Aleš Kobza Ph.D.

Gymnázium, Brno, třída Kapitána Jaroše 14. Matice. Konzultant: Mgr. Aleš Kobza Ph.D. Gymnázium, Brno, třída Kapitána Jaroše 4 Závěrečná maturitní práce Matice Konzultant: Mgr. Aleš Kobza Ph.D. Brno 20 Jakub Juránek Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně a

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

6.1 Vektorový prostor

6.1 Vektorový prostor 6 Vektorový prostor, vektory Lineární závislost vektorů 6.1 Vektorový prostor Nechť je dán soubor nějakých prvků, v němž je dána jistá struktura vztahů mezi jednotlivými prvky nebo v němž jsou předepsána

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI

LINEÁRNÍ ALGEBRA. RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI LINEÁRNÍ ALGEBRA RNDr. Marie Hojdarová, CSc. Určeno pro studenty PS a AI Jihlava, říjen 2012 ISBN 978 80 87035 65-8 Úvod do studia předmětu Základy lineární algebry Milí studenti! Lineární algebra, kterou

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura

ekologie Pavel Fibich Vektor a Matice Operace s maticemi Vlastnosti matic Pavel Fibich Shrnutí Literatura emi - nalévárna pavel.fibich@prf.jcu.cz 4. října 2012 Obsah emi 1 2 3 emi 4 5 6 emi Proč povídat o ích v kurzu? ové modely se používají v populační ekologii téměř nejčastěji bude snažší porozumět práci

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

ALGEBRA. Téma 4: Grupy, okruhy a pole

ALGEBRA. Téma 4: Grupy, okruhy a pole SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

[1] LU rozklad A = L U

[1] LU rozklad A = L U [1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,

Více

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11

Gymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11 Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Matematika pro studenty ekonomie

Matematika pro studenty ekonomie w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více