Příklady k přednášce 25 Dopravní zpoždění

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Příklady k přednášce 25 Dopravní zpoždění"

Transkript

1 Příklady k přednášce 25 Dopravní zpoždění Michael Šebek Automatické řízení

2 L { } Dopravní zpoždění v Laplaceově tranformaci v ( + τ ) { f t } { } t f(): t f() t = t <, L f() t = e f() t dt = f( ) f( t τ): τ >, L ( τ) =? t f( t τ) = e f( t τ) dt t τ = v = e τ τ e τ f() f () v dv τ v = e e f () v dt τ v = e e f() v dt = τ τ e L { δ( t τ) } = e,l { ( t τ) } =, Michael Šebek ARI

3 Příklad: Válcovací tolice dopravní zpoždění na výtupu přeno τ H(, e ) = G() e τ tedy obahuje dynamiku bez zpoždění + zpoždění 3

4 Příklad: Páový dopravník Těžba fofátu v Bou Craa, Západní Sahara: km ytém dopravníků Bangladéš: pá 7 km 4

5 Příklad: Regulace v buňce x () t = λ x () t + c x ( t τ ) 2 ( τ ) x () t = λ x () t + g x ( t )

6 Příklad: Hematologie 6

7 Příklad: Mechanimu aktivace enzymu 7

8 Příklady: Operační výzkum 8

9 Příklad: Tepelný ytém 9

10 Příklad: Síťové řídicí ytémy

11 Příklad: Router

12 Příklad: 2

13 Čité zpoždění v Matlabu >> D = tf(,,'inputdelay',) Tranfer function: exp(-*) * () >> = tf(''); D = exp(-) Tranfer function: exp(-) * () D () = e >> tep(tf(),d) >> bode(d) >> nyquit(d) Amplitude.5.5 Step Repone Time (econd) Nyquit Diagram Magnitude (db) Bode Diagram Imaginary Axi Phae (deg) Frequency (rad/) Real Axi

14 Sytém e zpožděním na vtupu/výtupu v Matlabu >> G = tf(,[ ],'InputDelay',2.) Tranfer function: exp(-2.*) * >> G = tf(,[ ],'OutputDelay',2.); >> = tf('');gg= /(+); G = exp(-2.*)*gg; G () Amplitude = + e 2..2 Magnitude (db) Bode Diagram Imaginary Axi Time (econd) Nyquit Diagram Phae (deg) Frequency (rad/) Real Axi

15 Sytém vnitřním zpožděním v Matlabu >> = tf('');gg= /(+); >> G = exp(-2.*)*gg; >> T=G/(+G)... Output delay (econd): 2. Internal delay(econd):2. Continuou-time model. >> tep(t) T() e = + + e + 2. e = + + e p tude Step Repone Time (econd) Nyquit Diagram Bode Diagram.5 Magnitude (db) Imaginary Axi..5 Phae (deg) Real Axi Frequency (rad/) 5

16 Příklad: Složitější ytémy.4 H(, e ) e = + + Step Repone e >> delay=tf();et(delay,'iodelay',) >> E=tf(delay),S=tf(); Tranfer function: exp(-*) * () >> H=E/(S+a+S*b*E),tep(H,2) Amplitude Time (econd) Imaginary Axi Nyquit Diagram db 2 db-2 db Phae (deg) Magnitude (db) Bode Diagram Real Axi 6

17 Příklad: Složitější ytémy H.2. 3 (, e, e ).2 e = + e + 2e.3. 2 Nyquit Diagram 2 >> delay2=tf();et(delay2,'iodelay',.2) >> delay3=tf();et(delay3,'iodelay',.3) >> H=E2/(S+E3+2*E2);tep(H,2) >> E2=tf(delay2),E3=delay3,S=tf(); Tranfer function: exp(-.2*) * () Tranfer function: exp(-.3*) * () >> H=E2*S/(S+E3+2*E2);tep(H,2) Step Repone.5 Imaginary Axi Magnitude (db) - -2 Bode Diagram Amplitude Real Axi x Time (econd) Frequency (rad/) 7

18 Pro zajímavot: Lambertova funkce Lambertova W-funkce (také omega funkce) je inverzní funkce k f ( W ) = We v reálném oboru rozumná, ale v komplexním divoká (nekonečně mnoho větví) W reálná a imaginární čát Lambertovy funkce (analytického prodloužení) 8

19 Příklad: Retardovaný a neutrální ytém Retardovaný ytém c () = + e CL 8 >> olve('exp(-tau*x)+x=') an = lambertw(, -tau)/tau >> tau=, r=lambertw(-:,-tau)./tau; >> plot(real(r),imag(r),'+r') Neutrální ytém c () = e + CL >> olve('+exp(-tau*x)*x=') an = -lambertw(, tau)/tau >> tau=, r=-lambertw(-:,tau)./tau; >> plot(real(r),imag(r),'+b') 9

20 Podmínky tability jednoduchého kvazipolynomu (Kharitonov et al., 24, p. 4) Sytém charakteritickým kvazipolynomem a (, e τ ) = + a + be τ kde a + b > (pokud ne, pak není tabilní ano bez zpoždění) je Stabilní nezávile na velikoti zpoždění ( iod ) právě když a b. Jinak b Pokud je a >, b >, je tabilní π arcco ( a b ) τ < b a Pokud je a <, b >, je tabilní τ < Michael Šebek arcco ( a b ) b a ARI-Pr a 2 3 2

21 Příklad: Detabilizující efekt zpoždění G() =, C() = Ke τ c () = + Ke CL τ τ = : = K { i} { } + τ = : max Re <<< τ = : max Re i 8 x τ =, τ =, τ = >> olve('x+k*exp(-tau*x)=') an = lambertw(, -k*tau)/tau >> k=,tau=.5 >> r=lambertw(-:,-k*tau)/tau; >> plot(real(r),imag(r),'+r') max Re { } i τ c τ τ =.5 τ c =.578 τ =

22 Příklad: Stabilizující efekt zpoždění 2 CL( ) = c e τ je netabilní pro τ =, ale tabilní pro malá nenulová zpoždění Srovnej jeho odezvu použitím PD regulátoru 22

23 Soutava rovnicí yt (). yt () + yt () = ut () je netabilní. Můžeme ji tabilizovat derivační ZV zeílením u() t = ky () t Alternativně ji můžeme tabilizovat zpožděnou ZV ut () = yt ( τ ) yt () Což můžeme interpretovat jako ZV konečnou diferencí yt () yt ( τ ) ut () = τ τ Aproximujícím derivaci Příklad: Zpoždění jako derivační ZV k τ k = τ =.2 τ =.5 k >. Step Repone =

24 Padého Aproximace Henri Eugene Padé - francouzký matematik ( ) dne znám hlavně jako autor aproximace obecné funkce pomocí racionální funkce, která je čato lepší než Taylorova Padého aproximace pro danou funkci f a přirozená číla m,n je Padého aproximant řádu (m,n) Rx ( ) = 2 m p + px + px pmx 2 n + qx + qx qx n kde f f() = R() f () = R () f () = R () () = R () ( m + n) ( m + n) oučet prvních m+n+ členů Taylorových řad f a R je tejný 24

25 Příklad: Padého aproximace >> del=tf(); >> et(del,'iodelay',5); del Tranfer function: exp(-5*) * >> pade=pade(del,) Tranfer function: >> pade2=pade(del,2) Tranfer function: ^ ^ >> pade3=pade(del,3) Tranfer function: -^ ^ ^ ^ >> tep(del,pade,pade2,pade3) >> bode(del,pade,pade2,pade3) exp(t) (,) (2,2) (3,3) 25

26 Příklad na přený návrh: P regulátor pro K τ G () = e, C () = K je p T + T() = KK e τ ( T + ) + KK e p p τ a pro hodnoty K = T = τ =, K P = 2 je 2e T() = CL charakteritický kvazipolynom je + + 2e c () = + + 2e CL Pro K = 5 je c () = + + 5e P CL >> olve('x++5*exp(-x)=') an = -+lambertw(-5*exp()) >> r=-+lambertw(-:,-5*exp()); >> plot(real(r),imag(r),'*') >> olve('x++2*exp(-x)=') an = -+lambertw(-2*exp()) >> r=-+lambertw(-:,-2*exp()); >> plot(real(r),imag(r),'*') 26

27 Příklad: CL tabilita G () C () T() b = e + a = k τ GC () () = + GC () () kb e τ = + a kb e + + a τ kbe = + a + kbe τ τ Michael Šebek ARI

28 Příklad na přený návrh I regulátorem Pro je a pro hodnoty K G () =, C () = T + T() T() = I T I τ Ke = T ( T + ) + Ke τ K = TI = T = τ = e ( + ) + e.e+2 * i i i i i i i i i i i i i i i i i CL charakteritický kvazipolynom 2 ccl() = + + e má nekonečně mnoho kořenů čát kořenů nad reálnou oou 28

29 Příklad: Smithův prediktor P regulátor e zeílením 2 T() 2 = + + 2e e T() 2 = e

30 Příklad: Smithův prediktor P regulátor e zeílením 5 T() 5 = + + 5e e 5 5 T() 5 = + 6 e po odpojení větve bez prediktoru 3

31 Příklad: Smithův prediktor I regulátor a Smithův prediktor 3

32 Příklad: Netabilní outava Smithův prediktor nefunguje pro netabilní outavu! Proč?.5 Ale např. b () e přeto můžeme tabilizovat Pro toto konkrétní zpoždění, iod to nejde P-regulátor e zeílením k =.5 dává tabilní c ( ) = +.5e CL T() = G ().5e +.5e = = a () >> G=(/(-)); >> et(g,'iodelay',.5) >> T=feedback(.5*G,) >> tep(g,t,9) >> olve('x + 3/(2*exp(x/2)) - = ') an = 2*lambertw(, -3/(4*exp(/2))) + >> pol=2*lambertw(-:,-3/(4*exp(/2)))+; >> plot(real(pol),imag(pol),'+r'),grid 32

33 Netabilní outava b () + e G () = = a () e Char. kvazipolynom ( ) ( ) Regulátor a CL Příklad: Přiřazení konečného počtu pólů e p () + + e q () = + >> olve('+exp(-x)=') an = pi*i >> zer=(pi.*(-:)); >> olve('x-exp(-x)=') an = lambertw(, ) >> pol=lambertw(-:,); >> plot(real(zer),imag(zer), 'ob',real(pol),imag(pol),'+r') q () = p ( ) T () = + e + Pro imulace pade(3,3) e = >> del=tf();et(del,'iodelay',); >> pade3=df(pade(del,3)); >> G=(+pade3)./(-pade3); >> T=(+pade3)./(+); >> tep(tf(g),tf(l),:.:8) Michael Šebek ARI-Pr

34 Příklady k přednášce 25 Sytémy proměnné v čae Michael Šebek Automatické řízení

35 Příklad: Houpačka dětká houpačka je kyvadlo rovnicí (tandardní předpoklady): d 2 ( ϕ) + mgl inϕ = dt ale délka je zde proměnná + + l= lt ( ) [ l, l ], L= ½( l + l ) tedy celkem (pozor při derivaci!) d 2 wing.mdl (() lt ϕ) + glt ()inϕ = dt 2l ϕ ginϕ ϕ + + = l l 35

36 Pro teoretické zkoumání označ. ν= lϕν, = l ϕ+ l ϕν, = lϕ+ 2l ϕ+ l ϕ a zjednodušíme rovnici inϕ ϕ 2l ϕ ginϕ ϕ + + = ν + ( g l) ν = l l l Doadíme lt ( ) L(+εco ωt), označíme ω ω 2 2 a dotaneme δ + εco t x = ω x, δ g ( Lω ) ν + ν = ε co t Použijeme aproximaci. řádu δ+ ε t δε = δ+ ( δε ) co t + v ε a dotaneme tzv. + εco t + εco Mathieuovu rovnici wingmat.mdl Ta má neomezené řešení pokud ε = δ = ¼ ω = Pokračování: Parametrická rezonance ( t ) ν + δ + ε( δ) co ν =., 2 g L t t x = dx dt = x co ( ) co t = 2x přirozená frekvence kyvadla 36 t

37 Stabilita LTV Pro lineární ytém proměnný v čae x = A() tx+ B() tu, x( t) y= C() tx+ Dtu () Je řešení je dáno tavovou maticí přechodu x() t = Φ(, tt) x( t) počáteční hodnotou t t Φ( t, t ) = I Definice tability je podobná jako u LTI, přeněji ekvilibrium v počátku je globálně tejnoměrně aymptoticky tabilní právě když Φ ( t t (, t t ) ke γ ), t t Stabilitu ale nelze charakterizovat vlatními číly matice A ani v případě, že jou tato číla kontantní! 37

38 Příklad: Stabilita LTV ytému LTV ytém 2. řádu A (otatní matice jou nulové) A() t 2 +.5co t.5in tcot = 2.5in tcot +.5in t má vlatní číla nezávilá na t a ležící v levé polorovině» ym t» A=[-+.5*co(t)^2,-.5*in(t)*co(t);--.5*in(t)*co(t),-+.5*in(t)^2] A = [ -+3/2*co(t)^2, -3/2*in(t)*co(t)] [ --3/2*in(t)*co(t), -+3/2*in(t)^2]» eig(a) an = [ -/4+/4*i*7^(/2)] [ -/4-/4*i*7^(/2)] Tedy by e zdálo, že je ytém tabilní? 38

39 Přitom ale je neboť Φ( t,) Příklad: Stabilita LTV ytému.5t t e cot e in t =.5t t e in t e cot» PHI=[exp(t/2)*co(t),exp(-t)*in(t);-exp(t/2)*in(t),exp(-t)*co(t)] PHI =[ exp(/2*t)*co(t), exp(-t)*in(t)] [ -exp(/2*t)*in(t), exp(-t)*co(t)]» [implify(a*phi(:,)-diff(phi(:,),t)), implify(a*phi(:,2)-diff(phi(:,2),t))] an = [, ] [, ] Jelikož x( t) = Φ( t,) x() Tak zřejmě pp. libovolně blízko počátku, pro které řešení uteče do nekonečna - ytém je tedy netabilní Pro čaově proměnné ytémy vlatní číla nefungují! 39

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost

4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost 4 - Vlastnosti systému: Stabilita, převrácená odezva, řiditelnost a pozorovatelnost Michael Šebek Automatické řízení 25 25-2-5 Stabilita obecně Automatické řízení - Kybernetika a robotika Stabilita obecně

Více

Teorie systémů a řízení

Teorie systémů a řízení VYSOKÁ ŠKOLA BÁŇSKÁ ECHNICKÁ UNIVERZIA V OSRAVĚ FAKULA HORNICKO - GEOLOGICKÁ INSIU EKONOMIKY A SYSÉMŮ ŘÍZENÍ eorie ytémů a řízení Prof.Ing.Aloi Burý,CSc. OSRAVA 2007 Předmluva Studijní materiály eorie

Více

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů

Vytvoření skriptů pro webové rozhraní předmětu Analýza a simulace technologických procesů Vytvoření kriptů pro webové rozhraní předmětu Analýza a imulace technologických proceů M-file for the Internet Interface Ued in the Subject Analyi and Simulation of Technological Procee. Petr Tomášek Bakalářká

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.

Více

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze.

Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze. Nejprve několik fyzikálních analogií úvodem Rezonance Rezonance je fyzikálním jevem, kdy má systém tendenci kmitat s velkou amplitudou na určité frekvenci, kdy malá budící síla může vyvolat vibrace s velkou

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

Příklady k přednášce 11 - Regulátory

Příklady k přednášce 11 - Regulátory Příklady k přednášce 11 - Regulátory Michael Šebek Automatické řízení 2015 23-3-15 Soustavy s oscilujícími módy V běžných průmyslových procesech je to méně časté, ale některé důležité aplikace mají hodně

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2)

Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) Předmět: Ročník: Vytvořil: Datum: AUTOMATIZACE DRUHÝ ZDENĚK KOVAL Název zpracovaného celku: 27. 3. 2013 Aut 2- regulační technika (2/3) + prvky regulačních soustav (1/2) 5.5 REGULOVANÉ SOUSTAVY Regulovaná

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat?

Vyšetřování průběhu funkce pomocí programu MatLab. 1. Co budeme potřebovat? Vyšetřování průběhu funkce pomocí programu MatLab K práci budeme potřebovat následující příkazy pro 1. Co budeme potřebovat? (a) zadání jednotlivých výrazů symbolicky (obecně) (b) řešení rovnice f()=0,

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2.

Aproximace funkcí. x je systém m 1 jednoduchých, LN a dostatečně hladkých funkcí. x c m. g 1. g m. a 1. x a 2. x 2 a k. x k b 1. x b 2. Aproximace funkcí Aproximace je výpočet funkčních hodnot funkce z nějaké třídy funkcí, která je v určitém smyslu nejbližší funkci nebo datům, která chceme aproximovat. Třída funkcí, ze které volíme aproximace

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista

Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích. MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Ekonomická fakulta, Jihočeská univerzita v Českých Budějovicích MATEMATICKÝ SOFTWARE MAPLE - MANUÁL Marek Šulista Matematický software MAPLE slouží ke zpracování matematických problémů pomocí jednoduchého

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

9 INTERPOLACE A APROXIMACE

9 INTERPOLACE A APROXIMACE 1 9 INTERPOLACE A APROXIMACE Vzorová úloha 9.1 Náhrada funkce exp(x) Nalezněte interpolační polynom, který aproximuje funkci exp(x) v intervalu {0, 1} tak, že v krajních bodech x 1 = 0 a x = 1 souhlasí

Více

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy

Příklady k přednášce 6 - Ustálený stav, sledování a zadržení poruchy Přílady přdnášc 6 - Utálný tav, ldování a zadržní poruchy Mchal Šb Automatcé řízní 05 9-3-5 Frvnční odzva - odvozní Automatcé řízní - Kybrnta a robota Na vtup tablního ytému přnom y () = Gu ()(), trý j

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

PSK3-4. Přístupová práva. setfacl z balíčku acl.)

PSK3-4. Přístupová práva. setfacl z balíčku acl.) PSK3-4 Název školy: Autor: Anotace: Vzdělávací oblat: Předmět: Tematická oblat: Výledky vzdělávání: Klíčová lova: Druh učebního materiálu: Vyšší odborná škola a Střední průmylová škola, Božetěchova 3 Ing.

Více

MSC 30-45 MSD 55-75 Pohon přes klínové řemeny. RMC 30-45 RMD 55-75 RME 75-90 Pohon pomocí spojky

MSC 30-45 MSD 55-75 Pohon přes klínové řemeny. RMC 30-45 RMD 55-75 RME 75-90 Pohon pomocí spojky MSC MSD Pohon pře klínové řemeny RMC RMD RME Pohon pomocí pojky Olejem mazané šroubové kompreory pevnou nebo proměnnou í Solidní, jednoduché, chytré Zvýšená polehlivot dodávky tlačeného u MSC/MSD Pohon

Více

43A111 Návrh řízení podvozku vozidla pomocí lineárního elektrického pohonu.

43A111 Návrh řízení podvozku vozidla pomocí lineárního elektrického pohonu. 43A111 Návrh řízení podvozku vozidla pomocí lineárního elektrického pohonu. Popis aktivity Návrh a realizace řídicích algoritmů pro lineární elektrický motor použitý jako poloaktivní aktuátor tlumení pérování

Více

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU

6. ZÁSOBOVÁNÍ 6.1. BILANCE MATERIÁLU 6.2. PROPOČTY SPOTŘEBY MATERIÁLU 6. ZÁSOBOVÁÍ 6.1. Bilance materiálu 6.2. Propočty potřeby materiálu 6.3. Řízení záob (plánování záob) Záobování patří mezi velmi ůležité ponikové aktivity. Při řízení záob e jená v potatě o řešení tří

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

YU = I kde I = 0 (6.1)

YU = I kde I = 0 (6.1) Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

16 - Pozorovatel a výstupní ZV

16 - Pozorovatel a výstupní ZV 16 - Pozorovatel a výstupní ZV Automatické řízení 2015 14-4-15 Hlavní problém stavové ZV Stavová zpětná vazba se zdá být nejúčinnějším nástrojem řízení, důvodem je síla pojmu stav, který v sobě obsahuje

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth

FOURIEROVA ANAL YZA 2D TER ENN ICH DAT Karel Segeth FOURIEROVA ANALÝZA 2D TERÉNNÍCH DAT Karel Segeth Motto: The faster the computer, the more important the speed of algorithms. přírodní jev fyzikální model matematický model numerický model řešení numerického

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Vyhláška č. 9DV/2011 děkana FEK ZČU v Plzni Přijímání ke studiu na Fakultu ekonomickou ZČU v Plzni pro akademický rok 2012/2013

Vyhláška č. 9DV/2011 děkana FEK ZČU v Plzni Přijímání ke studiu na Fakultu ekonomickou ZČU v Plzni pro akademický rok 2012/2013 Vyhláška č. 9DV/2011 děkana FEK ZČU v Plzni Přijímání ke studiu na Fakultu ekonomickou ZČU v Plzni pro akademický rok 2012/2013 podle zákona o vysokých školách č. 111/1998 Sb. v platném znění, 48 a 49

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

bezdrátová komunikace hvězdicová topologie stanice DX80N2X6S-P8

bezdrátová komunikace hvězdicová topologie stanice DX80N2X6S-P8 externí anténa (připojení RG58 RP-SMA) integrovaný ukazatel síly signálu konfigurace pomocí DIP přepínačů deterministický přenos dat technologie přeskakování kmitočtů FHSS časový multiplex TDMA přenosový

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Cyklometrické funkce

Cyklometrické funkce Cyklometrické funkce Definice. Cyklometrické funkce jsou funkce arcsin(x) (čteme arkussinus x), arccos(x) (čteme arkuskosinus x), arctg(x) (čteme arkustangens x) a arccotg(x) (čteme arkuskotangens x),

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

Matlab & Simulink. studijní materiály pro předmět Základy kybernetiky. Libor Kupka

Matlab & Simulink. studijní materiály pro předmět Základy kybernetiky. Libor Kupka Matlab & Simulink tudijní materiály pro předmět Základy kybernetiky Libor Kupka Obah Předmluva... 5 Úvod... 7 Základy práce v protředí MATLAB... 9. Práce v příkazovém řádku...3. Proměnné v MATLABu...5.3

Více

Object-oriented Analysis & Design. Requirements Analysis

Object-oriented Analysis & Design. Requirements Analysis Object-oriented Analyi & Deign Requirement Analyi Waterfall Model Sytem Requirement Software Requirement Deign Verification Module Tet Validation Implementation Iteration Agile Unified Proce Inception

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut.

KOMPRESE OBRAZŮ. Václav Hlaváč. Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání. hlavac@fel.cvut. 1/24 KOMPRESE OBRAZŮ Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz http://cmp.felk.cvut.cz/ hlavac KOMPRESE OBRAZŮ, ÚVOD 2/24 Cíl:

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Počítačová podpora automatického řízení - CAAC

Počítačová podpora automatického řízení - CAAC XXVI. AR '2001 eminar, Instruments and Control, Ostrava, April 26-27, 2001 Paper 47 Počítačová podpora automatického řízení - CAAC NAVRÁTIL, Pavel 1 & BALÁTĚ, Jaroslav 2 1 Ing., Institut Informačních Technologií,

Více

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie

Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

11 Analýza hlavních komponet

11 Analýza hlavních komponet 11 Analýza hlavních komponet Tato úloha provádí transformaci měřených dat na menší počet tzv. fiktivních dat tak, aby většina informace obsažená v původních datech zůstala zachována. Jedná se tedy o úlohu

Více

Řízení tepelné soustavy pomocí PLC Siemens

Řízení tepelné soustavy pomocí PLC Siemens Řízení tepelné soustavy pomocí PLC Siemens Martin Kopal TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

Základní pojmy o signálech

Základní pojmy o signálech Základní pojmy o signálech klasifikace signálů transformace časové osy energie a výkon periodické signály harmonický signál jednotkový skok a impuls Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

Více

FYZIKÁLNÍ MODELOVÁNÍ KOMPONENT SYSTÉMU ZÁSOBOVÁNÍ TEPELNOU ENERGIÍ. Systém centrálního zásobování tepelnou energií SCZT

FYZIKÁLNÍ MODELOVÁNÍ KOMPONENT SYSTÉMU ZÁSOBOVÁNÍ TEPELNOU ENERGIÍ. Systém centrálního zásobování tepelnou energií SCZT FYZIKÁLNÍ MODELOVÁNÍ KOMPONENT SYSTÉMU ZÁSOBOVÁNÍ TEPELNOU ENERGIÍ Ing. Jiří Marek, CSc., Ing. Jozef Poláček, Ph.D. UNIS a.s. Brno, Jundrovská 33, 624 00 Brno Systém centrálního zásobování tepelnou energií

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus

Pracovní listy - programování (algoritmy v jazyce Visual Basic) Algoritmus Pracovní listy - programování (algoritmy v jazyce Visual Basic) Předmět: Seminář z informatiky a výpočetní techniky Třída: 3. a 4. ročník vyššího stupně gymnázia Algoritmus Zadání v jazyce českém: 1. Je

Více

Nelineární systémy. Fázové portréty Hezké příklady nelineárních systémů

Nelineární systémy. Fázové portréty Hezké příklady nelineárních systémů Nelineární systémy Fázové portréty Hezké příklady nelineárních systémů Numerická konstrukce fázových portrétů Pro numerické řešení obyčejných diferenciálních rovnic existuje mnoho programů Můžeme je použít

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA

PROGRAM MAXIMA. KORDEK, David, (CZ) PROGRAM MAXIMA PROGRAM MAXIMA KORDEK, David, (CZ) Abstrakt. Co je to Open Source Software? Příklady některých nejpoužívanějších software tohoto typu. Výhody a nevýhody Open Source Software. Jak získat program Maxima.

Více

8.3 Popis dialogových oken

8.3 Popis dialogových oken 8.3 Popis dialogových oken Pro přehled jsou na následující ilustraci 8.1 vyobrazena všechna dialogová okna. Jedná se o nemodální dialogy, proto je lze mít otevřené současně. Pouze dále popisovaný dialog

Více

Rejstřík - A - - B - - E - - C - - F - - D - Rejst ík

Rejstřík - A - - B - - E - - C - - F - - D - Rejst ík - 137 Rejst ík - A - aktualizace spojení s datovým souborem, 38; 39 aktualizace symbolických výpočtů, 70 animace, 51 Auto, 92 automatická změna typu rovnítka, 10 automatické obnovení výsledků, 7; 92 automatické

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

VY_32_INOVACE_08_2_04_PR

VY_32_INOVACE_08_2_04_PR Ing. Petr Stránský VY_32_INOVACE_08_2_04_PR Příkazy vstupu - definice Výstupním zařízením může být obrazovka, tiskárna nebo soubor. Jednotlivé údaje se zapisují pomocí příkazu WRITE nebo WRITELN. Příkaz

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Vytvoření modelu dvojitého kyvadla

Vytvoření modelu dvojitého kyvadla Vytvoření modelu dvojitého kyvadla Text je určen pro začátečníky v používání simulinku, vytvořeno v simulinku verze 7.6 (R2010b) 1. Spustíme MATLAB 2. V Command Window MATLABu spustíme příkaz: >> simulik

Více

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí

0.0001 0.001 0.01 0.1 1 10 100 1000 10000. Čas (s) Model časového průběhu sorpce vyplývá z 2. Fickova zákona a je popsán následující rovnicí Program Sorpce1.m psaný v prostředí Matlabu slouží k vyhlazování naměřených sorpčních křivek a výpočtu difuzních koeficientů. Kromě standardního Matlabu vyžaduje ještě Matlab Signal Processing Toolbox

Více

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu:

Zkraty v ES Zkrat: příčná porucha, prudká havarijní změna v ES nejrozšířenější porucha v ES při zkratu vznikají přechodné jevy Vznik zkratu: Zkraty ES Zkrat: příčná porucha, prudká haarijní změna ES nejrozšířenější porucha ES při zkratu znikají přechodné jey Vznik zkratu: poruchoé spojení fází nazájem nebo fáze (fází) se zemí soustaě s uzemněným

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš

Quantization of acoustic low level signals. David Bursík, Miroslav Lukeš KVANTOVÁNÍ ZVUKOVÝCH SIGNÁLŮ NÍZKÉ ÚROVNĚ Abstrakt Quantization of acoustic low level signals David Bursík, Miroslav Lukeš Při testování kvality A/D převodníků se používají nejrůznější testovací signály.

Více