VUT, FAST, Brno ústav Technických zařízení budov

Rozměr: px
Začít zobrazení ze stránky:

Download "VUT, FAST, Brno ústav Technických zařízení budov"

Transkript

1 Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov

2 Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou ostrou ro odborníky Vstuní údaje objednávky: stavové veličiny áry hmotnostní tok rovozní účel Parotechna s. a. Pára Voda Telo Turbolus generátor VP

3 1. Úvod Vodní ára (VP) je látka, l jejíž základem je voda. Voda ro chází v závislosti z na ůsob sobícím m tele q skuenskými změnami. Pro vznik VP je zásadnz sadní odařov ování a var. Dominantním m faktorem vzniku VP je var. V TZB ředstavuje řízený fyzikáln lní děj, robíhaj hající v uzavřen eném m rostoru (UP). V závislosti z na množstv ství vody a VP v UP se vyskytují dále uvedené skuenské fáze. Tyto fáze f a děje d jejich vzniku lze osat řadou fyzikáln lních veličin. in. Tání Tuhnutí Var Odar Zdroj tela Uzavřený rostor Volný rostor q q 3

4 1. Úvod okračov ování Charakteristiky dějůd sojených s vodní arou (VP) Odařov ování je samovolný odar do volného okolního rostoru nad vodní hladinou, robíhá za každé teloty, řičem emž se voda ochlazuje vlivem skuenského tela. Problematika řesahuje rámec r ředm edmětu. Blíže e alikované discilíny. V oborech TZB je VP telonosnou látkou l sloužící k řenosu tela či technologickým rocesům. Děje robíhaj hající ři i řírav ravě VP fázovými f změnami lze identifikovat řadou fyzikáln lních zejména tzv. stavových veličin. in. Základní veličiny iny jsou navzájem závislz vislé a měním se sojitě.. Konkrétn tní hodnoty zásadních veličin in se určuj ují exerimentáln lně a dokumentují omocí tabulek, jež jsou základem z tzv. teelných diagramů či i aroximačních funkcí. Dominantní ři i změnách stavů VP jsou meze sytosti. PředstavujP edstavují hranici, na které se náhle n měním charakter veličin in stavu., t, i, v, x, s c, l, λ,. Volný rostor Uzavřený rostor Odar Var q 4

5 2. Stavy vodní áry Kaalina Sytá kaalina Sytá ára Přehřátá ára Podchlazená ára (Přechlazená ára) Přehřátá kaalina t < t var t = t var t = t var t > t var t < t var t > t var Jednotlivé stavy jsou dány oměrem vody a áry v hmotnostní (objemové) jednotce. Základní veličiny stavů i měrná entalie t telota v měrný objem u měrná vnitřní energie tlak s měrná entroie x suchost áry y vlhkost áry 6

6 Ka. 2 Stavy áry okračov ování MPa kr Izobara K Kritický bod Tyické veličiny VP a jejich růběh je atrný z obr Dolní (levá) mezní křivka ozn. x Mez sytosti ro x = 0 ředstavuje očátek vyařování a konec kondenzace x = 1 0 x = 0 T Izochora v kr x suchost Obr. 2.1 Průběh veličin VP v diagramu v Izoterma Horní (ravá) mezní křivka ozn. x. Mez sytosti ro x = 1 ředstavuje konec vyařování a očátek kondenzace. 0,04 v m 3.kg 1 5 GG/012

7 Ka. 2 Stavy áry okračování CT07 Termomechanika P P P P P i, u, v, s t = 0 t var Mokrá ára Děj izobarotermický t = konst. t ř >t var Kaalina Heterogenní směs Plyn Obr. 2.2 Schéma stavů vodní áry 1-x x GG/013 7

8 Ka. 2 Stavy áry okračov ování MPa Fáze sojené s vodní arou 22,12 Voda 20 K K Přehřátá ára Horní mezní křivka x = 1 Dolní mezní křivka x = T Mokrá ára x = 1 Mokrá ára x = 0 x suchost Obr. 2.3 Stavy vodní áry zobrazené v diagramu v 0,04 v m 3.kg 1 8 GG/012

9 3. Sytá kaalina SK SK je tekutina tzn. voda v sytém stavu neobsahující žádnou áru a její suchost x = 0. Stav SK lze osat energetickými veličinami. Základní veličiny tohoto stavu jsou označovány indexem. 2 P Stav SK 3.1 Měrné telo kaalinné, t, i, s, v, Obecná formule q q k t = var c. d T t [ ] t ( ) [ ] var tvar c tvar t0 c var tvar k = ck d T = k = 0 0 x = 0. t k 0 q k Pro telotu SK t = 0 o Cse volí entalie i = 0 q k [ ] = i i 0 i J.kg 1 9

10 Ka. 3 Sytá kaalina okračov ování 3.2 Měrná entalie syté kaaliny Pro vodu a nízké tlaky i = [ ] tvar c tvar [ ] t var -1-1 = 4,186 kj.kg K c Měrná vnitřní energie syté kaaliny u Z obecné definice i = u +.v u = i.v 0 Stav SK, t, i, s, v, x = 0 2 P i = 4,186.t var v měrný objem syté kaaliny ři tlaku (m 3.kg 1 ) hodnoty jsou tabelovány 3.3 Měrné výarné telo l Množství tela nutného kvyaření 1 kg syté kaaliny ři stálém tlaku tabelováno q k 10

11 4. Sytá ára (SP) SP je stavem vodní áry, která se vyskytuje v uzavřeném objemu, ve kterém se řiváděným telem odaříveškerávoda. V teelných diagramech vodní áry se stav SP nachází na ravé mezní křivce (obr. 1.1, 2.2). Stav SP lze osat fyzikálními rovnice a energetickým veličinami, jejichž hodnoty se tabelují a běžně dokumentují teelnými diagramy event. regresními funkcemi. 6 P Základní energetické veličiny Indexy veličin 4.1 Měrná entalie SP sytá kaalina na mezi sytosti sytá ára na mezi sytosti q k i = i + l v l v = i i 11 GG/012

12 ka. 4 Sytá ára okračov ování Měrná vnitřní energie SP (zásadní je změna u) Δu = i.v hodnoty u se tabelují Stav SP, t, i, s, v, x = 1 P 4.4 Měrná vnitřní entroie SP (zásadní je změna s) Δs = s s = l v / T var hodnoty s, s se tabelují q k 12

13 5. Mokrá ára MP Stav MP, t, i, s, v MP je směsí syté áry a syté kaaliny téže teloty. Tvořítak heterogenní směs vody a áry. V diagramech vodní áry se MP nachází mezi dolní a horní mezní křivkou, atrné na obr. 1.1, 2.1, 2.2. Stavy MP lze osat základními veličinami. P P 5.1 Suchost x MP x = m m = m m + m kg.kg 1 x - hmotnost syté kaaliny x - hmotnost syté áry q 5.2 Vlhkost MP y = 1 x 13 GG/012

14 Ka. 5 Mokrá ára (MP) okračov ování 5.3 Měrný objem MP v P P m m m v = v + = + v =. v m m + m m ( 1 x). v + x v = v + x. v 3 1 ( v ) (m.kg ) 5.4 Měrná hmotnost MP q ρ = v 1 3 (kg.m ) 14 GG/012

15 Ka. 5 Mokrá ára (MP) okračov ování 5.5 Měrná entalie MP 4 P 5 P i 1 ( 1 x). i + x. i = i + x. ( i i ) i = i + x. l (J.kg ) = v 5.6 Měrná vnitřní energie MP u 1 ( 1 x). u + x. u = u + x. ( u u ) u = u + x. l (J.kg ) = v 5.7 Měrná vnitřní entroie MP lr s = s + x T var (J.kg 1 K 1 ) q 15 GG/012

16 6. PřehP ehřátá ára PP PP je ára, kterávznikáze syté áry omocí řehřátí tzn. řívodem tela. Jednoznačně lze stav lze osat omocí dvou stavových veličin, z nichž zásadní se získají exerimentálně. V odborné raxi se určení stavu PP využívají tabulky [1], rogramová řešení či regresní funkce. 6 P 6.1 Přehřívací telo q ř i ř = d i = i i i var ř 1 ( J.kg ) q k q ř i = ř ř c d t = i var [ ] t 1 c ( t t ) ( J.kg ) t var ř var 16 GG/012

17 Ka. 6 Přehřátá ára PP okračov ování 6.2 Měrná entalie PP i ř = i = i + q = i ř + + [ ] tvar 1 c ( t t ) ( J.kg ) t var ř t t var ř var c dt = Stav PP, t, i, s, v 6 P 6.3 Měrná entroie PP Hodnoty i ř se tabelují i ř = f(,t) [1] s ř = Tř dt s + c = Tvar T T T ř ř 1 [ c ] ln ( J.kg ) T var T var q k Hodnoty s ř se tabelují s ř = f(,t) [1] 17 GG/012

18 Ka. 6 Přehřátá ára PP okračov ování 6.4a Měrný objem PP v Stav PP, t, i, s, v 6 P Měrný objem PP je neřímo úměrný tlaku. Hodnoty měrných objemů jsou tabelovány v arních tabulkách ro stav daný tlakem a telotou. S klesajícím tlakem roste v řibližně odle hyerboly. Skutečnost je atrná na obr Hodnoty měrného objemu lze vyočíst dle emirického vztahu. Prof. Linde uvádí formuli ro telotu PP T u. v = 480,2. T u i q k Konstanta i = f(,t) = 0,016 latí ro tlak do 1 MPa a telotu 330 až 550 o C. 18 GG/012

19 Ka. 6 PřehP ehřátá ára PP okračov ování 6.4b Měrný objem Přetlak (kpa) , Obr. 6.1 Závislost v = f() Měrný objem v (m 3 /kg) 19

20 Ka. 6 PřehP ehřátá ára PP okračov ování 6.5a MěrnM rná teelná kaacita PP Měrná teelná kaacita c PP je funkcí teloty T a tlaku. Reálnou hodnotu lze určit exerimentálně ro konstantní tlaky PP. Vybrané hodnoty c = f(t,) uvádí tab. 6.1 a graf obr Tab. 6.1 MěrnM rná teelná kaacita řeh ehřáté áry vybrané hodnoty (kpa) t s 81,4 99,6 120,2 143,6 153,8 170,4 179,9 187,9 195 t = t s 2,00 2,03 2,09 2,20 2,30 2,42 2,53 2,65 2, ,98 2, ,97 2,00 2, ,96 1,99 2,05 2, ,96 1,98 2,04 2,14 2,25 2, ,95 1,98 2,03 2,12 2,22 2,33 2,44 2,57 2, ,95 1,98 2,02 2,10 2,19 2,28 2,38 2,50 2, ,95 1,97 2,01 2,09 2,17 2,26 2,34 2,43 2, ,95 1,97 2,01 2,08 2,15 2,23 2,30 2,38 2, ,96 1,97 2,01 2,08 2,14 2,20 2,28 2,34 2, ,96 1,98 2,01 2,07 2,13 2,19 2,26 2,32 2, ,97 1,98 2,01 2,07 2,13 2,18 2,24 2,29 2, ,97 1,98 2,01 2,07 2,12 2,17 2,23 2,28 2, ,97 1,98 2,01 2,07 2,12 2,16 2,21 2,26 2, ,97 1,99 2,02 2,07 2,11 2,15 2,20 2,25 2,29 GG/012 20

21 Ka. 6 PřehP ehřátá ára PP okračov ování 6.5b MěrnM rná teelná kaacita PP Měrná teel. kaacita řehráté áry 3,1 Kaacita c 1,85 2,85 2,6 2,35 2,1 Mezní křivka c klesá s rostoucí telotou 1400 kpa 50 kpa 1, Telota ( o C) Obr. 6.2 MěrnM rná teelná kaacita řeh ehřáté áry 21

22 7. Nestabilní stavy vodní áry Tyto nestabilní stavy tvoří: a. PřehP ehřátá kaalina b. Podchlazená = řechlazen echlazená ára a b a. Přehřátá kaalina má vyšší telotu než odovídá jejímu bodu varu ři daném tlaku. Výskyt tohoto stavu je v raxi TZB ojedinělý. b. Podchlazená = řechlazená ára ředstavuje stav áry, které vzniká ochlazení áry od bod varu, aniž by se srážela. Tento stav se vyskytuje nař. v kondenzátorech, kdy se ára sráží na chladných stěnách. Přechlazení áry v celém objemu se dosáhne také adiabatickou exanzí. Vyskytují li se v rostoru (objemu) kondenzační jádra (zrnka rachu) vytváříse mlha (mokrá ára). Pro technickou raxi TZB není roblematika obou zmíněných stavů zásadní. 22 GG/012

23 8. Přehled veličin stavu VP Č Stav Sytá ára Mokrá ára Přehřátá ára Sytá kaalina Veličiny stavu, x, t 1 Telota t var =f() t var =f() t =f(,v) t var =f() 2 Měrný objem v =f() v = v +x.(v v ) v =f(,t) v =f() 3 Hustota ρ =1/v ρ = 1/v ρ =1/v ρ =1/v 4 Vnitřní energie u = i.v u = u +x.(u u ) u = i.v u = i.v u = u.v u i 5 Entalie i = i l v i = i +x.(i i ) i = i x.l v i = i +c.(t l v ) i u q k 6 Entroie s = l v /T v s = s +x.(s s ) s = s +c.lnt/t v s = c.lnt v / GG/012

24 9. Vybrané teelné děje voblasti vodní áry (VP) 9.1 Základní ojmy Definice Teelné děje lze definovat jako oslounost změn stavů látky, robíhají v izolovaných a neizolovaných soustavách Klasifikace dějů kvazistatické vratné nestacionární nevratné Účel řešení Analýza jednoduchých teelných dějů a jejich alikace omocí triviálních řístuů Alikace Identifikace změn stavů soustavy (látky) omocí změn stavových veličin Δ, Δi, Δs, Δu, Δt, Δq, Δx 24 GG/012

25 Ka. 9.1 Základní ojmy okračování Metody řešení dějů - analytické -grafické - graficko - analytické Výchozí hodnoty termodynamické veličiny a vlastnosti vodní áry dány tabulkami či grafy event. regresními funkcemi (hodnoty ro vodní áru se zřesňují) dvě stavové veličiny nař. h, v, v, h x,.. Výstu řešení Hledané veličiny stavu vodní áry 25 GG/012

26 Ka. 9.1 Základní ojmy okračování Předoklady řešení ideální lyn nejjednodušší řešení, reálné lyny a řehřáté áry řešení je zdůvodu jejich vlastností složitější. Praktická řešení základních dějů alikace termodynamických tabulek, teelných diagramůči rogramových řešení. Teelné tabulky, diagramy, výočetní rostředky klasický rostředek identifikace a řešení stavů vodní áry, diagramy jsou zracované ro různé kombinace stavových veličin souřadnic a umožňují řehledné řešení úloh, aktuálním rostředkem řešení je výočetní rostředky, vycházející z exaktního vyčíslení fyzikálních dějů VP. Základní diagramy T s, i s, i, log v, aod. 26 GG/012

27 9.2 Teelné tabulky VP t v' v" ρ' ρ" i' i" l kpa o C m 3 /kg m 3 /kg kg/m 3 kg/m 3 kj/kg kj/kg kj/kg 1 6,92 0, ,9 999,9 0, , ,84 0, ,68 989,8 0, , ,08 0, , ,2 0, , ,12 0, , ,3 0, , ,35 0, , ,0 0, , ,63 0, , ,6 0, , ,38 0, , ,9 0, , ,23 0, , ,0 1, , ,54 0, , ,7 1, , ,62 0, , ,8 2, , ,84 0, , ,2 2, , ,84 0, , ,5 3, ,

28 9.3 Teelné diagramy vodní áry Diagram v a dolní mezní křivka b hornímezníkřivka c izotermická exanze kaaliny d vyařování e izotermická exanze áry MPa 22, c a K d x=0 x=1 x=0,5 0,01 0,02 e 0,03 T v m 3.kg b

29 9.3.2 Diagram vodní áry i Diagram s lineární osou tlaku (MPa) kr = 22,12 t kr = 374,1 o C K kritický bod T 20 Voda Mokrá ára Přehřátá ára Sytá kaalina x = 0 10 Výarné telo Sytá ára x = i kr = 2095 kj/kg i (kj/kg) 29

30 9.3.3 Diagram log i Logaritmická osa tlaku log [MPa] K s Diagram je vhodný ro velký rozsah tlaků T (Obor chlazení) T K x s i x = 0 x x = 1 i [kj.kg 1 ] 30

31 9.3.4 Diagram T s k = 22,12 MPa Diagram T sumožňuje řešit exanzi z řehřáté áry do áry mokré a zobrazit děj jako souvislý. T [K] T kr = 647 K v [m 3.kg 1 ] [kpa] T v v i [kj/kg] x i s x = 0 s kr = 4,43 kj.kg 1.K 1 x = 1 s 31

32 9.3.5 Diagram log i s i kj/kg MPa Užívaná část 0, ,1 0,37 2 0,5 1,7 0,1 0, o C ,9 x= ,3 0,7 0,8 x=0,2 0,3 0,4 0,5 0,6 s (kj/kgk) 0 2,1 4,2 6,3 8,4 10,6 12,6 32

33 10. ZákladnZ kladní děje v oblasti vodní áry ro TZB Základní děje VP nacházející ulatnění v TZB 1. Izochorický děj 2. Izobarický děj 3. Adiabatický děj 4. Izoentalický děj Q telo Parní kotel uzavřený rostor Pára Děje v uzavřeném rostoru. Veličiny stavu, t, i, s, v Voda Cíl řešení dějů veličiny návrhu teelných elementů soustav TZB 33 GG/012

34 10.1 Děj D izochorický v 1 = v 2 = konst v 3 = v 4 = konst 1 x=0 2 K MP PP x=1 x 2 x 3 v 1= v 2 v 3 = v 4 = v v Řešení stavů izochorických dějů Děj 1 2 odvod tela MP (chlazení) v 1 = v 1; v 2 = v 2 + x 2.(v 2 - v 2) v 1 = v 2 + x 2.(v 2 - v 2), v2 v2 x2 =,,, v v Děj 3 4 řívod tela MP (ohřev) v 4 = v 4; v 3 = v 3 + x 3.(v 3 - v 3) v 4 = v 4 = v 3 + x 3.(v 3 - v 3) x 3 v = v 2 3,, 3 v v Děj 4 5 řívod tela řehřáté áře (PP) 2, 3, 3 34

35 10.1 Děj D izochorický okračov ování Charakteristika děje v 3 = v 4 = v =konst. Schéma teelných dějů Schéma teelného zařízení Parní kotel Ventil uzavřen Voda K SP PP Q telo kaalinné M. ára 3 Voda Sytá ára 4 2 MP 3 4 x=1 x=0 x 2 x 3 v 1 = v 2 v 3 = v 4 v 35 GG/012

36 10.1 Děj D izochorický okračov ování Charakteristika děje: teelné soustavě se dodává nebo odebírá telo, děj ředstavuje základní zůsob ohřevu nebo ochlazování soustavy nař. náběh arního kotle. Řešení izochorického děje: veličiny děje MP, ideálního lynu a blízce odobné látky jsou dány rovnicemi: = r v. T = konst ( T ) q = u v nebo 2 u1 = c. 2 T1 T 2 2 = a s s1 = cv ln 1 T1 T T GG/012

37 10.2 Děj D j izobarický Charakteristika děje = 1 = konst. Soustavě se dodává nebo odebírá telo Alikace Základní zůsob ohřevu nebo ochlazování soustavy obecně latí ro ideální lyn a blízce odobné látky (ř.: rovoz arního kotle, vyařování chladiva, ) Základní veličiny a závislost r T = = v 2 2. T = konst T nebo = a s s1 1 T1 ( T ) q = i 2 i1 = c 2 T1 c v ln T T 1 37

38 10.2 Děj D j izobarický okračov ování t= konst K Charakteristika děje = konst. V oblasti mokré áry děj izotermický!!! = konst Voda x=0 x 1 MP PP v v 1 v 2 v v 4 x=1 x 3 v Platí: v 1 = v + x 1.(v v ) v 2 = v + x 2.(v v ) v 3 = v 3 Sotřebované telo q 12 = (x 2 x 1 ).l = i 2 i 1 q 34 = q ř = i 4 i 3.(v v ) = = [ ] t ř c ( t t ) t var ř var 38 GG/012

39 10.2 Děj D j izobarický okračov ování Charakteristika = konst. Q k telo kaalinné Q telo řehřívací Parní kotel M. ára 1, 2 Voda 0 4 PP Sytá ára 3 Výskyt děje TZB: Průtokové ohřívačea chladiče, arní kotel, výarníky, kondensátory Teelný tok ro výočet tela i ro nevratný růběh izobarického ohřevu nebo ochlazování. ( T ) q = i 2 i1 = c 2 T1 Pro ustálený stav ak latí Q = m.δi i 0 x=0 MP PP x 1 v2 v4 v v v 1 K x=1 39 x 3 v

40 10.3 Děj D j adiabatický Charakter děje dq= 0 Adiabatická komrese a exanze změna oměrné suchosti Řešení vychází z izoentroického děje s 1 = s s 2 3 = s 4 = s 5 K 5 1 PP 4 x x 2 3 = = s s s s, 1,, 2,, 4,, 3 s s s s, 2, 2, 3, 3 x =0 MP 2 3 x=1 x 2 x 3 Skutečnosti děje: Exanzí syté kaaliny roste x (stav 2) Exanzí syté áry klesá x (stav 3) Při komresi se x mění oačně v 1 v 2 v 5 v 4 v 3 v 40 GG/012

41 10.4 Děj D izoentalický Charakteristika entalie konstantní nevratný děje Zásadní modifikace děje ro TZB a. Škrcení mokré áry b. Škrcení syté áry Redukční uzel c. Škrcení řehřáté áry d. Směšovací rocesy Alikace škrcení VP Přírava áry změnou veličin výchozího stavu Možné koncové stavy:ára sytá, mokrá, řehřátá Realizace škrcení tlaku vloženou clonou vznik trvalé tlakové ztráty škrticí armaturou Tyické alikace obor chlazení, vytáění 41 GG/012

42 10.4 Děj D izoentalický okračov ování i a. Škrcení mokré áry Δi = 0 K s 1 s1 1 2 s2 x 2 T s1 T s2 x =1 Charakteristika děje Škrcením telota mokré áry rychle klesá, mokrá ára může řecházet do stavu větší suchosti event. do stavu řehřátí. Veličiny stavu 2 Výchozí veličiny 1, x 1, 2, i 1 z teelné bilance x ) i x x = i + x. ( i i 1 s 2 s Z hodnoty suchosti lze ro hodnoty na veličin mezních křivkách vyčíslit související veličiny ro stav o škrcení. 2 = i, 1, i2 + x l l GG/06

43 10.4 Děj D izoentalický okračov ování b. Škrcení syté áry Charakteristika děje i i 1 =i 2 1 s1 2 s2 T s2 T s1 Škrcením syté kaaliny klesá telota a současně se částečně odařuje kaalina (voda), tzn. že škrcením kaaliny tato řechází do stavu mokré áry. Tato skutečnost se využívá ve strojním chlazení k dosažení ožadovaných nízkých telot, nutných k odnímání tela (chlazení) látek. x =1 Škrcením syté áry klesá tlak i telota a ára se stává řehřátou. s 43

44 10.4 Děj D izoentalický okračov ování i i 1 =i 2 c. Škrcení řehřáté áry K 1 1 T 1 T s1 2 ΔT 2 2 T 2 x 2 s x=1 T s2 Charakteristika děje Škrcením řehřáté áry ze stavů blízkých mezi sytosti se zmenšuje tlak i telota, ale zvětšuje se řehřátí, rotože latí T 1 T s1 < T 2 T s2. Značně řehřátá ára ro i = konst. ři škrcení tlak snižuje, telota se nemění a řehřátí roste. a. Řešení teelná bilance b. Výchozí stav 1 a 2 c. Nevratný děj 2 v s2 s1 = ( d) 1 T d. Odvedené telo v.d = q ds = dq/ T ro dq= konst. T s 44

45 10.4 Děj D izoentalický okračov ování abc.. Technické řešení škrcení clona Technický rvek škrcení tlaku clona, regulační armatura Vložená clona do otrubí zdroj trvalé tlakové ztráty Clona m o 0 t 0 c, (Pa) m o 1 0 t 1 = t 0 c,1 = c,o 0 Δ 1 min l (m) Hmotnostní růtok řed i za clonou je konstantní 45

46 10.4 Děj D izoentalický okračov ování abc.. Technický rvek škrcení redukční ventil (RV) Princi škrcení RV snižování nebo zvyšování růtočného růřezu zasouvání a vysouváním nař. kuželky. Pohyb škrticího orgánu omocí membrány, servoohonu či neumaticky, atd. Průtok áry reguluje kuželka Výstuní tlak odvozen od ředětí ružiny. Pokud je výstuní tlak nižší než nastavený řeváží síla ružiny nad sílou od tlaku a kuželka se ohne směrem nahoru, čímž se zvětší růtočný růřez a růtok áry. 46 GG/06

47 10.4c Děj D izoentalický okračov ování abc. Škrcení omocí RV Účel RV regulaci růtoku tekutin, snížení tlaku tekutiny Návrh RV výchozí v odborné raxi je tzv. součinitele růtoku K v (blíže odborné ředměty) Z růtočného růřezu ventilem (funkce zdvihu regulačního orgánu) lze růtok řibližně vyočíst omocí součinitele růtoku K v K v = Q ρ Δ Výočet růtoku ro kaaliny dostatečně řesný omocí součinitele růtoku K v Výočet růtoku ro lynu a áry ři velkých změnám stavových veličin je výočet růtoku značně roblematický. 47 GG/06

48 10.4d Děj D izoentalický okračov ování Směšovací rocesy var. 1 Vstřikov ikování vody do áry var. 2 Směšov ování vody se sytou arou var. 3 Směšov ování vody s řeh ehřátou arou var 1. Vstřikov ikování vody do áry a. Účel regulace teloty řehřáté áry (PP), řírava syté áry z PP b. Výočet výchozí teelná a látková bilance m = m + m v = v = c. Měrná entalie i = m. i m + m + m v v. i v 48 GG/06

49 10.4d Děj D izoentalický okračov ování Směšovací rocesy var. 2 Směšov ování vody se sytou arou var. 3 Směšov ování vody s řeh ehřátou arou var 2. Směšov ování vody se sytou arou a. Účel ohřev vody (alikace v technologii), mokrá ára b. Výočet výchozí teelná a látková bilance m.u + m v.u v = (m + u v ).u s m + m v = m s c. Poměrné množství syté áry ve směsi x s = m /m s var 3. Směšov ování vody s řeh ehřátou arou a. Účel ohřev vody (alikace v technologii), mokrá ára b. Výočet výchozí teelná a látková bilance m.u + m v.u v = (m + u v ).u s m + m v = m s u s = m. u m m + m v v. i v 49 GG/06

50 Literatura [1] Ražnjevic K.: Termodynamické tabulky. Bratislava Alfa Brno, GG/06

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

Termodynamika ideálního plynu

Termodynamika ideálního plynu Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní

Více

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn

FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR

HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.

Více

Poznámky k semináři z termomechaniky Grafy vody a vodní páry

Poznámky k semináři z termomechaniky Grafy vody a vodní páry Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,

Více

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?

2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout? 2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

Zpracování teorie 2010/11 2011/12

Zpracování teorie 2010/11 2011/12 Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit

Více

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor

ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor Procesy s účastí stlačených a zkaalněných ných lynů a řeh ehřátých kaalin zásobníky zkaalněných lynů havarijní scénáře a jejich rozbor Havarijní scénář Nebezečný otenciál zádrž nebezečných látek uvolnitelná

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu:

Jednotlivým bodům (n,2,a,e,k) z blokového schématu odpovídají body na T-s a h-s diagramu: Elektroenergetika 1 (A1B15EN1) 3. cvičení Příklad 1: Rankin-Clausiův cyklus Vypočtěte tepelnou účinnost teoretického Clausius-Rankinova parního oběhu, jsou-li admisní parametry páry tlak p a = 80.10 5

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU

CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU Co to je Molliérův diagram? - grafický nástroj pro zpracování izobarických změn stavů vlhkého vzduchu - diagram je sestaven pro konstantní

Více

CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM

CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM CVIČENÍ 3: VLHKÝ VZDUCH A MOLLIÉRŮV DIAGRAM Co to je vlhký vzduch? - vlhký vzduch je směsí suchého vzduchu a vodní páry okupující společný objem - vodní pára ve směsi může měnit formu z plynné na kapalnou

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze

Termodynamika par. Rovnovážný diagram látky 1 pevná fáze, 2 kapalná fáze, 3 plynná fáze ermodynamika par Fázové změny látky: Přivádíme-li pevné fázi látky teplo, dochází při jisté teplotě a tlaku ke změně pevné fáze na fázi kapalnou (tání) Jestliže spojíme body tání při různých tlacích, získáme

Více

Teplovzdušné motory motory budoucnosti

Teplovzdušné motory motory budoucnosti Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 11 Termodynamika reálných plynů část 1 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

Elektroenergetika 1. Termodynamika

Elektroenergetika 1. Termodynamika Elektroenergetika 1 Termodynamika Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Elektroenergetika 1. Termodynamika a termodynamické oběhy

Elektroenergetika 1. Termodynamika a termodynamické oběhy Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

VUT, FAST, Brno ústav Technických zařízení budov

VUT, FAST, Brno ústav Technických zařízení budov Termo realizaci inooaných technicko-ekonomických VUT, FAST, Brno ústa Technických zařízen zení budo GG . Úod Cykly lze cháat jako oběhy dějůd ři i kterých sledoaný objekt měním sůj j sta cestami, jež mají

Více

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy

TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená

Více

13. Skupenské změny látek

13. Skupenské změny látek 13. Skuenské změny látek Skuenství je konkrétní forma látky, charakterizovaná ředevším usořádáním částic v látce a rojevující se tyickými fyzikálními a chemickými vlastnostmi. Pro označení skuenství se

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího

Více

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ

VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený

Více

Výroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry

Výroba páry - kotelna, teplárna, elektrárna Rozvod páry do místa spotřeby páry Využívání páry v místě spotřeby Vracení kondenzátu do místa výroby páry Úvod Znalosti - klíč k úspěchu Materiál přeložil a připravil Ing. Martin NEUŽIL, Ph.D. SPIRAX SARCO spol. s r.o. V Korytech (areál nádraží ČD) 100 00 Praha 10 - Strašnice tel.: 274 00 13 51, fax: 274 00

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 10

PROCESNÍ INŽENÝRSTVÍ cvičení 10 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 10 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

IV. Fázové rovnováhy dokončení

IV. Fázové rovnováhy dokončení IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana

Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kalana Měření růtokové, účinnostní a říkonové charakteristiky onorného čeradla Vyracovali:

Více

Základy elektrických pohonů, oteplování,ochlazování motorů

Základy elektrických pohonů, oteplování,ochlazování motorů Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

Teplota a její měření

Teplota a její měření Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013

Fyzikální chemie. Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302. 14. února 2013 Fyzikální chemie Magda Škvorová KFCH CN463 magda.skvorova@ujep.cz, tel. 3302 14. února 2013 Co je fyzikální chemie? Co je fyzikální chemie? makroskopický přístup: (klasická) termodynamika nerovnovážná

Více

Základy teorie vozidel a vozidlových motorů

Základy teorie vozidel a vozidlových motorů Základy teorie vozidel a vozidlových motorů Předmět Základy teorie vozidel a vozidlových motorů (ZM) obsahuje dvě hlavní kaitoly: vozidlové motory a vozidla. Kaitoly o vozidlových motorech ukazují ředevším

Více

Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o. Pro certifikaci dle Nařízení 303/2008/EK. 2010-01 Ing.

Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o. Pro certifikaci dle Nařízení 303/2008/EK. 2010-01 Ing. Svaz chladící a klimatizační techniky ve spolupráci s firmou Schiessl, s.r.o Diagram chladícího okruhu Pro certifikaci dle Nařízení 303/2008/EK 2010-01 Ing. Jiří Brož Úvod k prezentaci Tato jednoduchá

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

PROCESY V TECHNICE BUDOV 9

PROCESY V TECHNICE BUDOV 9 UNIVERZIA OMÁŠE BAI VE ZLÍNĚ FAKULA APLIKOVANÉ INFORMAIKY PROCESY V ECHNICE BUDOV 9 ermodynamika reálných plynů (2. část) Dagmar Janáčová, Hana Charvátová Zlín 2013 ento studijní materiál vznikl za finanční

Více

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausius-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/2 1. Určovací veličiny pracovní látky 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 3. Směsi plynů, měrné tepelné kapacity plynů 4. První termodynamický zákon 5. Základní vratné

Více

CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA

CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA CHLADICÍ TECHNIKA A TEPELNÁ ČERPADLA PODKLADY PRO CVIČENÍ Ing. Miroslav Petrák, Ph.D. Praha 2009 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Obsah Popis diagramů... 2 Řešené příklady...

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

7. Fázové přeměny Separace

7. Fázové přeměny Separace 7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak páry po expanzi ve vysokotlaké části turbíny

Více

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy

Více

Termodynamika pro +EE1

Termodynamika pro +EE1 ermodynamka ro +EE Možné zůsoby výroby elektrcké energe v současnost: termodynamcká řeměna energe jaderného alva a salování foslních alv v mechanckou energ a následně elektrckou - jaderné a klascké teelné

Více

Hydraulické posouzení vzduchospalinové cesty. ustálený a neustálený stav

Hydraulické posouzení vzduchospalinové cesty. ustálený a neustálený stav Hydraulické posouzení vzduchospalinové cesty ustálený a neustálený stav Přednáška č. 8 Komínový tah 1 Princip vytvoření statického tahu - mezní křivky A a B Zobrazení teoretického podtlaku a přetlaku ve

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Kontrolní otázky k 1. přednášce z TM

Kontrolní otázky k 1. přednášce z TM Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele

Více

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku.

Blokové schéma Clausius-Rankinova (C-R) cyklu s přihříváním páry je na obrázku. Elektroenergetika 1 (A1B15EN1) 4. cvičení Příklad 1: Přihřívání páry Teoretický parní oběh s přihříváním páry pracuje s následujícími parametry: Admisní tlak páry p a = 10 MPa a teplota t a = 530 C. Tlak

Více

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla.

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla. Čeradla ředstavují komletní konstrukční řadu oběhových čeradel s integrovaným systémem řízení odle diferenčního tlaku, který umožňuje řizůsobení výkonu čeradla aktuálním rovozním ožadavkům dané soustavy.

Více

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny

TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se

Více

Nelineární model pneumatického pohonu

Nelineární model pneumatického pohonu XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,

Více

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky

Cvičení z termomechaniky Cvičení 7 Seminář z termomechaniky Příklad 1 Plynová turbína pracuje dle Ericsson-Braytonova oběhu. Kompresor nasává 0,05 [kg.s- 1 ] vzduchu (individuální plynová konstanta 287,04 [J.kg -1 K -1 ]; Poissonova konstanta 1,4 o tlaku 0,12 [MPa]

Více

EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu

EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky rostředí rof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 5. Měření vlhkosti vzduchu OSNOVA 5. KAPITOLY Úvod do roblematiky měření

Více

11. Tepelné děje v plynech

11. Tepelné děje v plynech 11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

Termodynamické zákony

Termodynamické zákony Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

Parní turbíny Rovnotlaký stupeň

Parní turbíny Rovnotlaký stupeň Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost

Více

CHLADÍCÍ ZAŘÍZENÍ. Obr. č. VIII-1 Kompresorový chladící oběh

CHLADÍCÍ ZAŘÍZENÍ. Obr. č. VIII-1 Kompresorový chladící oběh CHLADÍCÍ ZAŘÍZENÍ 01. Zadání cvičení - proveďte měření tepelných výkonů chladícího kompresoru. Při měření respektujte ČSN 14 06 13. Ze změřených veličin vyhodnoťte hmotnostní chladivost, chladící výkon,

Více

Parní turbíny Rovnotlaký stupe

Parní turbíny Rovnotlaký stupe Parní turbíny Dominanci parních turbín v energetickém průmyslu vyvolaly provozní a ekonomické výhody,zejména: Menší investiční náklady, hmotnost a obestavěný prostor, vztažený na jednotku výkonu. Možnost

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Příklady k opakování TERMOMECHANIKY

Příklady k opakování TERMOMECHANIKY Příklady k opakování TERMOMECHANIKY P1) Jaký teoretický výkon musí mít elektrický vařič, aby se 12,5 litrů vody o teplotě 14 C za 15 minuty ohřálo na teplotu 65 C, jestliže hustota vody je 1000 kg.m -3

Více

III. Základy termodynamiky

III. Základy termodynamiky III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU

ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU 2. Konference Klimatizace a větrání 212 OS 1 Klimatizace a větrání STP 212 ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.cz

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

Výsledky úloh. Obsah KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku

Výsledky úloh. Obsah KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku ýsledky úloh C R, C R, κ 0, 0,088 0, 0,8 KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku 6 η 0,8 ( ){ { Obsah Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

Inženýrství chemicko-farmaceutických výrob

Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace 1 Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrační koláč Filtrační řeážka Filtrát Povrchová vs. hloubková filtrace

Více

TECHNICKÝ KATALOG GRUNDFOS. Série 100. Oběhová a cirkulační čerpadla 50 Hz 2.1

TECHNICKÝ KATALOG GRUNDFOS. Série 100. Oběhová a cirkulační čerpadla 50 Hz 2.1 TECNICKÝ KATALOG GRUNDFOS Série. Oběhová a cirkulační čeradla z Obsah Obecné informace strana Výkonový rozsah Výrobní rogram Tyové klíče 7 Použití 8 Otoné systémy 8 Systémy cirkulace telé (užitkové) vody

Více

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin.

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin. Tekutiny Dorava tekutin Filtrace Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka 1 Povrchová vs. hloubková filtrace

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Tepelná čerpadla. princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy

Tepelná čerpadla. princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy Tepelná čerpadla princip funkce topný faktor typy tepelných čerpadel hodnocení provozu tepelných čerpadel otopné soustavy Tepelná čerpadla zařízen zení k získz skávání využiteln itelné tepelné energie

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více