Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rozměr: px
Začít zobrazení ze stránky:

Download "Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě"

Transkript

1 Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá vodohospodářská frastruktura, která je důsledke poalé dyaky obovy sítí v uplyulých desetletích. Dožívající potrubí způsobuje árůst počtu provozích defektů a egatvě tí ovlvňuje efektvtu provozu sítí, přčež ctelěj se projevuje ekoocká ztráta př provozováí vodovodích potrubí ve srováí s potrubí kaalzačí. Poruchovost vodovodích sítí přáší provozovatel příé ekoocké ztráty v důsledku úků vody z potrubí, zatíco poruchovost kaalzačích sítí á větší egatví dopad a žvotí prostředí a zečšťuje podzeí vody. 2. DYNAMIKA OBNOVY VODOVODNÍCH SÍTÍ V zeích Evropské ue je stadarde pro odepsaé vodovodí potrubí průěrá hrace stáří cca 50 let, žší doporučeá hrace se uvádí apř. u echráěého potrubí ocelového, zatíco apř.teoretcká žvotost potrubí z tváré lty s vější vtří ochraou se předpokládá vyšší. Z tohoto předpokladu se odvíjí dyaka obovy vodovodích sítí, která čí ve vyspělých státech,5 2 % ročě, tj. ročě se oboví v závslost a aterálové skladbě provozovaého potrubí as,5 až 2 % z celkové délky provozovaého potrubí. V aší republce je dyaka obovy sítí podstatě žší s ohlede a oezeé fačí prostředky vlastíků frastruktury. Pro ázorost: ve VODÁRENSKÉ AKCIOVÉ SPOLEČNOSTI, a.s. (dále VAS, a.s.) je dyaka obovy vodovodích sítí v uplyulých letech a úrov cca 0,3 % ročě. S ohlede a stáří provozovaého potrubí eí tato hodota optálí. VAS, a.s. - stáří provozovaé vodovodí sítě (k): délka provozovaé sítě ( k ) DO R DO R. 920 DO R. 930 DO R. 940 DO R. 950 DO R. 960 DO R. 970 DO R. 980 DO R. 990 NAD R.990 VAS, a.s. celke: Jak je patré z grafckého přehledu, pochází ejstarší dosud provozovaé vodovodí potrubí z období před roke 90, z hledska podílového zastoupeí se jedá o ecelé % z celkové délky vodovodí sítě provozovaé VAS, a.s., ale ve stáří ad 50 let je provozováo jž téěř % z celkové délky potrubí a a v další výhledu eí stuace z hledska stáří potrubí přízvá. Je esporé, že dyaka obovy by se ěla zvýšt. Ze stray vlastíků však elze očekávat okažtý přílv vestčích prostředků do rekostrukcí vodovodích sítí. Je proto zapotřebí zefektvt přístup k pláováí rekostrukcí a ávrh je uto provádět eje s ohlede a stáří potrubí, ale s přhlédutí k ostatí vlvů, které spolupůsobí v procesu dstrbuce vody. Cíle usí být zajštěí co ejvyšší spolehlvost sítě.

2 3. SPOLEHLIVOST VODOVODNÍ SÍTĚ Spolehlvost sítě je defováa jako pravděpodobost, že síť bude fugovat běhe ávrhového období v souladu s krter zadaý projekte. Spolehlvost sítě ůže být docílea provozí zásahy (ta bývají účá zejéa u ových staveb) ebo optálí způsobe rekostrukce. Ideálě by spolehlvost ěla dosahovat 00 %, ovše v prax je to vždy éě. Před volbou opatřeí sěřujícího ke zlepšeí spolehlvost sítě je uté provést optálí rozbor ákladů a příosů (tzv. cost-beeft aalyss). Spolehlvost celého systéu zásobováí vodou je schopost plt zadaou fukc a je závslá a spolehlvost jeho jedotlvých prvků. Spolehlvost R -tého prvku systéu S závsí a ožě čtelů Ω, tedy R = f ( Ω ) Možu čtelů Ω ůžee rozdělt do ěkolka podož (jedá se zejéa o čtele projektové, techologcké, realzačí, provozí, ). Čtelé ívají áhodé chováí. Prvke systéu S rozuíe v převážé většě vodovodí úsek ebo výpočtový uzel sítě. Vlastost prvku jsou charakterzováy paraetry daý (apř. topologe sítě, průěry potrubí, drsost a délka potrubí, odběry vody v uzlech, ) a paraetry odvozeý (tj. staoveý ateatcký prostředky z paraetrů daých apř. ztrátové výšky, rychlost prouděí, rozděleí průtoků v systéu). Spolehlvost vodovodí sítě lze posuzovat z růzých aspektů. Pro provozovatele je důležté, že vhodě provedeou rekostrukcí řadů dojde ke sížeí poruchovost (zajíají ho ekoocké příosy projevující se sížeí četost áhradího zásobeí, sížeí ákladů a opravy defektího potrubí, a údržbu potrubí př odstraňováí starých sedetů apod.). Z pohledu koečého spotřebtele však ejsou ekoocké příosy tak vdtelé, zajíavější je pro užvatele apř.zvýšeí kofortu dodávky vody, zejéa zajštěí kotuálí dodávky a v ěkterých lokaltách také zlepšeí tlakových poěrů v sít. Z hledska provozovatele spotřebtele by vždy ělo dojít po realzac rekostrukce řadů ke zvýšeí spolehlvost systéu. Př staoveí dílčích spolehlvostí prvků sítě a celkové spolehlvost systéu se ejčastěj vychází z požadavků spotřebtele a dodržeí orou předepsaého tlaku vody v jedotlvých úsecích sítě. Spolehlvost -tého spotřebtelského uzlu je poto charakterzováa jako pravděpodobost, že tlak P v uzlu je vyšší ebo rove deterstcky daé hodotě tlaku,tj. předepsaéu tlaku P * v totéž uzlu. V čase, kdy je tlak P * P (t) ozače P = P (t) t T Za předpokladu, že tato pravděpodobost je sledováa v lbovolé okažku, lze j terpretovat jako součtel pohotovost K p (stručě pohotovost). Tlak P * je deterstcká zadaá velča, tlak P je áhodá velča. Pohotovost K p -tého uzlu je poto určea vztahe K p = P ax P* f ( P ) dp Př stochastcké odelováí zaeá P ax - odhad ax.hodoty tlaku P získaý z výběrového souboru { } P vypočítaých tlaků, P - odhad álí hodoty tlaku P f(p ) - hustota pravděpodobost tlaku P.

3 Pro staoveí dílčích spolehlvostí prvků sítě se využívá ateatckých hydraulckých odelů. Suluje se chováí sítě př vyřazeí jedotlvého prvku z provozu (tj. úseku s předpokládaou poruchou), v toto případě pak přebírají fukc vyřazeého prvku ostatí okolí prvky a důsledke je zěa tlakových a průtokových poěrů v sít. Počet posuzovaých stavů odpovídá počtu úseků sítě. Pro každý takto defovaý stav (vyřazeý úsek) se provede hydraulcká aalýza, staoví se tlakové poěry v jedotlvých uzlech a specfkuje se počet uzlů, u kterých došlo v důsledku vyřazeí úseků k esplěí krtera předepsaého tlaku P *. Koplkovaější je staoveí celkové spolehlvost sítě. Spolehlvost sítě sestávající z daého počtu úseků ebo uzlů elze chápat jako souč spolehlvostí jedotlvých prvků systéu, tak jak je tou ve většě jých techckých dscplí, protože každý prvek á v systéu jou výzaovou váhu λ. Staoveí výzaové váhy prvku v systéu lze provádět z růzých hledsek, apř. u úseků ůžee přřazovat výzaovou váhu λ podle délky úseku apod. Obecě platí, že staovíe-l v každé j-té posuzovaé pseudoáhodé dskrétí stavu systéu spolehlvost všech jeho prvků, odvodíe z prvků sítě prvků espolehlvých. Je-l posuzovaý prvke úsek, pak celková spolehlvost sítě pro j-tý stav vychází ze vztahu u - u u R j = = - = - δ j u u kde u u - součet výzaově ohodoceých všech úseků sítě - součet výzaově ohodoceých espolehlvých úseků sítě δ j - tezta espolehlvost sítě Poz.:-obdobě lze teto vztah aplkovat a jé posuzovaé prvky systéu, apř. uzly. V prax se ale často využívá pro ověřeí výhodost rekostrukce vodovodí sítě zjedodušeé staoveí celkové spolehlvost sítě, př které se celková spolehlvost sítě R H vyčísluje jako poěr uzlů s dosažeý předepsaý tlake P * (resp. s dosažeou předepsaou tlakovou výškou H) k celkovéu počtu uzlů v sít R H = = - X H kde - počet uzlů s předepsaý tlake - celkový počet uzlů v sít bez apájecích uzlů X H - počet uzlů s evyhovující tlake (pod hrací posuzovaé tlakové výšky H) 4. SPOLEHLIVOST SÍTĚ PO REKONSTRUKCI ŘADŮ V ROSICÍCH Výše uvedeé teoretcké pozatky byly aplkováy př výpočtu spolehlvost vodovodí sítě v Roscích (okres Bro-vekov), kde VAS,a.s. zásobuje vodou cca obyvatel. Stávající síť v cetru ěsta je převážě z hledska stáří evyhovující a usí být postupě rekostruováa. Prví část rekostrukce se uskutečla v letech 2000 až 200, pro druhou etapu byly ultkrterálí etodou doporučey k rekostrukc další

4 evyhovující úseky. Přehled o rozsahu rekostrukcí poskytuje ásledující topologcké schéa sítě: Celková spolehlvost vodovodí sítě Rosce pro předepsaé tlakové výšky H: R H = / = celková spolehlvost = - X H = počet uzlů s dosaž.požadov.tlake, = počet všech uzlů, X H = počet evyhov.uzlů posuzováy jsou tlakové výšky 25, 5, 0 a 0 vodího sloupce posuzovaá varata: X 25 X 5 X 0 X 0 R 25 R 5 R 0 R 0 var.-před rekostrukcí ,80 0,96,00,00 var.2-po reko. - k r ,82 0,96,00,00 var.3-je z vdj Tetčce ,64 0,9 0,93 0,99 var.4-je z vdj.rosce ,34 0,63 0,83 0,98 var.5-očí Q,oba vdj ,9 0,99,00,00 var.6-požár v uzlu ,83 0,96 0,99,00 var.8-po reko. - k r ,84 0,97,00,00 Lze kostatovat, že rekostrukcí ěkolka ulčích vodovodích řadů provedeou v letech se zvýšla spolehlvost sítě o 2 %. Po realzac další etapy doporučeých rekostrukcí řadů (zatí předpoklad do r.2005) dojde ke zvýšeí spolehlvost o další 2 %.

5 Pro přehledost je dokladováa v ásledující tabulce také část výsledků výpočtů posouzeí spolehlvost stávající vodovodí sítě v Roscích po vyřazeí ěkterých úseků: Spolehlvost vodovodí sítě Rosce po vyřazeí jedotlvých úseků (výběr): vyřaz.úsek poč.uzel ko.uzel X 25 X 5 X 0 X 0 R25 R5 R0 R ,34 0,64 0,83 0, ,82 0,96,00, ,82 0,96,00, ,6 0,74 0,78 0, ,82 0,96,00, ,82 0,96,00, ,63 0,85 0,97, ,79 0,96,00, ,8 0,96,00, ,8 0,95 0,99 0, ,8 0,96,00,00 Př toto posouzeí sítě je pro provozovatele důležté zjštěí, že v systéu se acházejí prvky, jejchž áhlé vyřazeí z provozu způsobí závažé poruchy v dodávce vody, dokoce hrozí vzk podtlaku v rozvodé sít. 5. ZÁVĚR Probleatce efektvost rekostrukcí vodovodích sítí by ěla být z důvodu ekoockých dopadů věováa větší pozorost. Poocí oderích výpočtových prostředků je ožo jž ve stadu přípravy účelě rozhodovat o ožostech rekostrukcí stávajících vodovodích systéů. Jedí z krterí odůvodňujících pláovaou rekostrukc je budoucí zvýšeí spolehlvost systéu. Je praxí ověřeé, že o utost rekostrukcí rozhoduje oho faktorů, apř. poruchovost, stáří potrubí, podíky uložeí potrubí, zatížeí potrubí zeou dopravou, vlv tlaku vody v potrubí apod. Výhledově by bylo vhodé využívat v procesu pláováí rekostrukcí také ještě ěkterých přesějších regresích etod výpočtů a apř. poocí faktorové aalýzy se sažt o co ejpodrobější kvatfkac podílu vlvů působících egatvě a kotutu dodávky vody ve vodovodích systéech. Lteratura: Votruba, Heřa: Spolehlvost vodohospodářských děl, Česká atce techcká, Praha 993 VUT FAST Bro: Vývoj etod odelováí a řízeí vodohospodářských a dopravích systéů výsledky výzkuu v r.2000, sborík předášek 2/2000 AČE, VUT FAST Bro: Optalzace žeýrských úloh ve stokováí, sborík předášek z ezárodího workshopu 04/2000 IWA, VUT FAST: Syste Approach to Leakage Cotrol ad Water Dstrbuto Systes Maageet, sborík předášek z ezárodí koferece- 05/200 Aquaet, SOVAK: Dstrbuce pté vody texty předášek vzdělávacích kurzů pro lektory, Praha 0/2002 Kotakt a autora příspěvku: Telefo: 05/ Fax: 05/ E-al: Adresa: Soběšcká 56, Bro

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Využití účetních dat pro finanční řízení

Využití účetních dat pro finanční řízení Využtí účetích dat pro fačí řízeí KAPITOLA 4 V rác této kaptoly se zaěříe a časovou hodotu peěz (a to včetě oceňováí ceých papírů), která se prolíá celý vestčí rozhodováí, dále a fačí aalýzu (vycházející

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:

Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz: Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám

Více

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC

ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC ANALÝZA NÁKLADOVÝCH A CENOVÝCH VZTAHŮ V ODPADOVÉM HOSPODÁŘSTVÍ ČR ANALYSIS OF COST AND PRICE RELATIONSHIPS IN WASTE MANAGEMENT OF THE CZECH REPUBLIC Jří HŘEBÍČEK, Mchal HEJČ, Jaa SOUKOPOVÁ ECO-Maagemet,

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Ventilátory řady NV. Polohy spirálních skříní při pohledu ze strany sání. levé pravé. Provedení pravé Provedení levé Provedení oběžného kola

Ventilátory řady NV. Polohy spirálních skříní při pohledu ze strany sání. levé pravé. Provedení pravé Provedení levé Provedení oběžného kola Vetilátory řady NV Vetilátory řady NV jsou radiálí ízkotlaké vetilátory. Skříě a oběžá kola jsou vyráběa z materiálu VC. Vetilátory jsou určey k odsáváí výparů agresivích kapali jako jsou kyseliy a louhy

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

1. Základy měření neelektrických veličin

1. Základy měření neelektrických veličin . Základ měřeí eelektrckých velč.. Měřcí řetězec Měřcí řetězec (měřcí soustava) je soubor měřcích čleů (jedotek) účelě uspořádaých tak, ab blo ožě splt požadovaý úkol měřeí, tj. získat formac o velkost

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

2. Vícekriteriální a cílové programování

2. Vícekriteriální a cílové programování 2. Vícerterálí a cílové programováí Úlohy vícerterálího programováí jsou úlohy, ve terých se a možě přípustých řešeí optmalzuje ěol salárích rterálích fucí. Moža přípustých řešeí je přtom defováa podobě

Více

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů

C V I Č E N Í 4 1. Představení firmy Splintex Czech 2. Vlastnosti skla a skloviny 3. Aditivita 4. Příklady výpočtů Techologe skla 00/03 C V I Č E N Í 4. Představeí rmy pltex Czech. Vlastost skla a sklovy 3. Adtvta 4. Příklady výpočtů Hospodářská akulta. Představeí rmy pltex Czech a.s. [,] Frma pltex Czech je součástí

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík

Vliv tváření za studena na pevnostní charakteristiky korozivzdorných ocelí Ing. Jan Mařík stavebí obzor 9 10/2014 125 Vliv tvářeí za studea a pevostí charakteristiky korozivzdorých ocelí Ig. Ja Mařík Ig. Michal Jadera, Ph.D. ČVUT v Praze Fakulta stavebí Čláek uvádí výsledky tahových zkoušek

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

6. Ventilátory řady FORT NVN

6. Ventilátory řady FORT NVN 0 FORT-LASTY s.r.o., Hulíská 2193/2a, 767 01 Kroměříž, CZ 6. Vetilátory řady FORT Vetilátory řady FORT jsou radiálí ízkotlaké vetilátory. Skříě a oběžá kola jsou vyráběa z materiálu VC. Vetilátory jsou

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

Úvod do korelační a regresní analýzy

Úvod do korelační a regresní analýzy Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou

Více

4. Napěťové poměry v distribuční soustavě

4. Napěťové poměry v distribuční soustavě Tesařová M. Průmyslová elektroeergetika, ZČU v Plzi 000 4. Napěťové poměry v distribučí soustavě 4.1 Napěťové poměry při bezporuchovém provozím stavu Charakteristickým zakem kvality dodávaé elektrické

Více

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů

Optimalizační přístup při plánování rekonstrukcí vodovodních řadů Optmalzační přístup př plánování rekonstrukcí vodovodních řadů Ladslav Tuhovčák*, Pavel Dvořák**, Jaroslav Raclavský*, Pavel Vščor*, Pavel Valkovč* * Ústav vodního hospodářství obcí, Fakulta stavební VUT

Více

Statistika - vícerozměrné metody

Statistika - vícerozměrné metody Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvaltěí výuky prostředctvím IC éma III..3 echcká měřeí v MS Excel Pracoví lst 5 Měřeí teploty. Ig. Jří Chobot VY_3_INOVACE_33_5 Aotace Iovace a zkvaltěí

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

I. Výpočet čisté současné hodnoty upravené

I. Výpočet čisté současné hodnoty upravené I. Výpočet čisté současé hodoty upraveé Příklad 1 Projekt a výrobu laserových lamp pro dermatologii vyžaduje ivestici 4,2 mil. Kč. Předpokládají se rovoměré peěží příjmy po zdaěí ve výši 1,2 mil. Kč ročě

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Pojem času ve finančním rozhodování podniku

Pojem času ve finančním rozhodování podniku Pojem času ve fiačím rozhodováí podiku 1.1. Výzam faktoru času a základí metody jeho vyjádřeí Fiačí rozhodováí podiku je ovlivěo časem. Peěží prostředky získaé des mají větší hodotu ež tytéž peíze získaé

Více

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č.

T e c h n i c k á z p r á v a. Pokyn pro vyhodnocení nejistoty měření výsledků kvantitativních zkoušek. Technická zpráva č. Evropská federace árodích asocací měřcích, zkušebích a aalytckých laboratoří Techcká zpráva č. /006 Srpe 006 Poky pro vyhodoceí ejstoty měřeí výsledků kvattatvích zkoušek T e c h c k á z p r á v a EUROLAB

Více

INŽENÝRSKÁ GEODÉZIE I

INŽENÝRSKÁ GEODÉZIE I VYSOKÉ UČENÍ TECHNICKÉ V RNĚ FKULT STVENÍ OTKR ŠVÁENSKÝ LEXEJ VITUL JIŘÍ UREŠ INŽENÝRSKÁ GEODÉZIE I GE6 MODUL 0 ZÁKLDY INŽENÝRSKÉ GEODÉZIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRMY S KOMINOVNOU FORMOU STUDI

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy

UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ

Více

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)

Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Kvatová a statistická fyzika (Termodyamika a statistická fyzika) Boltzmaovo - Gibbsovo rozděleí - ilustračí příklad Pro ilustraci odvozeí rozděleí eergií v kaoickém asámblu uvažujme ásledující příklad.

Více

ÚVOD DO PRAKTICKÉ FYZIKY I

ÚVOD DO PRAKTICKÉ FYZIKY I JIŘÍ ENGLICH ÚVOD DO PRAKTICKÉ FYZIKY I ZPRACOVÁNÍ VÝSLEDKŮ MĚŘENÍ Jede z epermetů, které změly vývoj fyzky v mulém století. V roce 9 prof. H. Kamerlgh Oes ve své laboratoř v Leydeu měřl teplotí závslost

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Srovnání kapitálového požadavku na kreditní riziko dle NBCA s ekonomickým kapitálem dle CreditMetrics

Srovnání kapitálového požadavku na kreditní riziko dle NBCA s ekonomickým kapitálem dle CreditMetrics Srováí kaptálového požadavku a kredtí rzko dle NBCA s ekoomckým kaptálem dle CredtMetrcs Josef Novotý 1 Abstrakt Příspěvek je věová popsu a aplkac dvou základích metod, které určují kaptálový požadavek

Více

Odůvodnění. Obecná část

Odůvodnění. Obecná část Odůvoděí k ávrhu změy vyhlášky č. 502/2005 Sb., kterou se staoví způsob vykazováí možství elektřy př společém spalováí bomasy a eobovtelého zdroje Obecá část Zhodoceí platého právího stavu Podpora výroby

Více

2. TEORIE PRAVDĚPODOBNOSTI

2. TEORIE PRAVDĚPODOBNOSTI . TEORIE PRAVDĚPODOBNOSTI V prax se můžeme setat s dvojím typem procesů. Jeda jsou to procesy determstcé, u terých platí, že př dodržeí orétích vstupích podmíe obdržíme přesý, předem zámý výslede (te můžeme

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu

1. Definice elektrického pohonu 1.1 Specifikace pohonu podle typu poháněného pracovního stroje 1.1.1 Rychlost pracovního mechanismu 1. Defiice elektrického pohou Pod pojmem elektrický poho rozumíme soubor elektromechaických vazeb a vztahů mezi pracovím mechaismem a elektromechaickou soustavou. Mezi základí tři části elektrického pohou

Více

Testy statistických hypotéz

Testy statistických hypotéz Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Statistická analýza dat

Statistická analýza dat INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Statstcká aalýza dat Učebí texty k semář Autor: Prof. RNDr. Mla Melou, DrSc. Datum: 5.. 011 Cetrum pro rozvoj výzkumu pokročlých řídcích a sezorckých techologí CZ.1.07/.3.00/09.0031

Více

Jednoduchá lineární regrese

Jednoduchá lineární regrese Jedoduchá leárí regrese Motvace: Cíl regresí aalýz - popsat závslost hodot velč Y a hodotách velč X. Nutost vřešeí dvou problémů: a) jaký tp fukce se použje k popsu daé závslost; b) jak se staoví kokrétí

Více

DISTRIBUČNÍ ÚLOHY (Speciální úlohy LP)

DISTRIBUČNÍ ÚLOHY (Speciální úlohy LP) DISTRIBUČNÍ ÚLOHY (Specálí úlohy L) Forulace dstrbučí (dopraví) úlohy: Je dáo dodavatelů se záý počte edotek určtého produktu a ( =,,, ) a spotřebtelů, kteří požaduí teto produkt v ožství b edotek ( =,,,

Více

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík

UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový

Více

Metody odhadu poptávky a nabídky v podmínkách nerovnovážného modelu

Metody odhadu poptávky a nabídky v podmínkách nerovnovážného modelu 4. eziárodí koferece Řízeí a odelováí fiačích rizik Osrava VŠB-TU Osrava, Ekooická fakula, kaedra Fiací.-. září 8 Meody odhadu popávky a abídky v podíkách erovovážého odelu Pavla Vodová Absrak Cíle ohoo

Více

DISTRIBUČNÍ ÚLOHY. Cílem pokrývacího problému je vybrat firmy tak, aby byly co nejlevněji pokryty všechny úkoly.

DISTRIBUČNÍ ÚLOHY. Cílem pokrývacího problému je vybrat firmy tak, aby byly co nejlevněji pokryty všechny úkoly. Distribučí úlohy DISTRIBUČNÍ ÚLOHY KONTEJNEROVÝ DOPRAVNÍ PROBLÉM, ROZŠÍŘENÁ ÚLOHA BATOHU (BIN PACKING PROBLEM), ÚLOHA OPTIMÁLNÍHO ROZMÍSTĚNÍ ZAŘÍZENÍ, ÚLOHA O POKRYTÍ. POKRÝVACÍ A DĚLÍCÍ PROBLÉM (SET COVERING

Více

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA PODNIKATELSKÁ ÚSTAV FINANCÍ FACULTY OF BUSINESS AND MANAGEMENT INSTITUTE OF FINANCES APLIKACE REGRESNÍ ANALÝZY NA VÝPOČET BODU ZVRATU

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

IG: Hlavní oblasti IG: stavebnictví - pozemní - doprava (dálnice, železnice, keré. strojírenstv

IG: Hlavní oblasti IG: stavebnictví - pozemní - doprava (dálnice, železnice, keré. strojírenstv Předět t Ižeýrsk eýrská geodéze Ižeýrská Geodéze vešker keré geodetcké práce souvsející s výstavbou a provoze žeýrských staveb a zaříze zeí Předět Ižeýrsk eýrská geodéze Hlaví oblast IG: stavebctví - pozeí

Více

AquaSoftener. Návod k obsluze. Úpravny na změkčení vody AquaSoftener 170, 350 a 440

AquaSoftener. Návod k obsluze. Úpravny na změkčení vody AquaSoftener 170, 350 a 440 AquaSofteer Návod k obsluze Úpravy a změkčeí vody AquaSofteer 170, 350 a 440, s.r.o. Podbabská 81/17, 160 00 Praha 6, Czech Republic www.eucl.cz ifo@eucl.cz Uživatelská příručka Obsah Před zahájeím používáí

Více

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

VYHODNOCENÍ LABORATORNÍHO MĚŘENÍ DEFORMACÍ VLNOPLOCHY S UŽITÍM MATLABU

VYHODNOCENÍ LABORATORNÍHO MĚŘENÍ DEFORMACÍ VLNOPLOCHY S UŽITÍM MATLABU VYHODNOCENÍ LABORATORNÍHO MĚŘENÍ DEFORMACÍ VLNOPLOCHY S UŽITÍM MATLABU J.Novák P.Novák A.Mikš katedra zik Fakulta stavebí ČVUT v Praze Abstrakt Čláek se zabývá použití sstéu MATLAB pro počítačové vhodocováí

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU

VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU 6. KONFERENCE PROJEKTOVÁNÍ POZEMNÍCH KOMUNIKACÍ Praha, 19.5.2015 VÝVOJ NÁSTROJE PRO POSUZOVÁNÍ RECYKLAČNÍCH TECHNOLOGIÍ ASFALTOVÝCH VOZOVEK S DŮRAZEM NA UHLÍKOVOU STOPU Václav Sížk Fakulta stavbí ČVUT

Více

Dvourozměrná tabulka rozdělení četností

Dvourozměrná tabulka rozdělení četností ANALÝZA ZÁVILOTÍ - zouáí závlot dvou evet více poěých, ěřeí íl této závlot, atd - cíle je hlubší vutí do podtat ledovaých jevů a poceů, přblížeí tzv příčý ouvlote Dvouozěá tabula ozděleí četotí - je eleetáí

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ

PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ PRAVIDLA PROVOZOVÁNÍ DISTRIBUČNÍCH SOUSTAV PŘÍLOHA 2 METODIKA URČOVÁNÍ PLYNULOSTI DISTRIBUCE ELEKTŘINY A SPOLEHLIVOSTI PRVKŮ DISTRIBUČNÍCH SÍTÍ Zpracovatel: PROVOZOVATELÉ DISTRIBUČNÍCH SOUSTAV prosiec

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby. V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

BIVŠ. Pravděpodobnost a statistika

BIVŠ. Pravděpodobnost a statistika BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta B) Přijímací řízeí pro akademický rok 24/5 a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata B) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BNĚ AKULTA STAVEBNÍ ING. JIŘÍ KYTÝ, CSc. ING. ZBYNĚK KEŠNE, CSc. ING. OSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ ECHANIKY ODUL BD0-O SILOVÉ SOUSTAVY STUDIJNÍ OPOY PO STUDIJNÍ

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

TERMOMECHANIKA 18. Tepelné výměníky

TERMOMECHANIKA 18. Tepelné výměníky FSI VU v Brě, Eergetký ústav Odbor termomehaky a tehky prostředí Prof. Ig. Mla Pavelek, S. EMOMEANIKA 8. epelé výměíky OSNOVA 8. KAPIOLY ypy výměíků tepla Základí problémy výměíků tepla Prostup tepla Středí

Více

APLIKOVANÁ STATISTIKA

APLIKOVANÁ STATISTIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA MANAGEMENTU A EKONOMIKY VE ZLÍNĚ APLIKOVANÁ STATISTIKA FRANTIŠEK PAVELKA PETR KLÍMEK ZLÍN 000 Recezoval: Haa Lošťáková Fratšek Pavelka, Petr Klímek, 000 ISBN 80 4

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Jiří Fořt, Martin Pittermann ZČU v Plzni - Katedra elektromechaniky a výkonové elektroniky

Jiří Fořt, Martin Pittermann ZČU v Plzni - Katedra elektromechaniky a výkonové elektroniky SIMULACE REGULAČNÍ SMYČKY PROUDU SPÍNANÉHO RELUKTANČNÍHO MOTORU V PROSTŘEDÍ MATLAB Jří Fořt Mart Pttera ZČU v Plz - Katedra elektroehak a výkoové elektrok Aotae: Cíle příspěvku e popsat požadavk a regula

Více