(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "(1) Známe-li u vyšetřovaného zdroje závislost spektrální emisivity M λ"

Transkript

1 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tplotní zářní a Plankův vyzařovaí zákon Intnzita vyzařování (misivita) v daném místě na povrhu zdroj j dfinována jako podíl zářivého toku dφ, ktrý vyhází z lmntární plošky ds na povrhu zdroj v tomto místě, a plošky ds dφ ds W.m () onohromatiké vyzařování (spktrální hustota vyzařování, spktrální misivita) v lmntárním oboru vlnovýh délk (,+ ) s rovná podílu části připadá na vlnové délky zářní v tomto oboru, a šířky oboru d: d misivity, ktrá d () d Znám-li u vyštřovaného zdroj závislost spktrální misivity na vlnové dél, určím misivitu z vztahu d (3) Tělso zářní njn vysílá, al také můž pohlovat (absorbovat) zářní, ktré na něj dopadá. Každá látka zářní částčně odráží, částčně propouští a zbytk pohluj. Toto pohlné zářní s mění v těls hlavně v tplnou nrgii, někdy můž dojít k vyzářní pohlné nrgi, jako (luminisn). Při vyzařování tělso ztráí nrgii, proto musím záříímu tělsu nrgii dodávat. Njjdnodušším způsobm dodání nrgi j zahřívání. Jstliž soustavně nahrazujm vyzařovanou nrgii nrgií tplnou, zářní tělsa s s časm nmění toto tplné zářní má rovnovážný haraktr. Základní vličinou haraktrizujíí rovnovážné tplné zářní tělsa j tplota. Kirhhoffův zákon poměr intnzity vyzařování (misivity) k absorptani (pohltivosti) α závisí pouz na absolutní tplotě tělsa. Pro úhrnné zářní ho lz vyjádřit vztahm ( ) f T α, (4) ktrý říká, ž tnto podíl j funkí jdiné proměnné T a j tudíž nzávislý na vlastnosth tělsa (hmiké složní, povrhová úprava apod.).

2 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Tnto zákon platí i pro každou vlnovou délku zvlášť, tdy i pro monohromatiké vyzařování a monohromatikou absorptani α, s tím rozdílm, ž podíl α závisí též na vlnové dél vybrané z lkového zářní. Kirhhoffův zákon pro monohromatiké zářní má proto tvar F( T, ) α, (5) kd F značí funki dvou proměnnýh T a a kd a α jsou spktrální misivita a spktrální absorptan pro zářní vlnové délky. Kirhhoffův zákon vyjadřuj vlmi důlžitou skutčnost, ž každá látka pohluj njsilněji zářní těh vlnovýh délk, ktré njsilněji vyzařuj. (a) (b) () Obr.. Dmonstra vztahu mzi misivitou a pohltivostí. Bílá kramiká dska s črným křížm uprostřd (a) v tmné místnosti zahřátá na C ví mituj začrněná část, (b) vyhladlá dska za pokojové tploty, () zahřátá dska na světl. Zavdm si pojm absolutně (dokonal) črného tělsa, ktré (z dfini) pohluj vškré zářní dopadajíí na jho povrh nzávisl na vlnové dél a pro ktré j tudíž absorptan α α a spktrální absorptan α α (pro všhna ) Jako absolutně črné tělso s hová otvor dutiny s črně zabarvnými matnými stěnami. Zářní vstupujíí do dutiny s opakovanými odrazy praktiky úplně pohluj a zářní vystupujíí z otvoru má potom vlastnosti rovnovážného zářní vysílaného absolutně črným tělsm s tplotou rovnajíí s tplotě stěn dutiny. Běžně pozorujm takový jv u otvřnýh okn, dívám-li s na ně z uli. J-li vlikost okna malá proti rozměrům místnosti, pak s opakovaným odrazm i na dosti dobř odrážjííh stěnáh místnosti z vlké části pohltí zářivý tok vstupujíí do místnosti. Z okna vystupuj jn malá část vstupujíího toku zářní, takž okno s nám zvnčí jví jako tmavá až črná ploha bz ohldu na barvu stěn místnosti. ají-li stěny dutiny tplotu T, září vzhldm k Kirhhoffově zákonu otvor dutiny s njvětší intnzitou, jaká j při tplotě T možná ( α ) a zářní vystupujíí otvorm z dutiny j proto praktiky stjné jako zářní absolutně črného tělsa.

3 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa T Obr.. Raliza absolutně črného tělsa (otvor dutiny zahřáté na tplotu T). Označím-li misivitu absolutně črného tělsa, dostávám Kirhhoffův zákon v tvaru ( ) f T (6) (nboť z dfini α α ) tj. misivita absolutně črného tělsa závisí pouz na jho absolutní tplotě. Pro monohromatiké zářní absolutně črného tělsa má Kirhhoffův zákon tvar ( ) F T, (7) Urční nznámýh funkí f(t) a F(T, ) bylo přdmětm intnzivního xprimntálního a tortikého bádání v druhé polovině 9. stoltí. Stfan-Boltzmannův zákon (pro misivitu absolutně črného tělsa) 4 σt, (8) kd σ 5, W.m -.K -4 j tzv. Stfan-Boltzmannova konstanta. Tortiky ho odvodil Boltzmann a xprimntálně potvrdil Stfan. Stfan-Boltzmannův zákon nřší problém zářní črného tělsa úplně. K tomu j třba jště určit nznámou funki F(T, ), ktrá říká, ž spktrální misivita črného tělsa j funkí dvou proměnnýh: absolutní tploty T a vlnové délky. Na základě trmodynamikýh úvah s podařilo Winovi zjistit, ž hldaná funk má tvar ϕ 5 ( T ), (9) kd ϕ j funk pouz jdiné proměnné součinu T. I tnto núplný výsldk vdl k řšní otázky, ktrou vlnovou délku vyzařuj črné tělso při dané tplotě njsilněji, tj. ktré vlnové 3

4 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa dél v spojitém spktru črného tělsa přísluší njvyšší spktrální misivita. To j dáno podmínkou, () ktrá vd na rovnii 5 ϕ 5 Po úpravě dostávám ( T ) + ϕ ( T ). T 6 ( T ) 5ϕ ( ). () T. ϕ T, () kd ϕ značí drivai funk ϕ podl. I když nznám funki ϕ, můžm určit vlnovou délku max, ktré přísluší maximální spktrální misivita, přdpokládám-li, ž znám alspoň jdn rálný kořn posldní rovni pro součin T. Označím-li tnto kořn b, bud maxt b, (3) kd b, m.k (tato hodnota konstanty b vyhází výpočtm z Plankova zákona viz níž). Odvozná rovni vyjadřuj tzv. Winův posunovaí zákon, nboť z ní plyn, ž maximum spktrální misivity s s rostouí absolutní tplotou posouvá k kratším vlnovým délkám. Tnto zákon j v souladu s známou zkušností, ž tělsa vyzařují při zvyšování tploty njprv jn dlouhovlnné tplné zářní, ktré přhází asi při 55 C do tmavorudé barvy. S stoupajíí tplotou přhází barva žhavého tělsa od črvné k žluté, ktrá s stává stál běljší, až s barva světla při několika tisííh stupňů jn málo liší od barvy bílého slunčního světla, v jhož spktru j njsilněji zastoupna žlutozlná barva s délkou vlny max,5 µm. 7 6 tplota (K) max (nm) Obr. 3. Winův posunovaí zákon. 4

5 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa tplota (K) zdroj max oblast spktra 3 člověk 9,3 µm střdní IČ 5 vařič 5,8 µm střdní IČ vlákno žárovky,45 µm blízká IČ 53 Slun 55 nm zlnožlutá Tab.. Tabulka ilustrujíí Winův posunovaí zákon. Win s rovněž pokoušl odvodit tvar funk ϕ(t). Vyházj z klasiké statistiky odvodil závislost zvanou Winův zákon ϕ T ( T ), kd a jsou konstanty. (4) Tato závislost j v shodě s xprimntálně určným rozložním nrgi v spktru pokud součin T nabývá malýh hodnot, tdy jn pro kratší vlnové délky, tj. pro viditlný a ultrafialový obor spktra vyzařovaný črným tělsm při dostatčně nízkýh tplotáh. V dlouhovlnné části spktra s průběh monohromatikého vyzařování absolutně črného tělsa podařilo uspokojivě vyjádřit funkí ( T ) T ϕ 3 (kd 3 j konstanta), (5) ktrou tortiky odvodili Rayligh a Jans (tzv. Rayligh-Jansův zákon). Tato závislost al vd k tzv. ultrafialové katastrofě, nboť s snižujíí s vlnovou délkou vd k nomznému nárůstu intnzity vyzařování, nboť T 3. (6) 4 Problém vyřšil Plank, ktrý ukázal, ž Winův i Rayligh-Jansův zákon jdou spojit do jdiné formul přijmm-li pro funki ϕ(t) tvar (Plankův zákon) ϕ ( T ). (7) T Pro malé hodnoty součinu T bud T, a proto můžm jdničku v jmnovatli zandbat, čímž dojdm k výrazu pro Winův zákon. Naopak pro vlké hodnoty součinu T s můžm v rozvoji omzit jn na první dva člny a tdy T + T 5

6 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa + T ( T) ϕ T Stačí položit 3 /, abyhom došli k Rayligh-Jansovu zákonu. Tak dospěl Plank k výrazu, ktrý dobř vyhovoval v lém oboru vlnovýh délk a pro všhny tploty. Avšak bylo vlmi obtížné zdůvodnit ho tortiky. odl kmitajíí harmoniké osilátory různýh frkvní každý osilátor září a naopak každý můž absorbovat dopadajíí zářní (zvláště zářní jhož frkvn j v rzonani s vlastní frkvní osilátoru) takový osilátor má dva platné stupně volnosti určné potniální a kintikou nrgií podl kvipartičního torému na každý připadá střdní nrgi střdní hodnota nrgi všh osilátorů by podl klasiké statistiky měla být, takž w. Tnto výsldk však vd k Rayligh-Jansovu zákonu, ktrý nvyhovuj v lém oboru tplot a pro všhny vlnové délky. Plank vyslovil hypotézu, ž mis a absorp zářivé nrgi s můž dít pouz po listvýh násobíh kvanta, ε, kd ν j vlastní frkvn osilátoru a h j tzv. účinkové kvantum (Plankova konstanta), h 6, Js. Nplatí tdy klasiký přdpoklad, ž střdní nrgi všh zářičů jsou stjné a rovné součinu. V skutčnosti střdní nrgi zářičů závisí na jjih frkvni podl vztahu plyn Plankovy kvantové hypotézy (odvozní viz níž). Položím-li ν, kd j ryhlost světla v vakuu, dostávám pro konstanty a v Plankově zákoně vztahy h πh, k kd k j Boltzmannova konstanta (k, J.K - ). w, ktrý Plankův zákon spktrálního rozdělní monohromatikého vyzařování črného tělsa má tdy tvar π h. 5 h. (8) Zavdm-li namísto spktrální misivity spktrální misivitu ν, kd 6

7 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa dν (9) ν potom mzi a ν platí vztah ν ν rspktiv a Plankův zákon lz vyjádřit v tvaru ν () kd h π. 3 3 π h ν ω ν ω π () spktrální misivita (W.m -3 ) T5K TK T5K TK T5K T3K T35K T4K Winův posunovaí zákon vlnová délka (nm) Obr. 4. Plankův vyzařovaí zákon 7

8 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa Odvozní střdní hodnoty nrgi pro kvantový systém: ε lmntární kvantum nrgi, ε n nε, n,,, n nε n P C C pravděpodobnost obsazní n-té nrgtiké hladiny. Označm ε x, potom P n C a konstanta C j určna normalizační podmínkou P, n P n C x C (součt gomtriké řady s kvointm -x ) a tdy C x. Střdní hodnotu nrgi lz potom vyjádřit jako w nε ε P Cε n. n n Už vím, ž x. Drivaí tohoto vztahu dostanm x, x n x x x ( ) a odtud x n. x ( ) Dosazním potom dostávám w x x ( ). ε x x ( ) ε npn Cε n ε Střdní hodnota nrgi v Plankově modlu diskrétníh nrgtikýh hladin j tdy dána vztahm w h. h V případě, ž «(tj. pro ε nrgtiké kontinuum) lz xponnilu rozvinout v řadu a omzím-li s pouz na první dva člny rozvoj ( + ) 8

9 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa dostanm klasiký výsldk, tj. w Odvozní Stfan-Boltzmannova zákona z Plankova zákona: x π k 4 π π h x 3 5 h 5h d h d h dx T nboť 3 4 x π dx a použili jsm substitui x 5 h x. Odtud získám vyjádřní pro Stfan-Boltzmannovu konstantu 5 4 π k 8 4 5,673. W. m. 3 σ K 5h Na počátku. stoltí byly konstanty σ, k, známy, proto s užitím tohoto vztahu byla získána první hodnota Plankovy konstanty h. Z Plankova zákona lz též odvodit Winův posunovaí zákon: Podmínka π h 5 h x x vd na rovnii 5 x, kd h x. k T max Řšní této rovni, ktré lz nalézt numriky nbo grafiky, dává kořn x 4,965 h 3 a tdy T. max, m. K 4,965. k Závěrčné poznámky: pro malá ν taková, ž kvantování nhraj roli, protož počt nrgtikýh hladin (nrgií) lžííh v intrvalu řádu j vlmi vlký, suma j dobř aproximovatlná intgraí přs nrgtiké kontinuum, platí klasiká Rayligh-Jansova formul. naopak pro taková ν, pro něž j 9

10 Učbní txt k přdnáš UFY Tplné zářní. Zářní absolutně črného tělsa končná vzdálnost mzi nrgtikými hladinami j klíčová; j-li např. 5, potom Boltzmannův faktor 5 5 njpravděpodobnější j obsazní njnižší nrgtiké hladiny a pravděpodobnost trmální xita j minimální, s rostouím ν klsá pravděpodobnost obsazní katastrofa., a tak j vyřšna ultrafialová Obně jsou kvantové fkty zandbatlné, j-li, kd ν j haraktristiká frkvn a haraktristiká nrgi systému. Při s kvantové fkty projvují a nlz j zandbat. spktrální misivita (W/m.µm) T5K TK T5K TK T5K T3K T35K T4K vlnová délka (µm) Obr. 5. Plankův vyzařovaí zákon (smilogaritmiký graf) Pyromtri praktiké využití zákonů platííh pro tplné zářní vysílané z povrhu měřného tělsa způsob bzkontaktního určování tploty ohřátýh objktů založný na měřní optikého zářní jimi vyzařovaného. Používá s pro měřní tplot v rozsahu 3 až 4 K. příslušný přístroj pyromtr (radiační tploměr)

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univrzita omáš Bati v Zlíně LABORAORNÍ CVIČENÍ Z FYZIKY II Názv úlohy: Voltampérová charaktristika polovodičové diody a žárovky Jméno: Ptr Luzar Skupina: I II/1 Datum měřní: 14.listopadu 7 Obor: Informační

Více

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami

2 e W/(m2 K) (2 e) = 0.74 0.85 0.2 1 (1 0.85)(1 0.2) = 0.193. Pro jednu emisivitu 0.85 a druhou 0.1 je koeficient daný emisivitami Tplo skrz okna pracovní poznámky Jana Hollana Přnos okny s skládá z přnosu zářním, vdním a prouděním. Zářivý přnos Zářivý výkon E plochy S j dl Stfanova-Boltzmannova vyzařovacího zákona kd j misivita plochy

Více

4. PRŮBĚH FUNKCE. = f(x) načrtnout.

4. PRŮBĚH FUNKCE. = f(x) načrtnout. Etrém funkc 4. PRŮBĚH FUNKCE Průvodc studim V matmatic, al i v fzic a tchnických oborch s často vsktn požadavk na sstrojní grafu funkc K nakrslní grafu funkc lz dns většinou použít vhodný matmatický softwar.

Více

Demonstrace skládání barev

Demonstrace skládání barev Vltrh nápadů učitlů fyziky I Dmonstrac skládání barv DENĚK NAVRÁTIL Přírodovědcká fakulta MU Brno Úvod Studnti střdních škol si často stěžují na nzáživnost nzajímavost a matmatickou obtížnost výuky fyziky.

Více

4.3.2 Vlastní a příměsové polovodiče

4.3.2 Vlastní a příměsové polovodiče 4.3.2 Vlastní a příměsové polovodič Přdpoklady: 4204, 4207, 4301 Pdagogická poznámka: Pokud budt postupovat normální rychlostí, skončít u ngativní vodivosti. Nní to žádný problém, pozitivní vodivost si

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

28. Základy kvantové fyziky

28. Základy kvantové fyziky 8. Základy kvantové fyziky Kvantová fyzika vysvětluj fyzikální principy mikrosvěta. Mgasvět svět plant a hvězd Makrosvět svět v našm měřítku, pozorovatlný našimi smysly bz jakéhokoli zprostřdkování Mikrosvět

Více

Zjednodušený výpočet tranzistorového zesilovače

Zjednodušený výpočet tranzistorového zesilovače Přsný výpočt tranzistorového zsilovač vychází z urční dvojbranových paramtrů tranzistoru a pokračuj sstavním matic obvodu a řšním této matic. Při použití vybraných rovnic z matmatických modlů pro programy

Více

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu

Měrná vnitřní práce tepelné turbíny při adiabatické expanzi v T-s diagramu - 1 - Tato Příloha 307 j součástí článku: ŠKORPÍK, Jří. Enrgtcké blanc lopatkových strojů, Transformační tchnolog, 2009-10. Brno: Jří Škorpík, [onln] pokračující zdroj, ISSN 1804-8293. Dostupné z http://www.transformacn-tchnolog.cz/nrgtckblanc-lopatkovych-stroju.html.

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘINA A MAGNETIZMUS VI. Odpor a lktrický proud Obsah 6 ODPOR A ELEKTRICKÝ PROUD 6.1 ELEKTRICKÝ PROUD 6.1.1 HUSTOTA PROUDU 3 6. OHMŮV ZÁKON 4 6.3 ELEKTRICKÁ ENERGIE A VÝKON 6 6.4 SHRNUTÍ 7 6.5 ŘEŠENÉ

Více

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná.

1. Určíme definiční obor funkce, její nulové body a intervaly, v nichž je funkce kladná nebo záporná. Matmatika I část II Graf funkc.. Graf funkc Výklad Chcm-li určit graf funkc můžm vužít přdchozích znalostí a určit vlastnosti funkc ktré shrnm do níž uvdných bodů. Můž s stát ž funkc něktrou z vlastností

Více

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění

Vliv prostupů tepla mezi byty na spravedlivost rozúčtování nákladů na vytápění Vlv prostupů tpla mz byty na spravdlvost rozúčtování nákladů na vytápění Anotac Fnanční částky úhrady za vytápění mz srovnatlným byty rozpočítané frmam používajícím poměrové ndkátory crtfkované podl norm

Více

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný,

GRAFEN. Zázračný. materiál. Žádný materiál na světě není tak lehký, pevný a propustný, VLASTNOSTI GRAFENU TLOUŠŤKA: Při tloušťc 0,34 nanomtru j grafn milionkrát tnčí nž list papíru. HMOTNOST: Grafn j xtrémně lhký. Kilomtr čtvrčný tohoto matriálu váží jn 757 gramů. PEVNOST: V směru vrstvy

Více

Vývoj energetického hospodářství města Plzně

Vývoj energetického hospodářství města Plzně Magistrát města Plzně Odbor správy infrastruktury Vývoj hospodářství města Plzně Črvn 211 Vývoj nrgtické Vývojj nrgttiické hospodářsttvíí městta Pllzně Obsah 1. Úvod... 2 2. Enrgtika v ČR... 2 3. Enrgtické...

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Fotografujeme módu. Móda. Móda v exteriéru v interiéru. černobíle. Jak na to

Fotografujeme módu. Móda. Móda v exteriéru v interiéru. černobíle. Jak na to Fotografujm módu Módní fotografi j všud kolm nás. Nalznm ji v katalozích, spolčnských magazínch i billboardch. Má mnohé skvělé autory, i když fotografování módy nní jdnoduché. Jd o jdno z njnáročnějších

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ

ZPRAVODAJSTVÍ. Newsletter ISSUE N 04 ÚNOR 2009 STRANA 2 & 4 NOVINKY Z BRUSELU STRANA 3 & 5 ČESKÉ PŘEDSEDNICTVÍ A ZLÍNSKÝ KRAJ SPECIÁLNĚ ZAMĚŘENO NA PŮLROK ČESKÉHO PŘEDSEDNICTVÍ ZPRAVODAJSTVÍ STRANA 2 & 4 NOVINKY Z BRUSELU Několik akcí dostalo Zlínský kraj v Bruslu na scénu! Na jdn týdn si události připravné zastoupním monopolizovali

Více

Vyvážené nastavení PI regulátorù

Vyvážené nastavení PI regulátorù Vyvážné nastavní PI rgulátorù doc. Ptr Klán, Ústav informatiky AV ÈR Praha a Univrzita Pardubic, Prof. Raymond Gorz, Cntr for Systms Enginring and Applid Mchanics, Univrsity d Louvain PI nbo PID rgulátory

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

Pivovarnictví v Krkonoších

Pivovarnictví v Krkonoších Pivovarnictví v Krkonoších 14. 8. Pivovarnictví v Krkonoších Brwing Br in th Krkonos Brauriwsn im Risngbirg Browarnictwo w Karkonoszach 1. Rudík 2. Žacléř 3. Jilmnic 4. Hostinné 5. Horní Maršov 6. Libč

Více

Bezkontaktní termografie

Bezkontaktní termografie Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření

Více

EKONOMETRIE 2. přednáška Modely chování výrobce I.

EKONOMETRIE 2. přednáška Modely chování výrobce I. EKONOMETRIE. přednáška Modely hování výrobe I. analýza raionálního hování firmy při rozhodování o objemu výroby, vstupů a nákladů při maimalizai zisku základní prinip při rozhodování výrobů Produkční funke

Více

SLOVO ÚVODEM Vážení členové TJ, vážení rodiče,

SLOVO ÚVODEM Vážení členové TJ, vážení rodiče, SLOVO ÚVODEM Vážní člnové TJ, vážní rodič, Szón 2014/2015 s blíží do svého konc. I v ltošním ročníku jsm s dočkli clé řdy zjímvých bojů situcí. Extrligoví mldší bojovli přvážnou část szóny o záchrnu. Po

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ Zadání: 1) Pomocí pyranometru SG420, Light metru LX-1102 a měřiče intenzity záření Mini-KLA změřte intenzitu záření a homogenitu rozložení záření na povrchu

Více

Rady mě sta Frýdku- Místku

Rady mě sta Frýdku- Místku ZPRAVODAJ Rady mě sta Frýdku- Místku Břzn 2008 č. 6 Ročník XVIII. Náklad 25 000 Zdarma do všch schránk Téma zpravodaj otvřné dopisy Odpověď na otvřný dopis opozic Vážná kolgyně, vážní kolgové, vlmi nás

Více

Postup tvorby studijní opory

Postup tvorby studijní opory Postup tvorby studijní opory RNDr. Jindřich Vaněk, Ph.D. Klíčová slova: Studijní opora, distanční studium, kurz, modl řízní vztahů dat, fáz tvorby kurzu, modl modulu Anotac: Při přípravě a vlastní tvorbě

Více

VEJCE MIKROVLNNOU TROUBU nepoužívejte na vaření

VEJCE MIKROVLNNOU TROUBU nepoužívejte na vaření UVNITŘ TROUBY A V JEJÍ BLÍZKOSTI NE- OHŘÍVEJTE, ANI NEPOUŽÍVEJTE HOŘLA- VÉ MATERIÁLY. Kouř můž způsobit nbzpčí požáru nbo výbuchu. DŮLEŽITÉ BEZPEČNOSTNÍ POKYNY PŘEČTĚTE SI PROSÍM POZORNĚ A USCHOVEJTE PRO

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

Řešení Navierových-Stokesových rovnic metodou

Řešení Navierových-Stokesových rovnic metodou Řšní Navrovýc-Stoksovýc rovnc mtodou končnýc prvků Lbor Črmák prosnc 2009 Označní: Abstrakt Txt obsauj klasckou a varační formulac 2D-úloy nstlačtlnéo nstaconárnío proudění, pops prostorové dskrtzac mtodou

Více

ZAKLADNÍ VLASTNOSTI SVĚTLA aneb O základních principech. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ZAKLADNÍ VLASTNOSTI SVĚTLA aneb O základních principech. PaedDr. Jozef Beňuška jbenuska@nextra.sk ZAKLADNÍ VLASTNOSTI SVĚTLA aneb O základních principech PaedDr. Jozef Beňuška jbenuska@nextra.sk Elektromagnetické vlnění s vlnovými délkami λ = (380 nm - 780 nm) - způsobuje v oku fyziologický vjem, jenž

Více

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics

Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Dyson s Coulomb gas on a circle and intermediate eigenvalue statistics Rainer Scharf, Félix M. Izrailev, 1990 rešerše: Pavla Cimrová, 28. 2. 2012 1 Náhodné matice Náhodné matice v současnosti nacházejí

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Durové stupnice s křížky

Durové stupnice s křížky Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ h is D ur & # # is h is A ur & # # # h is is is E ur &

Více

TEPLO, SVĚTLO, ENERGIE

TEPLO, SVĚTLO, ENERGIE INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 TEPLO, SVĚTLO, ENERGIE PETR NOVOTNÝ

Více

POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ.

POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ. POŽADAVEK NA SNIŽOVÁNÍ ODTOKOVÝCH KONCENTRACÍ FOSFORU JE V BOJI PROTI EUTROFIZACI TOKŮ I U MALÝCH ČOV AKTUÁLNÍ. Ing. Jan Follr, Martin Eyr, Vodárnská akciová spolčnost, a.s. OČEKÁVANÝ CÍLOVÝ STAV NORMY

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Naše anketa Jan Brunclík (68), důchodce, podnájemník Já barák nemám,

Naše anketa Jan Brunclík (68), důchodce, podnájemník Já barák nemám, SERVIS Dsatro pro vaš bzpčí O tom, jak s chovat v nbzpčí, na co dávat hlavně pozor a kd hldat pomoc, čtět na str. 3 a 5 Výzva do roku 2006 J tu opět nový rok. Rok, do ktrého všm z srdc přjm hodně štěstí

Více

Drozdovický rybník revitalizován

Drozdovický rybník revitalizován Ročník 14 Číslo 7 ZDARMA 31. črvnc 2013 Drozdovický rybník rvitalizován Foto: Archiv MMPv VáM SDìLUJE, ŽE ZLATNICTVí KALáBOVá + K V PROSTìJOVì NENí NAŠí POBOèKOU ANI OBCHODNíM PARTNEREM. Ing. Jana Jančková

Více

Historie bezdotykového měření teplot

Historie bezdotykového měření teplot Historie bezdotykového měření teplot Jana Kuklová, 3 70 2008/2009 FD ČVUT v Praze Ústav aplikované matematiky K611 Softwarové nástroje pro zpracování obrazu z termovizních měření Osnova prezentace Úvod

Více

Optika Emisní spektra různých zdrojů Mirek Kubera

Optika Emisní spektra různých zdrojů Mirek Kubera Výstup RVP: Klíčová slova: informace pro učitele Optika Mirek Kubera žák využívá poznatky o kvantování energie záření a mikročástic k řešení fyzikálních problémů optický hranol, spektrum, emisní spektrum,

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

AMW 469 www.whirlpool.com

AMW 469 www.whirlpool.com AMW 469 C S K R O D E.hirlpool.com 1 C MONTÁŽ SPOTŘEBIČE INSTALACE PŘI INSTALACI SPOTŘEBIČE s řiďt samostatnými přiložnými instalačními pokyny. PŘED PŘIPOJENÍM KONTROLUJTE, DA NAPĚTÍ na typovém štítku

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Vánoce se kvapem blíží V pátek 29. listopadu rozsvítíme vánoční strom!

Vánoce se kvapem blíží V pátek 29. listopadu rozsvítíme vánoční strom! Ročník 14 Číslo 11 ZDARMA 27. listopadu 2013 Vánoc s kvapm blíží V pátk 29. listopadu rozsvítím vánoční strom! Foto: Archiv MMPv 5 Katalog nmovitostí ralitní kanclář DACHI, s.r.o. Mgr. Mark Novotný řditl

Více

NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ

NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

Hanáci z blízkého i vzdáleného okolí míří do Prostějova!

Hanáci z blízkého i vzdáleného okolí míří do Prostějova! Ročník 14 Číslo 8 ZDARMA 28. srpna 2013 Hanáci z blízkého i vzdálného okolí míří do Prostějova! Foto: Archiv MMPv Proč do Lázní Slatinic? Za zdravou kůží do Slatinic Sirné minrální vody mají obcně dzinfkční,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

VNITŘNÍ ENERGIE, TEPLO A PRÁCE

VNITŘNÍ ENERGIE, TEPLO A PRÁCE VNITŘNÍ ENERGIE, TEPLO A PRÁCE 1. Vnitřní energie (U) Vnitřní energie je energie uložená v těleseh. Je těžké určit absolutní hodnotu. Pro většinu dějů to není nezbytné, protože ji nejsme shopni uvolnit

Více

Magazín ČAW číslo 3/2009. Dokonalé wellness centrum

Magazín ČAW číslo 3/2009. Dokonalé wellness centrum Čská Asociac Wllnss Magazín ČAW číslo 3/2009 Dokonalé wllnss cntrum s jménm Frištnský Zcla nové, modrní wllnss cntrum Frištnský wllnss klub v Brně - Líšňi s přdstavilo 27. srpna odborným zájmcům. Čská

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

TERMOGRAFIE A PRŮVZDUŠNOST LOP

TERMOGRAFIE A PRŮVZDUŠNOST LOP 1 TERMOGRAFIE A PRŮVZDUŠNOST LOP 5 5 národní konference LOP 20.3. 2012 Clarion Congress Hotel Praha **** národ Ing. Viktor ZWIENER, Ph.D. 2 prodej barevných obrázků 3 prodej barevných obrázků 4 laický

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m Mehaniké kmitání Periodiký pohyb - harakterizován pravidelným opakováním pohybového stavu tělesa ( kyvadlo, těleso na pružině, píst motoru, struna na kytaře, nohy běžíího člověka ) - nejkratší doba, za

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP NVEZTA PADBCE FAKLTA CHEMCKO-TECHNOLOGCKÁ Kadra fyzky ZÁKLADY FYZKY Pro obory DMML, TŘD a AD prznčního suda DFJP NDr. Jan Z a j í c, CSc., 005 3. ELEKTCKÝ POD 3. ZÁKLADNÍ POJMY Pod pojmm lkrcký proud chápm

Více

Ročník 14 Číslo 3 ZDARMA 27. března 2013. Den Země. Foto: Archiv Magistrátu města Prostějova

Ročník 14 Číslo 3 ZDARMA 27. března 2013. Den Země. Foto: Archiv Magistrátu města Prostějova Ročník 14 Číslo 3 ZDARMA 27. břzna 2013 Dn Změ Foto: Archiv Magistrátu města Prostějova PŘIJMEME KADEŘNICI JARNÍ NABÍDKA SALONU NAISY NAISY KOSMETICKÉ A KADEŘNICKÉ STUDIO KOSMETIKA kromě naší stálé nabídky

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

ekonomické a moderní systémy Vytápěcí a větrací jednotka s rekuperací tepla DUPLEX RDH s rekuperací tepla DUPLEX RB3 secventilátory a chlazením

ekonomické a moderní systémy Vytápěcí a větrací jednotka s rekuperací tepla DUPLEX RDH s rekuperací tepla DUPLEX RB3 secventilátory a chlazením konomké a modrní systémy TEPLOVZDUŠNÉ VYTÁPĚNÍ, VĚTRÁNÍ S REKUPERACÍ TEPLA nízkonrgtké rodnné a bytové domy nrgtky pasvní rodnné a bytové domy bazény rodnnýh domů Vytápěí a větraí jdnotka s rkupraí tpla

Více

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108

Více

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky

6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky 6. Vnitřní odpor zdroje, volt-ampérová charakteristika žárovky Úkoly měření: 1. Sestrojte obvod pro určení vnitřního odporu zdroje. 2. Určete elektromotorické napětí zdroje a hodnotu vnitřního odporu zdroje

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

Ročník 14 Číslo 1 ZDARMA 30. ledna 2013. S novým rokem nový kabát Radničních listů

Ročník 14 Číslo 1 ZDARMA 30. ledna 2013. S novým rokem nový kabát Radničních listů Ročník 14 Číslo 1 ZDARMA 30. ldna 2013 S novým rokm nový kabát Radničních listů Foto: Archiv Magistrátu města Prostějova j ZPRÁVY Z MĚSTA strany 3-9 Nominac na Cny města Prostějova Nová sazba poplatku

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

Rady mě sta Frýdku- Místku

Rady mě sta Frýdku- Místku ZPRAVODAJ Rady mě sta Frýdku- Místku č. 10 Ročník XVII. Náklad 25 000 Zdarma do všch schránk Vnkovní aquapark zahájil szonu Posldní květnový víknd bylo v městě o zábavu postaráno. Poprvé s otvřly brány

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

BMDACCOUNT Integrované řešení pro informační systém podniku

BMDACCOUNT Integrované řešení pro informační systém podniku [BUSINESS ] SOFTWARE Intgrované řšní pro informační systém podniku Clkové řšní pro daňové poradc a auditory Kompltní řšní pro účtnictví Od faktury po kompltní řšní ERP CRM s přidanou hodnotou PROJECT Clkové

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

ŠÍ Ů ČÍ č Ť č č č ň Í Í č č ň ň č Ť ň ť č Í č Ť č č Ť Í Í č ť Ť č č Ťč č Ě Ťč Ť ň č Ť ť Ť Ť Ť č Ť Ť č Ť Ť Ť č č Ť č č Ú č Ť Ď Ť ť č ň Ť Ť Í č č Ť Ď č č č č č ň Ť ň č Ť č Ť č Ý Ť ť ň č č č č č č ť Ť Ý č

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Ročník 14 Číslo 6 ZDARMA 26. června 2013. V botanické zahradě je v teplých dnech rušno. Foto: Archiv Magistrátu města Prostějova

Ročník 14 Číslo 6 ZDARMA 26. června 2013. V botanické zahradě je v teplých dnech rušno. Foto: Archiv Magistrátu města Prostějova Ročník 14 Číslo 6 ZDARMA 26. črvna 2013 V botanické zahradě j v tplých dnch rušno Foto: Archiv Magistrátu města Prostějova Vám sděluj, ž zlatnictví Kalábová + K v Prostějově nní naší pobočkou ani obchodním

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

BEZDOTYKOVÉ MĚŘENÍ TEPLOTY

BEZDOTYKOVÉ MĚŘENÍ TEPLOTY bezdotykového měření teploty Tento dokument je k disposici na internetu na adrese: http://www.vscht.cz/ufmt/kadleck.html ÚSTAV FYZIKY A MĚŘICÍ TECHNIKY VŠCHT PRAHA BEZDOTYKOVÉ MĚŘENÍ TEPLOTY Pohled do

Více

Pokusy s ultrafialovým a infračerveným zářením

Pokusy s ultrafialovým a infračerveným zářením Pokusy s ultrafialovým a infračerveným zářením ZDENĚK BOCHNÍČEK, JIŘÍ STRUMIENSKÝ Přírodovědecká fakulta MU, Brno Úvod Ultrafialové (UV) a infračervené (IR) záření jsou v elektromagnetickém spektru nejbližšími

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Rady mě sta Frýdku- Místku

Rady mě sta Frýdku- Místku ZPRAVODAJ Rady mě sta Frýdku- Místku Květn 2008 č. 9 Ročník XVIII. Náklad 25 000 Zdarma do všch schránk Město jdnalo s Bskydčanm. Zbytčně Přdstavitlé občanského sdružní Bskydčan soudní žalobou zablokovali

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více