4 Kriteriální matice a hodnocení variant

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4 Kriteriální matice a hodnocení variant"

Transkript

1 4 Kriteriální matice a hodnocení variant V teorii vícekriteriálního rozhodování pracujeme s kritérii, kterých je obecně k, a s variantami, kterých je obecně p. Hodnotu, které dosahuje varianta i pro j-té kritérium označíme symbolem y ij a budeme ji nazývat kriteriální hodnotou. Nabízí se uspořádat tyto hodnoty do do matice, kterou budeme nazývat kriteriální maticí. Řádky kriteriální matice jsou tvořeny jednotlivými variantami, sloupce kriteriální matice odpovídají jednotlivým kritériím. Obecně tedy kriteriální matice vypadá následovně: y y 2... y k y 2 y y 2k y p y p2... y pk Opět budeme pracovat s příkladem Upíra. Příklad Upír Již známe devět rozhodujících kritérií pro hodnocení obětí upírem:. Vzdálenost od česnekového pole (ČES) maximalizovat 2. Vzdálenost nejbližšího upíra (VUP) maximalizovat. Kvalita prostředí (KPR) maximalizovat 4. Vzdálenost od kostela (KOS) maximalizovat. Krevní skupina (KS) minimalizovat 6. Obranyschopnost (OS) minimalizovat 7. Finanční zázemí (FIN) maximalizovat 8. Vzdálenost od rakve (VOR) minimalizovat 9. Věk (VĚK) minimalizovat Pozn.: Jakým způsobem jsou jednotlivá kritéria hodnocena je uvedeno v předchozí kapitole. Předpokládejme, že jste si vybrali 0 potenciálních obětí, ale jen 6 postoupilo do užšího kola. V následující tabulce jsou shrnuta hodnocení všech obětí:

2 j kriter. ČES VUP KPR KOS KS OS FIN VOR VĚK jednot. m km body km znám. body tis.kč km roky typ kr. max max max max min min max min min Adéla Běla Cecilka Dana Evžen Františka Z takovéto tabulky není těžké sestavit kriteriální matici: S takovouto maticí se pak již velmi snadno pracuje. Důležité ovšem je, udržovat zároveň s kriteriální maticí informaci o tom, jakého typu jsou jednotlivá kritéria. 4. Převod kritérií na stejný typ Pro práci s kriteriální maticí je vhodné, když jsou všechna kritéria stejného typu (minimalizační nebo maximalizační). Převod kriterií na stejný typ není problém, neboť každé minimalizační kritérium lze velmi snadno převést na kritérium maximalizační. a) Stupnice je dána podstatou věci (např. známky ve škole) v takovém případě vezmeme maximální hodnotu, které může být dosaženo (ve škole známka ) a odečteme od ní kriteriální hodnotu. b) Stupnice dána není v takovém případě mezi variantami vyhledáme nejvyšší (nejhorší) hodnotu a od té odečteme hodnotu kriteriální. Tento krok můžeme prezentovat jako úsporu oproti nejhorší variantě. 2

3 V případě Upíra musíme tedy v původní kriteriální matici upravit hodnoty pro páté, šesté, osmé a deváté kritérium. Pro KS se jedná o známky, nejvyšší (nejhorší) hodnota může být známka, transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i nahradíme hodnotou y i. Pro OS je nejvyšší hodnotou jednička, transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i6 nahradíme hodnotou y i6. Pro VOR může být nejvyšší hodnotou desítka (0 km), transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i8 nahradíme hodnotou 0 y i8. Pro VĚK je nejvyšší hodnotou 0, transformace tedy bude vypadat tak, že původní kriteriální hodnotu y i9 nahradíme hodnotou 0 y i9. Upravená kriteriální matice tedy bude vypadat následovně: Dominované a nedominované varianty Varianta se nazývá nedominovanou, pokud k ní neexistuje žádná lepší varianta v tom smyslu, že by bylo možno některou hodnotu (či některé hodnoty) kritérií zlepšit, aniž by se hodnoty jiných kritérií zhoršily. Varianta se nazývá dominovanou, pokud k ní existuje taková varianta, která má všechny hodnoty kritérií alespoň stejně dobré a minimálně jednu hodnotu lepší. Variantu považujeme za optimální, pokud je jedinou nedominovanou variantou ve výběru. Pokud je nedominovaných variant více, vybereme z nich jednu, kterou považujeme za reprezentativní. Tuto variantu nazveme variantou kompromisní. Ukažme si termíny na příkladu Upíra.

4 Příklad Upír var./krit a a a a a a Z tabulky či kriteriální matice (max. kritéria) vidíme, že: varianta a je dominována variantami a a a 4 varianta a 6 je dominována variantami a, a 2 a a 4 varianta a je nedominovaná, neboť je v kritériu f nejlepší, neexistuje k ní tedy ve všech kritériích alespoň stejně dobrá varianta varianta a 2 je nedominovaná, neboť je v kritériu f 9 nejlepší, neexistuje k ní tedy ve všech kritériích alespoň stejně dobrá varianta varianta a 4 je nedominovaná, neboť je v kritériích f, f a f 7 nejlepší, neexistuje k ní tedy ve všech kritériích alespoň stejně dobrá varianta varianta a je nedominovaná, neboť je v kritériích f 4 a f 6 stejně dobrá jako a a a 2, ale a je lepší podle f, a 2 je lepší podle f 9 a a je lepší podle f 7 množina nedominovaných variant je tedy a, a 2, a, a 4 žádná z těchto variant není optimální a jakoukoliv z nich můžeme zvolit za kompromisní 4. Ideální a bazální varianta Ideální varianta je nejlepší varianta, které lze teoreticky nebo prakticky dosáhnout. relativní nejvyšší hodnota v kriteriální matici pro dané kritérium absolutní nejvyšší teoreticky možná hodnota 4

5 Pro příklad Upíra: kritérium f f 2 f f 4 f f 6 f 7 f 8 f 9 ideální hodnota typ hodnoty rel rel abs rel abs abs rel abs rel Bazální varianta je nejhorší varianta, které lze teoreticky nebo prakticky dosáhnout. relativní nejnižší hodnota v kriteriální matici pro dané kritérium absolutní nejnižší teoreticky možná hodnota Pro příklad Upíra: kritérium f f 2 f f 4 f f 6 f 7 f 8 f 9 bazální hodnota typ hodnoty rel rel abs rel abs abs rel abs rel Pozn.: Nejkratší vzdálenost od kostela, hradu nebo sídla jiného upíra může být 0 km. ideální varianta = (0, 6, 00,, 4,, 0, 0, 20) bazální varianta = (07, 0, 0, 0, 0, 0, 4, 0, 0) 4.4 Grafické zobrazení variant V podstatě existují dva způsoby zobrazení variant hvězdicový a polygonální. Máme-li k kritérií, nakreslíme si v obou případech hvězdu s k paprsky vepsanou do jednotkové kružnice. Z každého paprsku vytvoříme osu pro jedno kritérium, ve středu bude bazální hodnota kritéria a na kružnici bude pro příslušné kritérium ideální hodnota. Na každou osu pak vyneseme lineární měřítko. Variantu pak můžeme zobrazit hvězdicí nebo k-úhlelníkem. V případě polygonálního zobrazení bude ideální variantě odpovídat pravidelný k-úhelník, bazální variantě pak odpovídá střed kružnice. Při polygonálním zobrazení můžeme snadno a rychle určit dominované a nedominované varianty. Pokud celý k-úhelník zobrazující variantu a i leží uvnitř

6 k-úhelníku zobrazující variantu a j, pak varianta a j dominuje variantu a i a naopak varianta a i je dominována variantou a j. Pokud se k-úhelníky protínají, varianty jsou nedominované. 4. Normalizace kriteriální matice Pokud známe ideální a bazální varianty, můžeme snadno znormalizovat kriteriální matici. Všechny hodnoty v kriteriální matici pak budou z intervalu 6

7 < 0, >, ideální hodnota v kriteriální matici pak bude prezentována číslem jedna, bazální hodnotou nula. Důležitou vlastností této normalizované kriteriální matice je skutečnost, že je zcela nezávislá na jednotkách. Označme symbolem D j bazální (dolní) hodnotu pro kritérium j a symbolem H j ideální (horní) hodnotu pro kritérium j. Normalizovaná kriteriální matice (r ij ) vzniká transformací původní kriteriální matice (y ij ) podle vztahu: r ij = y ij D j H j D j. Příklad Upír Máme kriteriální matici pro maximalizační kritéria, přidáme si řádky s ideální a bazální variantou a podle výše uvedeného vztahu sestavíme normalizovanou kriteriální matici. Podle vztahu uvedeném v posledním řádku snadno sestavíme žádanou matici: var./krit a a a a a a H j D j H j D j r ij y i 07 4 y i2 6 y i 00 y i4 y i 4 y i6 y i7 4 6 y i8 0 y i9 20 R =

8 4.6 WSA metoda váženého součtu Při užití této metody pracujeme s váhami jednotlivých kritérií, které jsou buď dány, nebo které jsme již nějakým vhodným způsobem odhadli (metodou pořadí, bodovací metodou, metodou párového srovnávání, metodou kvantitativního párového srovnávání). Máme tedy dány váhy v = (v, v 2,..., v k ) pro k maximalizačních kritérií. Metoda váženého součtu pak maximalizuje vážený součet, tedy k j= v jr ij. Spočítáme proto hodnotu tohoto váženého součtu pro každou variantu a za kompromisní variantu vybereme tu, která bude mít vážený součet nejvyšší. Příklad Upír Použijeme váhy, které jsme dostali metodou párového srovnávání a kriteriální matici z předchozího kroku. v = (0, 0.7, 0.9, 0., 0.0, 0.9, 0.06, 0.7, 0.08) R = Vážený součet pro variantu a je = Podobně spočítáme vážený součet i pro zbývajících variant: var. WSA pořadí a a a a a a

7 Kardinální informace o kritériích (část 1)

7 Kardinální informace o kritériích (část 1) 7 Kardinální informace o kritériích (část 1) Předpokládejme stejná značení jako v předchozích cvičeních. Kardinální informací o kritériích se rozumí ohodnocení jejich důležitosti k pomocí váhového vektoru

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

5 Informace o aspiračních úrovních kritérií

5 Informace o aspiračních úrovních kritérií 5 Informace o aspiračních úrovních kritérií Aspirační úroveň kritérií je minimální (maximální) hodnota, které musí varianta pro dané maximalizační (minimalizační) kritérium dosáhnout, aby byla akceptovatelná.

Více

Vícekriteriální hodnocení variant VHV

Vícekriteriální hodnocení variant VHV Vícekriteriální hodnocení variant VHV V lineárním programování jsme se naučili hledat optimální řešení pro úlohy s jedním (maximalizačním nebo minimalizačním) kritériem za předpokladu, že podmínky i účelová

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Vícekriteriální programování příklad

Vícekriteriální programování příklad Vícekriteriální programování příklad Pražírny kávy vyrábějí dva druhy kávy (Super a Standard) ze dvou druhů kávových bobů KB1 a KB2, které mají smluvně zajištěny v množství 4 t a 6 t. Složení kávy (v procentech)

Více

Vícekriteriální hodnocení variant úvod

Vícekriteriální hodnocení variant úvod Vícekriteriální hodnocení variant úvod Jana Klicnarová Katedra aplikované matematiky a informatiky Jihočeská Univerzita v Českých Budějovicích, Ekonomická fakulta 2010 Vícekriteriální hodnocení variant

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

Výběr lokality pro bydlení v Brně

Výběr lokality pro bydlení v Brně Mendelova univerzita v Brně Provozně ekonomická fakulta Výběr lokality pro bydlení v Brně Projekt do předmětu Optimalizační metody Martin Horák Brno 5 Mendelova univerzita v Brně Provozně ekonomická fakulta

Více

2 Spojité modely rozhodování

2 Spojité modely rozhodování 2 Spojité modely rozhodování Jak již víme z přednášky, diskrétní model rozhodování lze zapsat ve tvaru úlohy hodnocení variant: f(a i ) max, a i A = {a 1, a 2,... a p }, kde f je kriteriální funkce a A

Více

Teorie her a ekonomické rozhodování. 2. Maticové hry

Teorie her a ekonomické rozhodování. 2. Maticové hry Teorie her a ekonomické rozhodování 2. Maticové hry 2.1 Maticová hra Teorie her = ekonomická vědní disciplína, která se zabývá studiem konfliktních situací pomocí matematických modelů Hra v normálním tvaru

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty Kapitola 1 Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů

Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Klub regionalistů 11.11.2010 Projekt SGS SP/2010 Socio-ekonomická evaluace aglomerace z hlediska potřeb a aktivit investorů Jiří Adamovský Lucie Holešinská Katedra regionální a environmentální ekonomiky

Více

Vícekriteriální rozhodování za jistoty

Vícekriteriální rozhodování za jistoty 1 Část I Vícekriteriální rozhodování za jistoty Při řešení rozhodovacích problémů se často setkáváme s případy, kdy optimální rozhodnutí musí vyhovovat více než jednomu kritériu. Zadaná kritéria mohou

Více

minimalizaci vzdálenosti od ideální varianty

minimalizaci vzdálenosti od ideální varianty UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Metody vícekriteriálního rozhodování založené na minimalizaci vzdálenosti od ideální

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry)

Teorie her a ekonomické rozhodování. 3. Dvoumaticové hry (Bimaticové hry) Teorie her a ekonomické rozhodování 3. Dvoumaticové hry (Bimaticové hry) 3.1 Neantagonistický konflikt Hra v normálním tvaru hráči provedou jediné rozhodnutí a to všichni najednou v rozvinutém tvaru řada

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Matematické modelování dopravního proudu

Matematické modelování dopravního proudu Matematické modelování dopravního proudu Ondřej Lanč, Alena Girglová, Kateřina Papežová, Lucie Obšilová Gymnázium Otokara Březiny a SOŠ Telč lancondrej@centrum.cz Abstrakt: Cílem projektu bylo seznámení

Více

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Teorie her cv. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Ing. Alena Šafrová Drášilová, Ph.D.

Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování Ing. Alena Šafrová Drášilová, Ph.D. Rozhodování??? video Obsah typy rozhodování principy rozhodování rozhodovací fáze základní pojmy hodnotícího procesu rozhodovací podmínky rozhodování v podmínkách

Více

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010

e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

Západočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat

Západočeská univerzita v Plzni. Fakulta aplikovaných věd. Ivana Kozlová. Modely analýzy obalu dat Západočeská univerzita v Plzni Fakulta aplikovaných věd SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU MATEMATICKÉ MODELOVÁNÍ Ivana Kozlová Modely analýzy obalu dat Plzeň 2010 Obsah 1 Efektivnost a její hodnocení 2 2 Základní

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

Layout pracoviště a řízení Rozvrhování pracovníků

Layout pracoviště a řízení Rozvrhování pracovníků Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Layout pracoviště a řízení Rozvrhování pracovníků Jan Vavruška Technická univerzita

Více

Popisná statistika. Komentované řešení pomocí MS Excel

Popisná statistika. Komentované řešení pomocí MS Excel Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,

Více

Ekonomická formulace. Matematický model

Ekonomická formulace. Matematický model Ekonomická formulace Firma balící bonboniéry má k dispozici 60 čokoládových, 60 oříškových a 85 karamelových bonbónů. Může vyrábět dva druhy bonboniér. Do první bonboniéry se dávají dva čokoládové, šest

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

Příklady modelů lineárního programování

Příklady modelů lineárního programování Příklady modelů lineárního programování Příklad 1 Optimalizace výroby konzerv. Podnik vyrábí nějaký výrobek, který prodává v 1 kg a 2 kg konzervách, přičemž se řídí podle následujících velmi zjednodušených

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11

Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11 Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:

Více

Diplomová práce. Heuristické metody pro vícekriteriální analýzu

Diplomová práce. Heuristické metody pro vícekriteriální analýzu Diplomová práce Heuristické metody pro vícekriteriální analýzu vypracoval: Jaroslav Smrž vedoucí práce: doc. RNDr. Jindřich Klapka, CSc. obor: Inženýrská informatika a automatizace specializace: Informatika

Více

6. Lineární nezávislost a báze p. 1/18

6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r

Simplexová metoda. Simplexová tabulka: Záhlaví (účelová funkce) A ~ b r βi. z j c j. z r Simplexová metoda Simplexová metoda, je jedním ze způsobů, jak řešit úlohy lineárního programování. Tato metoda vede k cíly, nelezení optimálního řešení, během konečného počtu kroků, pokud se při prvním

Více

[1] LU rozklad A = L U

[1] LU rozklad A = L U [1] LU rozklad A = L U někdy je třeba prohodit sloupce/řádky a) lurozklad, 8, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p. d. 4/2010 Terminologie BI-LIN, lurozklad,

Více

Téma 14 Multikriteriální metody hodnocení variant

Téma 14 Multikriteriální metody hodnocení variant Téma 14 Multikriteriální metody hodnocení variant Ing. Vlastimil Vala, CSc. Předmět : Ekonomická efektivnost LH Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Jiří Stančík Fakulta chemická, Vysoké učení technické v Brně Purkyňova 118, 61200 Brno e-mail: HTUxcstancik@fch.vutbr.czUTH Úkolem této práce

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Pearsonův korelační koeficient

Pearsonův korelační koeficient I I.I Pearsonův korelační koeficient Úvod Předpokládejme, že náhodně vybereme n objektů (nebo osob) ze zkoumané populace. Často se stává, že na každém z objektů měříme ne pouze jednu, ale několik kvantitativních

Více

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE

MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry.

Operační výzkum. Teorie her. Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační výzkum Hra v normálním tvaru. Optimální strategie. Maticové hry. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky

Více

1 Co jsou lineární kódy

1 Co jsou lineární kódy 1 Žádný záznam informace a žádný přenos dat není absolutně odolný vůči chybám. Někdy je riziko poškození zanedbatelné, v mnoha případech je však zaznamenaná a přenášená informace jištěna přidáním dat,

Více

Ústav technicko-technologický. Obhajoba diplomové práce

Ústav technicko-technologický. Obhajoba diplomové práce Vysoká škola technická a ekonomická v Českých Budějovicích Ústav technicko-technologický Obhajoba diplomové práce Téma: Optimalizace skladového hospodářství ve výrobním podniku KOH-I-NOOR Mladá Vožice

Více

Cvičení z Numerických metod I - 12.týden

Cvičení z Numerických metod I - 12.týden Máme systém lineárních rovnic Cvičení z Numerických metod I - týden Přímé metody řešení systému lineárních rovnic Ax = b, A = a a n a n a nn Budeme hledat přesné řešení soustavy x = x x n, b = b b n, x

Více

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech:

V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Příklad 1 V roce 1998 se v Liberci oženili muži a vdaly ženy v jednotlivých věkových skupinách v následujících počtech: Skupina Počet ženichů Počet nevěst 15-19 let 11 30 20-24 let 166 272 25-29 let 191

Více

Výpočet nového stavu je závislý na bezprostředně předcházejícím stavu (může jich být i více, zde se však omezíme na jeden).

Výpočet nového stavu je závislý na bezprostředně předcházejícím stavu (může jich být i více, zde se však omezíme na jeden). Počáteční úloha Při simulace vývoje systému v čase používáme jednoduché zásady: Spojitý čas nahradíme posloupností časových okamžiků t 0, t 1, t 2, t 3,, t i,. Interval mezi následujícími časovými okamžiky

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

VÍCEKRITERIÁLNÍ MANAŢERSKÉ ROZHODOVÁNÍ V PODMÍNKÁCH RIZIKA A NEJISTOTY

VÍCEKRITERIÁLNÍ MANAŢERSKÉ ROZHODOVÁNÍ V PODMÍNKÁCH RIZIKA A NEJISTOTY Internetový časopis o jakosti Vydavatel: Katedra kontroly a řízení jakosti, FMMI, VŠB-TU Ostrava VÍCEKRITERIÁLNÍ MANAŢERSKÉ ROZHODOVÁNÍ V PODMÍNKÁCH RIZIKA A NEJISTOTY ÚVOD Všemi sekvenčními manažerskými

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

SVD rozklad a pseudoinverse

SVD rozklad a pseudoinverse SVD rozklad a pseudoinverse Odpřednesenou látku naleznete v kapitole 12 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: Lineární algebra 19.12.2016: SVD rozklad a pseudoinverse 1/21 Cíle

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Jednotkový vektor vektor, která má na jednom místě jedničku a na ostatních nuly, například (0, 1, 0).

Jednotkový vektor vektor, která má na jednom místě jedničku a na ostatních nuly, například (0, 1, 0). 1. Základní pojmy www.cz-milka.net Systém neprázdná, účelově definovaná množina prvků a vazeb mezi nimi, která se zachycením vstupů a výstupů vykazuje kvantifikovatelné chování v čase. Model formalizovaný

Více

Dotazy tvorba nových polí (vypočítané pole)

Dotazy tvorba nových polí (vypočítané pole) Téma 2.4 Dotazy tvorba nových polí (vypočítané pole) Pomocí dotazu lze také vytvářet nová pole, která mají vazbu na již existující pole v databázi. Vznikne tedy nový sloupec, který se počítá podle vzorce.

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu cv.

Operační výzkum. Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu cv. Operační výzkum Vícekriteriální hodnocení variant. Grafická metoda. Metoda váženého součtu cv. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Časové rezervy. Celková rezerva činnosti

Časové rezervy. Celková rezerva činnosti Časové rezervy Celková rezerva činnosti CR Volná rezerva činnosti VR Nezávislá rezerva činnosti - NR Celková rezerva činnosti Maximální počet časových jednotek, které jsou k dispozici pro provedení činnosti,

Více

Časové řady - Cvičení

Časové řady - Cvičení Časové řady - Cvičení Příklad 2: Zobrazte měsíční časovou řadu míry nezaměstnanosti v obci Rybitví za roky 2005-2010. Příslušná data naleznete v souboru cas_rada.xlsx. Řešení: 1. Pro transformaci dat do

Více

Analýza dat na PC I.

Analýza dat na PC I. CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika

Více

9 Kolmost vektorových podprostorů

9 Kolmost vektorových podprostorů 9 Kolmost vektorových podprostorů Od kolmosti dvou vektorů nyní přejdeme ke kolmosti dvou vektorových podprostorů. Budeme se zabývat otázkou, kdy jsou dva vektorové podprostory na sebe kolmé a jak to poznáme.

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

TGH13 - Teorie her I.

TGH13 - Teorie her I. TGH13 - Teorie her I. Jan Březina Technical University of Liberec 19. května 2015 Hra s bankéřem Máte právo sehrát s bankéřem hru: 1. hází se korunou dokud nepadne hlava 2. pokud hlava padne v hodu N,

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Matematické metody rozhodování

Matematické metody rozhodování Matematické metody rozhodování Roman Hájek, Klára Hrůzová, Tomáš Konečný, Markéta Krmelová, Martin Trnečka 20. března 2010 Rozhodovacíproblém: Výběrideálníhonotebooku. ID Notebook Váha Design Baterie Procesor

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28.

Zdokonalování gramotnosti v oblasti ICT. Kurz MS Excel kurz 6. Inovace a modernizace studijních oborů FSpS (IMPACT) CZ.1.07/2.2.00/28. Zdokonalování gramotnosti v oblasti ICT Kurz MS Excel kurz 6 1 Obsah Kontingenční tabulky... 3 Zdroj dat... 3 Příprava dat... 3 Vytvoření kontingenční tabulky... 3 Možnosti v poli Hodnoty... 7 Aktualizace

Více

František Hudek. červen 2012

František Hudek. červen 2012 VY_32_INOVACE_FH09 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace František Hudek červen 2012 8. ročník

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Aplikace metod vícekriteriálního rozhodování v lázeňském hotelu

Aplikace metod vícekriteriálního rozhodování v lázeňském hotelu Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Vyšší odborná škola informačních služeb v Praze Tatyana Shevtsova Aplikace metod vícekriteriálního rozhodování v lázeňském hotelu Bakalářská

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

55. ročník matematické olympiády

55. ročník matematické olympiády . ročník matematické olympiády! " #%$'&( *$,+ 1. Najděte všechny dvojice celých čísel x a y, pro něž platí x y = 6 10.. Je dán rovnostranný trojúhelník ABC o obsahu S a jeho vnitřní bod M. Označme po řadě

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU

9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Statistické třídění dle jednoho nespojitého číselného znaku Aleš Drobník strana 1 9.6 TŘÍDĚNÍ PODLE JEDNOHO NESPOJITÉHO ČÍSELNÉHO ZNAKU Na následujícím příkladu si vysvětlíme problematiku třídění podle

Více

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R

a se nazývá aritmetická právě tehdy, když existuje takové číslo d R Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 37 - SESTAVENÍ ROZEBÍRATELNÉ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 37 - SESTAVENÍ ROZEBÍRATELNÉ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 37 - SESTAVENÍ ROZEBÍRATELNÉ] 1 CÍL KAPITOLY V této kapitole se zaměříme na sestavení/složení sestavy rozebíratelným způsobem. Tedy

Více

Název DUM: VY_32_INOVACE_2B_16_ Tvorba_grafů_v_MS_Excel_2007

Název DUM: VY_32_INOVACE_2B_16_ Tvorba_grafů_v_MS_Excel_2007 Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Informatika pro sedmý až osmý ročník Název DUM: VY_32_INOVACE_2B_16_ Tvorba_grafů_v_MS_Excel_2007

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

1.1 Posoudit varianty aplikace kompostu na snížení povrchového odtoku při intenzivních dešťových srážkách (metoda WSA metoda váženého součtu)

1.1 Posoudit varianty aplikace kompostu na snížení povrchového odtoku při intenzivních dešťových srážkách (metoda WSA metoda váženého součtu) Příklady využití aplikace OKS (Optimalizace krajinné struktury) Obsah 1. Použití multikriteriální analýzy 1.1 Posoudit varianty aplikace kompostu na snížení povrchového odtoku při intenzivních dešťových

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY

NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY 1. PERSPEKTIVNÍ KRABIČKA Perspektivní krabička je krabička, většinou bez víka, s malým otvorem na jedné straně, uvnitř pomalovaná různými obrazci. Když se do krabičky

Více