Čtyřleté gymnázium MATEMATIKA. Charakteristika vyučovacího předmětu:

Rozměr: px
Začít zobrazení ze stránky:

Download "Čtyřleté gymnázium MATEMATIKA. Charakteristika vyučovacího předmětu:"

Transkript

1 1 z 14 Čtyřleté gymnázium MATEMATIKA Charakteristika vyučovacího předmětu: Obsahové vymezení: Vyučovací předmět matematika pokrývá vzdělávací oblast Matematika a její aplikace, stanovenou RVPGV. Vzdělávací cíle předmětu matematika vycházejí z tradicí ověřeného rozvoje kognitivních a komunikačních schopností a dovedností žáků gymnázií na českém území. Důraz klademe na dobré porozumění pojmům a souvislostem, na bezpečné zvládnutí základních dovedností, na správné používání symbolického jazyka matematiky, na rozvoj logických schopností a geometrického vnímání světa. Výuka matematiky zohledňuje aktuální rozvoj výpočetní techniky. Vzdělávací cíle rovněž odrážejí současné pojetí vzdělávacího procesu a zejména akcentují schopnost tvořivě pracovat s informacemi, dovednost kultivovaně formulovat a argumentovat. Absolvent se v matematice pohybuje na dobré evropské úrovni. Časové a organizační vymezení: První ročník je pro všechny žáky společný. Od druhého ročníku se matematika vyučuje ve dvou úrovních. Základní (informační) úroveň si volí žáci, kteří se zejména věnují jiným vzdělávacím oborům, nemají v úmyslu absolvovat školní maturitu z matematiky ani skládat přijímací zkoušky z matematiky na vysokou školu. Rozšířenou (výkonnostní) úroveň si volí žáci, kteří matematiku a příbuzné obory studují intenzivněji a vyžadují vyšší nároky a větší rozsah učiva. Hodinová dotace je zachycena v tabulce úroveň 1. ročník 2. ročník 3. ročník 4. ročník základní rozšířená Jedna hodina v každém ročníku má formu cvičení, třída (skupina) je dělená na polovinu. Na povinné hodiny matematiky navazují volitelné semináře, které dávají prostor nadstandardní látce i metodám práce. Jejich cíle i učivo se aktuálně obměňují podle zaměření a požadavků žáků. Výchovné a vzdělávací strategie: Kompetence k učení učitel: uspořádá učivo v čase, respektuje návaznosti a vztahy uvnitř učiva, dbá na rovnoměrné zatížení žáků v průběhu školního roku seznamuje žáky s učivem živým způsobem, motivuje žáky vhodnými otázkami a problémovými úlohami vytváří ve třídě atmosféru podporující soustředěnou práci systematicky oceňuje dobrou práci žáků přesnost, vytrvalost, duševní činorodost, koncepční schopnost; netoleruje ledabylost a malou snahu vede postupně žáky k samostatné práci s matematickými informacemi podporuje nadané žáky v účasti v matematických soutěžích a ve vzdělávacích aktivitách mimo vyučování (korespondenční semináře, přednášky apod.) Kompetence k řešení problému učitel: vedle standardních metod vytváří příležitosti k investigativní a aplikační činnosti žáků poskytuje žákům pomoc a zpětnou vazbu při hledání formulace problému a jeho řešení diskutuje s žáky o verifikaci řešení problému, o příčinách a důsledcích chyb poskytuje prostor k prezentaci řešení problému Kompetence komunikativní učitel: vyjadřuje se v hodinách kultivovaně, přesně a srozumitelně a totéž vyžaduje od žáků vede žáky k užívání symbolického jazyka matematiky, k přesné formulaci tvrzení moderuje žákovské debaty, klade důraz na kvalitní argumentaci využívá matematický software, internet, video a další informační technologie Kompetence sociální učitel: organizuje činnost žáků ve dvojicích, skupinách, vede žáky k vlastní organizaci práce skupiny, k zodpovědnosti za činnost skupiny

2 oceňuje projevy úcty k práci druhých Kompetence občanské učitel: podporuje zodpovědný vztah k plnění povinností, ke studiu vede žáky k toleranci, ale také ke kritickému hodnocení názorů jiných 2 z 14

3 3 z ROČNÍK výstupy RVP GV žák: výstupy ŠVP - žák: Učivo: Souvislosti: odhaduje výsledky numerických výpočtů a efektivně je provádí účelně využívá kalkulátor rozezná a zdůvodní chybu ve výpočtu Výrazy numerické, aritmetické operace, odhady fyzika výpočty kalkulátor upravuje efektivně výrazy s proměnnými, určuje definiční obor výrazu rozkládá mnohočleny na součin vytýkáním a užitím vzorců provádí operace s mocninami a odmocninami, upravuje číselné výrazy odhaduje výsledky numerických výpočtů a efektivně je provádí operuje s intervaly používá správně logické spojky a kvantifikátory řeší lineární a kvadratické rovnice, nerovnice a jejich zapisuje výrazy s proměnnými zná zpaměti vzorce A 2 -B 2, A 3 ±B 3, (A±B) 2, (A±B) 3 a dokazuje jejich správnost dělí mnohočleny aplikuje pravidla pro počítání s mocninami počítá s velkými a malými čísly používá semilogaritmický tvar čísla převádí operace s odmocninami na operace s mocninami s racionálním exponentem zapisuje a určí množinu výčtem prvků, charakteristickou vlastností a množinovými operacemi rozlišuje a zdůvodňuje vztah inkluze a rovnosti množin určuje sjednocení a průnik množin rozezná, kdy je věta výrok, a určí pravdivostní hodnotu užívá výroky obsahující slova každý, žádný, aspoň, právě, nejvýše a neguje je čte a zapisuje matematická tvrzení s proměnnou a kvantifikátorem určí strukturu složeného výroku užívá pojmy funkce, nezávisle a závisle proměnná, definiční Výrazy s proměnnou, mnohočleny, lomené výrazy Mocniny a odmocniny, celočíselný a racionální exponent Množiny, základní operace, intervaly Základní logické pojmy, kvantifikátory, disjunkce, konjunkce, negace, implikace, ekvivalence Pravoúhlá soustava souřadnic Funkce, základní vlastnosti, fyzika - vzorce semilogaritmický tvar na kalkulačce fyzika - výpočty množinové diagramy jako metoda řešení slovních úloh zápisy a čtení textu v symbolickém jazyce matematiky aplikační úlohy

4 4 z 14 soustavy načrtne graf funkce y = ax+b, y = ax 2 +bx+c zdůvodňuje vlastnosti funkce rozlišuje ekvivalentní a neekvivalentní úpravy rovnic a nerovnic využívá poznatky o funkcích k řešení rovnic a nerovnic, při určování kvantitativních vztahů geometricky znázorňuje řešení rovnic a nerovnic interpretuje číselné, algebraické a funkční vztahy modeluje závislosti reálných dějů pomocí funkcí řeší aplikační úlohy s využitím poznatků o funkcích, rovnicích a nerovnicích obor, obor hodnot, graf určí z grafu vlastnosti a druh funkce ověřuje správnost řešení rovnice, nerovnice, soustavy vhodně zapisuje množiny kořenů aplikuje vztahy mezi kořeny a koeficienty kvadratické rovnice řeší rovnice a nerovnice v součinovém a podílovém tvaru, strukturuje řešení na základě logické úvahy vyjadřuje neznámou ze vzorce graf Lineární rovnice a nerovnice Vyjádření neznámé ze vzorce Lineární funkce Soustavy lineárních rovnic, početní a grafické řešení Slovní úlohy Kvadratické funkce, rovnice, nerovnice Vietovy vzorce Soustavy dvou rovnic o dvou neznámých do 2. stupně Slovní úlohy Rovnice a nerovnice v součinovém a podílovém tvaru Rovnice s neznámou pod odmocninou v jednodušších případech diskutuje řešitelnost a počet řešení lineární a kvadratické rovnice rozliší pojem proměnná, parametr, konstanta diskutuje řešitelnost rovnic v závislosti na parametru Rovnice s parametry, diskuse jednodušší typy aplikuje geometrický význam absolutní hodnoty načrtne graf funkce y =, zdůvodňuje vlastnosti funkce načrtne graf funkce y = x n, nî Z zdůvodňuje vlastnosti funkce využívá poznatky o funkcích k řešení rovnic a nerovnic, při určování kvantitativních vztahů řeší lineární a kvadratické rovnice s absolutní hodnotou načrtne graf funkce s absolutní hodnotou využívá grafu k řešení rovnic a nerovnic člení úlohu a provádí syntézu závěru odhaduje chování funkce pro velká x aplikuje základní transformace grafu funkcí rozezná sudou a lichou funkci vysvětlí vztah inverzních funkcí a využívá jejich vlastností Absolutní hodnota, rovnice a nerovnice s absolutní hodnotou Grafy funkcí lineárních a kvadratických s absolutní hodnotou porovnání početního a grafického řešení, ověřování správnosti Lineární lomená funkce asymptotické chování, pojem nekonečno Mocninné funkce s celočíselným mocnitelem, inverzní funkce

5 geometricky znázorňuje řešení rovnic a nerovnic interpretuje číselné, algebraické a funkční vztahy modeluje závislosti reálných dějů pomocí funkcí řeší aplikační úlohy s využitím poznatků o funkcích, rovnicích 5 z 14

6 6 z ROČNÍK výstupy RVP GV žák: výstupy ŠVP - žák: (základní úroveň) Učivo: (základní) výstupy ŠVP - žák: (rozšiřující úroveň) Učivo: (rozšiřující) Souvislosti: určuje geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v rovině, na základě vlastností třídí útvary využívá náčrt při řešení planimetrických problémů užívá symbolický jazyk geometrie Základní planimetrické pojmy: úhly, trojúhelníky, čtyřúhelníky, mnohoúhelníky, kružnice Množiny bodů daných vlastností (základní) Úhly v kružnici, výpočet a konstrukce dokazuje a vyvrací rovnost množin bodů Tečnové a tětivové čtyřúhelníky Složitější úlohy, argumentace Opakování ze ZŠ, sjednocení značení a zápisů teorie množin software řeší polohové a nepolohové konstrukční úlohy užitím množin bodů dané vlastnosti ověřuje řešení úlohy, diskutuje řešitelnost úlohy Konstrukční úlohy řešené množinami bodů diskutuje řešitelnost úlohy v závislosti na vstupních parametrech Náročnější úlohy řeší planimetrické úlohy motivované praxí Euklidovy věty aplikace početní i konstrukční řeší polohové a nepolohové konstrukční úlohy pomocí konstrukce délek úseček daných výrazem pracuje s iracionálními čísly graficky znázorní iracionální čísla ověřuje řešení úlohy Konstrukční úlohy řešené výpočtem diskutuje řešitelnost úlohy v závislosti na vstupních parametrech Náročnější úlohy Pythagorova věta, Euklidovy věty, podobnost řeší pravoúhlý trojúhelník v aplikovaných úlohách Goniometrické funkce v pravoúhlém trojúhelníku fyzika mechanika zeměpissouřadnice převádí míry úhlů Orientovaný úhel, oblouková míra načrtne grafy goniometrických funkcí zdůvodňuje vlastnosti funkce využívá poznatky o funkcích k řešení rovnic, při určování využívá efektivně kalkulátor a matematický software aplikuje transformace grafů funkcí korektně zapisuje Goniometrické funkce, definice, hodnoty, vlastnosti, grafy, transformace grafů umí zpaměti základní goniometrické vzorce řeší rovnice a nerovnice aplikací vzorců dokazuje rovnost goniometrických kalkulačky, software, fyzika - mechanika

7 7 z 14 kvantitativních vztahů geometricky znázorňuje řešení rovnic modeluje závislosti reálných dějů pomocí funkcí řeší aplikační úlohy s využitím poznatků o funkcích, rovnicích, nerovnicích v úlohách početní geometrie aplikuje funkční vztahy, trigonometrii a úpravu výrazů množiny kořenů rovnic Vztahy mezi funkcemi Sinus a kosinus dvojnásobného úhlu Goniometrické rovnice (základní) Sinová a kosinová věta výrazů aplikací vzorců Goniometrické vzorce Rovnice řešené aplikací vzorců, goniometrické nerovnice využívá náčrt při řešení planimetrického problému v úlohách početní geometrie aplikuje funkční vztahy a trigonometrii umí zpaměti základní vzorce pro výpočet obsahu a obvodu Výpočet obsahů a obvodů rovinných útvarů zdůvodňuje správnost vzorců pro výpočet obsahu přehled vzorců pro plochu trojúhelníku určuje geometrické pojmy využívá náčrt při řešení geometrického problému rozlišuje vektorové a skalární veličiny provádí operace s vektory Vektory v rovině, souřadnice, sčítání, násobení reálným číslem, skalární součin Rozklad vektoru na složky fyzika vektorové veličiny využívá různé způsoby analytického vyjádření přímky v rovině, využívá geometrický význam koeficientů řeší analyticky polohové a metrické úlohy o lineárních útvarech v rovině Analytické vyjádření přímky v rovině Polohové a metrické úlohy v rovině užívá metody analytické geometrie k řešení problémů Analytická metoda řešení úloh využívá charakteristických vlastností kuželoseček k analytickému vyjádření z analytického zdůvodňuje a aplikuje vlastnosti kuželoseček užívá středovou a obecnou Kuželosečky, definice, vlastnosti, analytické vyjádření Vzájemná poloha přímky a užívá středovou a obecnou rovnicí kuželoseček užívá analytickou metodu k Vyšetřování množin bodů analytickou metodou aplikace technické, umělecké

8 8 z 14 vyjádření (z osové nebo vrcholové rovnice) určí základní údaje o kuželosečce řeší analyticky úlohy o vzájemné poloze přímky a kuželosečky (diskusí znaménka diskriminantu) rozlišuje analytické vyjádření útvaru od zadání funkce předpisem rovnicí kružnice kuželosečky vyšetřování množin bodů dané vlastnosti a k řešení aplikačních úloh ověřuje řešení problému využívá náčrt při řešení geometrického problému řeší polohové a nepolohové konstrukční úlohy pomocí zobrazení řeší geometrické úlohy motivované praxí Shodná zobrazení v rovině (posunutí) Podobná zobrazení, stejnolehlost Konstrukční úlohy řešené pomocí zobrazení volí efektivní metodu řešení problému ověřuje a obhajuje řešení problému Smíšené úlohy z planimetrie řešení analytickou i syntetickou metodou

9 9 z 14 3.ROČNÍIK výstupy RVP GV žák: výstupy ŠVP - žák: (základní úroveň) Učivo: (základní) výstupy ŠVP - žák: (rozšiřující úroveň) Učivo: (rozšiřující) Souvislosti načrtne graf funkce y = a x, y = log a x zdůvodňuje vlastnosti funkcí využívá vlastnosti funkcí při řešení rovnic a nerovnic aplikuje vztahy mezi hodnotami exponenciálních a logaritmických funkcí a vztahy mezi těmito funkcemi modeluje závislosti pomocí funkcí řeší aplikační úlohy s využitím poznatků o funkcích určuje geometrické pojmy, zdůvodňuje a využívá vlastnosti geometrických útvarů v prostoru zobrazí ve volné rovnoběžné projekci hranol a jehlan využívá vlastností inverzních funkcí ověřuje řešení rovnic a nerovnic Exponenciální a logaritmické funkce, rovnice, nerovnice Vlastnosti logaritmů Přirozený logaritmus Aplikace Základní stereometrické pojmy, volné rovnoběžné promítání Složitější rovnice Nerovnice kalkulátor, software fyzika modelování rozpadu biologie modelování rů určuje vzájemnou polohu lineárních útvarů v prostoru využívá náčrt při řešení problému sestrojí a zobrazí rovinný řez hranolu a jehlanu nebo jejich průnik s přímkou využívá náčrt při řešení problému určuje vzdálenosti a odchylky lineárních útvarů v prostoru v úlohách početní Vzájemné polohy přímek a rovin v prostoru, řezy Metrické úlohy v prostoru, vzdálenosti, odchylky rozlišuje mezi definicí a kriteriem rovnoběžnosti a kolmosti analyzuje a řeší komplexní stereometrické problémy metrické a polohové ověřuje řešení problému Příčky mimoběžek, náročnější úlohy rovnoběžnost vzájemná pol tří rovin a řeš soustavy rovnic o neznámých kolmost, kriter

10 10 z 14 geometrie aplikuje funkční vztahy, trigonometrii řeší stereometrické problémy motivované praxí aplikuje poznatky z planimetrie ve stereometrii v úlohách početní geometrie aplikuje funkční vztahy, trigonometrii řeší stereometrické problémy motivované praxí, aplikuje poznatky z planimetrie ve stereometrii aplikuje vzorce pro objemy a povrchy těles efektivně využívá kalkulátor Tělesa, objemy, povrchy Eulerova věta provádí operace s vektory vysvětlí geometrický význam operací určuje vzájemnou polohu, vzdálenosti a odchylky lineárních útvarů v prostoru analytickou metodou užívá analytické metody k řešení komplexních úloh v prostoru užívá analogie mezi kružnicí a kulovou plochou volí syntetickou nebo analytickou metodu řešení problému a kriticky hodnotí jejich výhody a nevýhody dokazuje jednoduchá tvrzení matematickou indukcí Souřadná soustava v prostoru Vektory, operace s vektory Analytické vyjádření přímky v prostoru Analytické vyjádření roviny prostoru Polohové a metrické úlohy analytickou metodou Analytické vyjádření kulové plochy Smíšené úlohy ze stereometrie Matematická indukce Řešitelnost soustavy rovnic o tř neznámých Porovnání met

11 11 z 14 řeší reálné problémy s kombinatorickým podtextem (charakterizuje možné případy, vytváří model pomocí kombinatorických skupin a určuje jejich počet) upravuje výrazy s faktoriály a kombinačními čísly řeší rovnice s faktoriály a kombinačními čísly Kombinatorika, základní pojmy a úvahy Kombinace, variace, permutace bez opakování Variace s opakováním Faktoriály a kombinační čísla ověřuje vlastnosti kombinačních čísel a faktoriálů Kombinace, permutace s opakováním Důkazy vlastností kombinačních čísel pravidlo souč a součtu slovní úlohy upravuje efektivně číselné výrazy a výrazy s proměnnými využívá kombinatorické postupy při výpočtu pravděpodobnosti čte a zapisuje výrazy s indexy a sumou Binomická věta Základní pojmy pravděpodobnosti, definice rozlišuje klasickou a statistickou definici pravděpodobnosti Pravděpodobnost sjednocení, průniku, doplňku jevů užívá analogii mezi množinovými operacemi a výpočtem pravděpodobnosti množinové po pravděpodobn

12 12 z ROČNÍK výstupy RVP GV žák: výstupy ŠVP - žák: (základní úroveň) Učivo: (základní) výstupy ŠVP - žák: (rozšiřující úroveň) Učivo: (rozšiřující) Souvislosti: diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení vytváří a vyhodnocuje závěry a předpovědi na základě dat volí a využívá vhodné statistické metody k analýze a zpracování dat využívá software užívá symbolický jazyk matematiky pracuje s indexy Základní statistické pojmy, třídění dat, charakteristiky polohy Grafické zpracování dat, tabulky, diagramy interpretuje výsledky výpočtů, porovnává soubory na základě charakteristik interpretuje závislost dat Podrobnější grafické zpracování Charakteristiky variability, další charakteristiky Dvourozměrné soubory, korelace software reprezentuje graficky soubory dat, čte a interpretuje tabulky, diagramy a graf, rozlišuje rozdíly v zobrazení obdobných souborů vzhledem k odlišným charakteristikám zdůvodňuje vlastnosti posloupností modeluje závislosti posloupnostmi řeší aplikační úlohy využitím poznatků o posloupnostech interpretuje z funkčního hlediska složené úrokování, aplikuje exponenciální funkci a geometrickou posloupnost ve finanční matematice užívá správně vzorec pro n-tý člen a rekurentní zadání posloupnosti Posloupnosti, definice, vlastnosti, grafy, rekurentní zadání Aritmetická posloupnost Geometrická posloupnost Aplikace, finanční matematika aplikační úlohy jednoduché a složené úrokování

13 13 z 14 odhaduje a zdůvodňuje chování posloupností pro velká n používá symbolický jazyk matematiky diskutuje konvergenci a divergenci posloupností a určuje limity užívá symbolický zápis řady diskutuje konvergenci a divergenci řady a určuje součet řady řeší aplikační úlohy Limita posloupnosti Nekonečná řada, aplikace práce s nekonečnem užívá základní pojmy diferenciálního počtu užívá a zdůvodňuje význam derivace pro průběh funkce derivuje elementární a složené funkce řeší aplikační úlohy pomocí diferenciálního počtu vyšetřuje průběh funkcí Základní pojmy diferenciálního počtu Limita funkce Asymptota ke grafu funkce Derivace funkce a její význam Extrémy funkce Druhá derivace Vyšetřování průběhu funkce nekonečně velké a nekonečně malé veličiny fyzika vztahy mezi veličinami užívá správně logické spojky a kvantifikátory, objasní stavbu matematické věty rozlišuje předpoklad, závěr a důsledek tvrzení formuluje obrácenou a obměněnou implikací rozlišuje mezi obecným důkazem a ověřením jednotlivého případu užívá základní důkazové metody Logika, práce s výroky, důkazové metody určuje pravdivostní hodnotu složených výroků a neguje je dokazuje základní matematické věty gymnaziální matematiky Složitější úlohy

14 14 z 14 užívá základní vlastnosti dělitelnosti přirozených čísel pracuje s iracionálními a reálnými čísly k důkazu jednoduchého matematického tvrzení vyvrací jednoduchá matematická tvrzení, uvádí protipříklady užívá symbolické zápisy číselných oborů dokazuje věty o dělitelnosti Teorie čísel zapisuje komplexní čísla v algebraickém i goniometrickém tvaru provádí operace s komplexními čísly znázorňuje komplexní čísla v Gaussově rovině řeší kvadratické rovnice v C početně i graficky řeší binomické rovnice v C řeší jednodušší rovnice vyšších stupňů v C Komplexní čísla Algebraický a goniometrický tvar Operace s kompl.čísly Moivreova věta Řešení rovnic v komplexním oboru Kvadratické rovnice s komplexními koeficienty Binomické rovnice Rovnice vyšších stupňů význam vícenásobných kořenů pro průběh polynomické funkce

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

3.4.1. Tabulace učebního plánu

3.4.1. Tabulace učebního plánu 3.4.1. Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět: MATEMATIKA Ročník: Kvinta, 1. ročník Tématická Číselné obory Druhy čísel (N, Z, Q, R, I) - prezentuje přehled číselných oborů Mocniny

Více

MATEMATIKA. 1 z 18. Osmileté gymnázium. Charakteristika vyučovacího předmětu: Obsahové vymezení:

MATEMATIKA. 1 z 18. Osmileté gymnázium. Charakteristika vyučovacího předmětu: Obsahové vymezení: 1 z 18 Osmileté gymnázium MATEMATIKA Charakteristika vyučovacího předmětu: Obsahové vymezení: Vyučovací předmět matematika pokrývá spolu s předmětem algebra (má samostatné osnovy) a s předmětem geometrie

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);

Více

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Maturitní témata Matematika Školní rok 2016/17 Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky. Příprava ke zkoušce trvá 15 minut, ústní zkouška

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Technické lyceum. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 72/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Technické lyceum (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd. MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro nástavbové studium (hodinová dotace: varianta A 4 až 5 celkových týd. hodin, varianta B 6 celkových týd. hodin) Schválilo

Více

Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu

Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu 1 z 8 Osmileté gymnázium GEOMETRIE Charakteristika vyučovacího předmětu Obsahové vymezení: Vyučovací předmět geometrie pokrývá spolu s předmětem algebra (má samostatné osnovy) a s předmětem matematika

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami

Pythagorova věta Pythagorova věta slovní úlohy. Mocniny s přirozeným mocnitelem mocniny s přirozeným mocnitelem operace s mocninami Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo užívá různé způsoby kvantitativního vyjádření vztahu celek část (procentem) řeší aplikační úlohy

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného

Více

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Planimetrie 2. část, Funkce, Goniometrie 2. ročník a sexta 4 hodiny týdně PC a dataprojektor, učebnice Planimetrie II. Konstrukční úlohy Charakterizuje

Více

5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky

5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky 5.2 Vzdělávací oblast - Matematika a její aplikace 5.2.1 Matematika 5.2.2 Cvičení z matematiky Ročník 2. Hodinová dotace Matematika 3 3 3 2 Cvičení z matematiky 0 0 R (2) R (2) Vyučovací předmět Matematika

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ

EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ Přílohy školního vzdělávacího programu EKOLOGIE A ŽIVOTNÍ PROSTŘEDÍ - inovace platné od 1.9.2011 Střední průmyslová škola keramická a sklářská Karlovy Vary adresa: nám. 17.listopadu 12, 360 05 Karlovy

Více

Maturitní okruhy z matematiky ve školním roce 2010/2011

Maturitní okruhy z matematiky ve školním roce 2010/2011 Vyučující: RNDr. Ivanka Dvořáčková Třída: 8.A Maturitní okruhy z matematiky ve školním roce 2010/2011 Otázka Okruh 1 1. Výroky a operace s nimi 2. Množiny a operace s nimi 2 3. Matematické věty a jejich

Více

Školní vzdělávací program

Školní vzdělávací program Školní vzdělávací program Obor: 7941K/81, Gymnázium všeobecné ( osmileté ) Obor: 7941/41, Gymnázium všeobecné ( čtyřleté ) Učební osnovy pro vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium Vzdělávací

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25

1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25 1. Učební osnovy 1.1. Matematika a její aplikace Charakteristika vzdělávací oblasti Výuka na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník a kvinta 4 hodiny týdně PC a dataprojektor, učebnice Základní poznatky Číselné

Více

Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia

Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia Plán volitelného předmětu Matematika prostřednictvím projektově orientovaného studia pro 1. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět matematika, který je realizován prostřednictvím

Více

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25

1. Učební osnovy Matematika a její aplikace. ŠVP - učební osnovy - Karlínské gymnázium, Praha 8, Pernerova 25 1. Učební osnovy 1.1. Matematika a její aplikace Charakteristika vzdělávací oblasti Výuka na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady

Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém

Více

Změna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně

Změna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně Dodatek č.. Školního vzdělávacího programu Obchodní akademie Lysá nad Labem, obor -1-M/0 Obchodní akademie, platného od 1. 9. 01 - platnost dodatku je od 1. 9. 015 Změna týdenní hodinové dotace v 1. ročníku

Více

pracovní listy Výrazy a mnohočleny

pracovní listy Výrazy a mnohočleny A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 8. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení vybírat a využívat pro efektivní

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-46-M/01 Geodézie a katastr nemovitostí Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání:13 Platnost učební osnovy: od 1.9.2010, aktualizováno 1.9.2015, 1.9.2016

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část 1. ročník 4 hodiny týdně PC a dataprojektor Číselné obory Přirozená a celá čísla Racionální

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Matematika 3. období 8. ročník Počet hodin : 144 Učební texty : J.Coufalová : Matematika pro 8.ročník ZŠ (Fortuna) O.Odvárko, J.Kadleček : Sbírka úloh z matematiky pro

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 9. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor účelně a efektivně

Více

Učební osnova předmětu matematika. Pojetí vyučovacího předmětu

Učební osnova předmětu matematika. Pojetí vyučovacího předmětu Učební osnova předmětu matematika Obor vzdělání: 23 41 M/01 Strojírenství, 2 41 M/01 Elektrotechnika Délka a forma studia: 4 roky denní studium Celkový počet týdenních hodin za studium: 12 Platnost: od

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 7. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 7. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

OVO RVP OVO ŠVP Tématický celek Učivo RVP Učivo ŠVP Zařazení PT Integrace Mezipředmětové vztahy

OVO RVP OVO ŠVP Tématický celek Učivo RVP Učivo ŠVP Zařazení PT Integrace Mezipředmětové vztahy Čte a zapisuje tvrzení v symbolickém jazyce matematiky, užívá správně logické spojky a kvantifikátory, rozliší definici a větu, rozliší předpoklad a závěr věty; rozliší správný a nesprávný úsudek Definuje

Více

Předmět: MATEMATIKA Ročník: 6.

Předmět: MATEMATIKA Ročník: 6. Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,

Více

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7.

A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence. Opakování 7. A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Matematika 3 Ročník: 8. 4 Klíčové kompetence Výstupy Učivo Průřezová témata Evaluace žáka Poznámky (Dílčí kompetence) 5 Kompetence

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

5. 6 Matematika. Charakteristika vyučovacího předmětu

5. 6 Matematika. Charakteristika vyučovacího předmětu Charakteristika vyučovacího předmětu 5. 6 Matematika Výuka matematiky na gymnáziu rozvíjí a prohlubuje pochopení kvantitativních a prostorových vztahů reálného světa, utváří kvantitativní gramotnost žáků

Více

Matematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli

Matematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli - Kvarta Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

Reálné gymnázium a základní škola města Prostějova 5.5 Učební osnovy: Matematika

Reálné gymnázium a základní škola města Prostějova 5.5 Učební osnovy: Matematika Podle těchto učebních osnov se vyučuje ve třídách 1.N a 2.N šestiletého gymnázia od školního roku 2013/2014. Zpracování osnov předmětu Matematika koordinoval Mgr. Petr Spisar Časová dotace : Nižší gymnázium:

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1Příloha 6.04 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem předmětu Matematika je vychovat přemýšlivého člověka, který bude umět používat matematiku v odborných předmětech

Více

Matematika. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem

Matematika. Celkový počet vyučovacích hodin za studium: 396(12) od 1.9.2009 počínaje 1.ročníkem 6.15 Pojetí vyučovacího předmětu matematika Název vyučovacího předmětu: Matematika Obor vzdělání Gymnázium Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 396(12) Platnost: od 1.9.2009

Více

Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia

Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia Plán volitelného předmětu Matematika prostřednictvím projektově orientovaného studia pro 3. ročník gymnázia 1. Charakteristika vyučovacího předmětu Volitelný předmět matematika, který je realizován prostřednictvím

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem předmětu Matematika je vychovat přemýšlivého člověka, který bude umět používat matematiku v odborných předmětech vzdělávání,

Více

6.7 Matematika. 6.7.1 Charakteristika vyučovacího předmětu

6.7 Matematika. 6.7.1 Charakteristika vyučovacího předmětu 6.7 Matematika 6.7.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět Matematika je zařazen jako povinný ve všech ročnících čtyřletého studia. Patří do vzdělávací oblasti

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Vyučovací předmět: Matematika Ročník: 6.

Vyučovací předmět: Matematika Ročník: 6. Vyučovací předmět: Matematika Ročník: 6. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo ZÁŘÍ užívá různé způsoby kvantitativního vyjádření vztahu celek část (zlomkem) PROSINEC využívá

Více

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Kvarta 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

Matematika-průřezová témata 6. ročník

Matematika-průřezová témata 6. ročník Matematika-průřezová témata 6. ročník OSV 1: OSV 2 žák umí správně zapsat desetinnou čárku, orientuje se na číselné ose celých čísel, dovede rozpoznat základní geometrické tvary a tělesa, žák správně používá

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět:matematika

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět:matematika 7. Matematika 313 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět:matematika 1. Charakteristika vyučovacího předmětu a) Obsahové, časové a organizační

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 7. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace provádí početní operace v oboru celých a racionálních čísel zaokrouhluje, provádí odhady

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

UČEBNÍ OSNOVA PŘEDMĚTU

UČEBNÍ OSNOVA PŘEDMĚTU UČEBNÍ OSNOVA PŘEDMĚTU MATEMATIKA Název školního vzdělávacího programu: Název a kód oboru vzdělání: Celkový počet hodin za studium (rozpis učiva): Zedník 36-67-H/01 Zedník 1. ročník = 66 hodin/ročník (2

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň 1/Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět je rozdělen na základě OVO v RVP ZV na čtyři

Více