Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Rozměr: px
Začít zobrazení ze stránky:

Download "Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník"

Transkript

1 Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník Základní vlastnosti Výšky a střední příčky rovnoběžníka Pravoúhlý rovnoběžník Kosodélník 2.5. Lichoběžník 3. Konstrukce čtyřúhelníka 4. Příklady k procvičení 25

2 1. Jak definovat čtyřúhelník základní vlastnosti Čtyřúhelník se na základní škole definuje pomocí svých základních vlastností. Čtyřúhelník má čtyři vrcholy, čtyři strany, čtyři vnitřní úhly. Dvě strany, které mají společný vrchol, jsou sousední. Dvě strany, které nemají společný vrchol, jsou protější. Také dva vrcholy a dva vnitřní úhly čtyřúhelníku jsou buď sousední, nebo protější. Úsečka, jejímiž krajními body jsou dva protější vrcholy čtyřúhelníku, nazývá se úhlopříčka. Každý čtyřúhelník má dvě úhlopříčky. Úhlopříčka rozdělí čtyřúhelník na dva trojúhelníky. Součet vnitřních úhlů v každém trojúhelníku je 180 o, proto součet vnitřních úhlů v každém čtyřúhelníku je 360 o. A, B; B, C; atd. sousední vrcholy A, C; B, D protější vrcholy a, b; b, c; atd. sousední strany a, c; b, d protější strany AC = e, BD = f úhlopříčky, ;, ; atd. sousední vnitřní úhly, ;, protější vnitřní úhly N průsečík úhlopříček = úhel u vrcholu A, = úhel u vrcholu B, = úhel u vrcholu C, = úhel u vrcholu D 2. Názvy čtyřúhelníků Jestliže všechny body čtyřúhelníku leží v téže polorovině, jejíž hranice obsahuje kteroukoli stranu čtyřúhelníka, pak se takový čtyřúhelník nazývá čtyřúhelník konvexní. Není-li tomu tak, je to čtyřúhelník nekonvexní. 26

3 Podle vlastností stran a úhlů dáváme čtyřúhelníkům zvláštní jména. Čtyřúhelník, který má každé dvě protější strany různoběžné, se nazývá různoběžník. Jestliže má čtyřúhelník dvě strany rovnoběžné a zbývající dvě strany různoběžné, nazývá se lichoběžník. Čtyřúhelník, jehož každé dvě protější strany jsou rovnoběžné, je rovnoběžník. 2.1 Deltoid Zvláštním případem různoběžníka je deltoid. Je to různoběžník souměrný podle právě jedné úhlopříčky. Skládá se ze dvou neshodných rovnoramenných trojúhelníků se společnou základnou a z toho plynou některé jeho vlastnosti: a) dvě sousední strany jsou shodné, AB=BC, zbývající dvě sousední strany jsou rovněž shodné, AD=DC; b) úhlopříčka DB půlí vnitřní úhly, jimiž prochází, a je osou souměrnosti úhlopříčky AC i celého deltoidu; c) úhly, jimiž prochází úhlopříčka AC, jsou shodné, tedy DAB= DCB (je-li deltoid vepsán do kružnice, jsou tyto úhly pravé); d) deltoidu lze vepsat kružnici, její střed O leží na osách shodných úhlů a na úhlopříčce BD. Příklad 1.1: Řešení 1.1: a) Sestrojte deltoid ABCD, je-li dáno: a = 2,5 cm, b = 3,5 cm, = 145 o b) Sestrojte tomuto deltoidu kružnici vepsanou. c) Lze mu také sestrojit kružnici opsanou? Kdy lze sestrojit kružnici opsanou deltoidu? 27

4 1. ; = XBY = 145 o 2. k; k (B; a = 2,5 cm) 3. A; A k BX 4. l; l (B; b = 3,5 cm) 5. C; C l BY 6. m; m (A; AB ) 7. n; n (C; CB ) 8. D; D m n 9. deltoid ABCD 2.2 Tětivový čtyřúhelník Čtyřúhelník, jehož vrcholy leží na kružnici, nazývá se čtyřúhelník tětivový. Součet velikostí libovolných dvou jeho protilehlých úhlů je 180 o. O tětivovém čtyřúhelníku také platí tzv. Ptolemaiova věta, která říká: V každém tětivovém čtyřúhelníku je součin délek úhlopříček roven součtu součinů délek protilehlých stran. Příklad 1.2: Sestrojte čtyřúhelník ABCD tak, aby to byl tětivový čtyřúhelník, pro nějž platí: úhel = 90 o, = 60 o, c = 2,75 cm, d = 4,9 cm. Řešení 1.2: X 1. CD; CD = 2,75 cm 2. p; p CD, C p 3. ; = CDX = 180 o - 60 o =120 o 4. l; l (D; d=4,9 cm) 5. A; A l DX 6. q; q DA, A q 7. B; B p q 8. čtyřúhelník ABCD 9. O; O je průnik os stran ABCD 10. k; k (O; OC ) 28

5 2.3 Tečnový čtyřúhelník Čtyřúhelník, který je opsán kružnici, nazývá se čtyřúhelník tečnový. Součty délek jeho protilehlých stran se navzájem rovnají. Příklad 1.3: Sestrojte čtyřúhelník ABCD tak, aby to byl tečnový čtyřúhelník. Řešení 1.3: 1. k; k (S; r = libovolně) 2. P4; P4 k 3. d; d SP4, P4 d 4. P3; P3 k 5. c; c SP3, P3 c 6. P2; P2 k 7. b; b SP2, P2 b 8. P1; P1 k 9. a; a SP1, P1 a 10. A; A a d 11. B; B a b 12. C; C c b 13. D; D c d 14. čtyřúhelník ABCD 2.4 Rovnoběžník Čtyřúhelník, jehož každé dvě protější strany jsou rovnoběžné, nazývá se rovnoběžník. Podle úhlů se rovnoběžníky dělí na rovnoběžníky kosoúhlé (mají úhly kosé) a rovnoběžníky pravoúhlé neboli pravoúhelníky (mají všechny úhly pravé). Podle velikostí stran mají rovnoběžníky ještě zvláštní jména: kosodélník, kosočtverec, obdélník, čtverec Základní vlastnosti Základní vlastnosti každého rovnoběžníka: 29

6 a) každé dvě protější strany jsou navzájem rovnoběžné; b) každé dvě protější strany jsou shodné c) úhlopříčky se navzájem půlí. Zjistíme-li, že daný čtyřúhelník má některou z uvedených vlastností, potom je to rovnoběžník. O vnitřních úhlech každého rovnoběžníka platí: a) každé dva protější úhly jsou shodné; b) součet velikostí každých dvou sousedních úhlů je 180 o Výšky a střední příčky rovnoběžníka Úsečka, jejímiž krajními body jsou středy rovnoběžných stran, je střední příčka rovnoběžníka. Každý rovnoběžník má dvě střední příčky. Rovnoběžník ABCD má střední příčky EF a GH. Platí EF=AB=CD, EF AB CD; GH=AD=BC, GH AD BC. Průsečík středních příček S splývá s průsečíkem úhlopříček a nazývá se střed rovnoběžníka. Vzdálenost přímek, v nichž leží protější strany rovnoběžníka, je jeho výška. Rovnoběžník má tedy dvě výšky. Příklad 1.4: Sestrojte obdélník ABCD, znáte-li velikosti středních příček (7 cm, 5cm). Sestrojte kosodélník KLMN, který bude mít stejně dlouhé strany jako obdélník ABCD, tzn. AB = KL, BC = LM. Porovnejte délky středních příček. Řešení 1.4: 1. AB; AB = 7 cm 2. p; p AB, B p 3. k,l; k (B; BC =5cm), l (A; BC =5cm) 4. C; C k p 5. q; q BC, C q 6. D; D q l 7. obdélník ABCD 8. M; M k 9. s; s BM, A s 10. N; N s l 11. kosodélník KLMN 30

7 2.4.3 Pravoúhlý rovnoběžník Jestliže má rovnoběžník jeden úhel pravý, má i všechny ostatní úhly pravé, neboť protější úhly jsou shodné a součet každých dvou sousedních úhlů rovnoběžníka je 180 o. Takový rovnoběžník se nazývá pravoúhlý. Má-li pravoúhlý rovnoběžník sousední strany shodné, jmenuje se čtverec; nemá-li sousední strany shodné, nazývá se obdélník. V praxi dáváme rozměrům obdélníka názvy šířka, délka, výška apod. Každý pravoúhlý rovnoběžník má tyto vlastnosti: a) každé dvě sousední strany jsou k sobě kolmé; b) úhlopříčky jsou shodné; c) pravoúhlému rovnoběžníku lze opsat kružnici; d) má dvě osy souměrnosti (jsou jimi přímky, které obsahují střední příčky). Jestliže rovnoběžník má některou z uvedených čtyř vlastností, je pravoúhlý. Pravoúhlý rovnostranný rovnoběžník se nazývá čtverec. Má vlastnosti každého pravoúhlého rovnoběžníka (obdélníka) a navíc některé další, například: a) všechny strany i obě střední příčky čtverce jsou shodné; b) úhlopříčky čtverce stojí na sobě kolmo a půlí jeho vnitřní úhly; c) čtverci lze opsat i vepsat kružnici; d) čtverec má čtyři osy souměrnosti (jsou jimi přímky obsahující stření příčky a přímky obsahující úhlopříčky). Příklad 1.5: Sestrojte libovolný čtverec a obdélník. Sestrojte jejich kružnice opsané a vepsané, jejich osy souměrnosti a vyzkoušejte, zda platí výše uvedená pravidla. Řešení 1.5: 31

8 T 1. čtverec ABCD 2. S; S AC BD 3. k1; k1 (S; SC ) kružnice opsaná čtverci ABCD 4. k2; k2 (S; ST ) - kružnice vepsaná čtverci ABCD 1. obdélník KLMN 2. S; S je průnik středních příček 3. k; k (S; SN ) kružnice opsaná obdélníku KLMN Kosodélník Kosodélník, který má všechny strany shodné, nazývá se kosočtverec; nemá-li sousední strany shodné, nazývá se kosodélník. Kosočtverec má všechny vlastnosti rovnoběžníka a kromě shodných stran ještě další vlastnosti, například: a) úhlopříčky kosočtverce jsou k sobě kolmé a půlí úhly, z nichž vycházejí; b) kosočtverec má právě dvě osy souměrnosti (jsou jimi přímky, které obsahují úhlopříčky); c) kosočtverci lze vepsat kružnici, jejím středem je průsečík úhlopříček. 32

9 Příklad 1.6: Sestrojte libovolný kosodélník KLMN a kosočtverec ABCD. Ověřte, zda platí výše uvedené věty. Sestrojte jejich osy souměrnosti. Řešení 1.6: 1. AB; AB = libovolně 2. p; p AB 3. k; k (A; AB ) 4. D; D k p 5. q; q AD, B q 6. C; C q p 7. kosočtverec ABCD 1. KL; KL = libovolně 2. t; t KL 3. N; N t 4. s; s KN, L s 5. M; M t s 6. kosodélník KLMN 2.5 Lichoběžník Čtyřúhelník, který má dvě protější strany rovnoběžné a zbývající dvě strany různoběžné, nazývá se lichoběžník. Rovnoběžné strany mají vždy různé velikosti a jmenují se základny, různoběžným stranám říkáme ramena. Ramena lichoběžníka mohou, ale nemusí být shodné úsečky. Vzdálenost přímek, v nichž leží základny, je výška lichoběžníka. Úsečka, jejímiž krajními body jsou středy ramen, nazývá se střední příčka lichoběžníka. Střední příčka lichoběžníka je rovnoběžná se základnami a její délka je rovna polovině součtu délek obou základen. Označíme-li základny z1, z2 a střední příčku p, platí: p = (z1 + z2)/2 Součet velikostí vnitřních úhlů přilehlých k ramenu lichoběžníka je 180 o. 33

10 Jestliže má lichoběžník jeden vnitřní úhel pravý, nazývá se pravoúhlý lichoběžník. Protože součet úhlů při ramenu je 180 o, má pravoúhlý lichoběžník dva pravé úhly; jsou to vždy úhly přilehlé k témuž ramenu. Výška pravoúhlého lichoběžníka rovná se menšímu ramenu. Lichoběžník, jehož ramena jsou shodné úsečky, nazývá se rovnoramenný lichoběžník. Kromě shodných ramen má rovnoramenný lichoběžník tyto další vlastnosti: a) Úhly při téže základně jsou shodné. Při větší základně jsou úhly ostré, při menší základně jsou úhly tupé. b) Rovnoramenný lichoběžník má jednu osu souměrnosti; osou souměrnosti je společná osa obou základen. c) Úhlopříčky jsou shodné a protínají se na ose souměrnosti. d) Rovnoramennému lichoběžníku lze opsat kružnici. Jestliže má lichoběžník některou z uvedených vlastností, je rovnoramenný. Příklad 1.7: Sestrojte rovnoramenný lichoběžník ABCD se základnou AB délky a = 10 cm a s úhlem DAB o velikosti 60 o, jestliže úhlopříčka AC svírá s ramenem BC pravý úhel. Řešení 1.7: X Y 1. AB; AB = a = 10 cm 2. ; = BAX = 60 o 3. S; S je střed strany AB 4. k; k (S; AS ) 5. ; = ABY = 60 o 6. C; C k BY 7. D; D k AX 8. lichoběžník ABCD 34

11 3. Konstrukce čtyřúhelníka Postup pro sestrojení čtyřúhelníka je následující: Úhlopříčka rozdělí čtyřúhelník na dva trojúhelníky, takže čtyřúhelník sestrojíme tak, že sestrojíme postupně oba tyto trojúhelníky. Trojúhelník, který sestrojujeme nejdříve, je určen třemi prvky. K sestrojení druhého trojúhelníka je třeba znát další dva prvky, neboť oba trojúhelníky mají jednu stranu společnou. Je tedy čtyřúhelník určen pěti vhodnými prvky. Příklad 1.8: Sestrojte čtyřúhelník ABCD, je-li dáno: a = 4,5 cm, d = 3,8 cm, = 85 o, = 78 o, = 115 o. Řešení 1.8: X Y Z 1. AB; AB = a = 4,5 cm 2. ; = BAX = 85 o 3. ; = ABY = 78 o 4. k; k (A; d = 3,8 cm) 5. D; D k AX 6. ; = ADZ = 115 o 7. C; C DZ BY 8. čtyřúhelník ABCD Konstrukce rovnoběžníka - kosodélníka Rovnoběžník se skládá ze dvou shodných trojúhelníků. Můžeme-li sestrojit jeden z těchto trojúhelníků, můžeme sestrojit i druhý, proto rovnoběžník je určen třemi vhodnými prvky. Velikosti daných prvků musí také vyhovovat vlastnostem rovnoběžníka. Příklad 1.9: Sestrojte kosodélník ABCD, znáte-li délky úseček AB = 5 cm, BC = 6 cm a úhel = 60 o. Řešení 1.9: X 1. AB; AB = 5 cm 2. ; = BAX = 60 o 3. p; p AX, B p 4. k; k (B; BC = 6 cm) 5. C; C k p 6. q; q AB, C q 7. D; D q AX 8. kosodélník ABCD 35

12 Konstrukce pravoúhlého rovnoběžníka - obdélníka Pravoúhlý rovnoběžník rozdělí jeho úhlopříčka na dva pravoúhlé trojúhelníky. Pravoúhlý trojúhelník je určen dvěma prvky, oba trojúhelníky jsou shodné, je tedy pravoúhlý rovnoběžník určen dvěma vhodnými prvky. Příklad 1.10: Sestrojte obdélník ABCD, znáte-li délky úseček AB = 4 cm, BC = 6 cm. Řešení 1.10: 12. AB; AB = 4 cm 13. p; p AB, B p 14. k; k (B; BC =6 cm) 15. C; C k p 16. q; q BC, C q 17. s; s AB, A s 18. D; D q s 19. obdélník ABCD Konstrukce čtverce Čtverec je určen jediným vhodným prvkem, neboť se skládá ze dvou shodných pravoúhlých rovnoramenných trojúhelníků a pravoúhlý rovnoramenný trojúhelník je určen jediným prvkem. Určovacím prvkem čtverce nemůže být úhel. Příklad 1.11: Sestrojte čtverec ABCD, je-li strana čtverce dána úsečkou AB = 5 cm. Řešení 1.11: 1. AB; AB = 5 cm 2. k; k (A; AB =5 cm) 3. p; p AB, B p 4. q; q AB, A q 5. D; D k q 6. s; s AD, D s 7. C; C p s 8. čtverec ABCD 36

13 Konstrukce kosočtverce Úhlopříčka rozdělí kosočtverec na dva shodné rovnoramenné trojúhelníky. Rovnoramenný trojúhelník je určen dvěma prvky, proto i kosočtverec je určen dvěma vhodnými prvky. Dané prvky musí odpovídat vlastnostem kosočtverce. Příklad 1.12: Sestrojte kosočtverec ABCD, je-li dáno: a = 4,6 cm, = 60 o. Řešení 1.12: 3. AB; AB = a = 4,6 cm 4. ; = BAX = 60 o 5. p; p AX, B p 6. k; k (A; a = 4,6 cm) 7. D; D k AX 8. q; q AB, D q 9. C; C q p 10. kosočtverec ABCD Konstrukce lichoběžníka Lichoběžník má dvě strany rovnoběžné a tato jeho vlastnost nahrazuje jeden určovací prvek, takže lichoběžník je určen čtyřmi vhodnými prvky, které vyhovují vlastnostem lichoběžníka. Lichoběžník rovnoramenný a lichoběžník pravoúhlý mají další speciální vlastnosti a jsou proto určeny jen třemi prvky. Příklad 1.13: Sestrojte lichoběžník ABCD, je-li dáno: a = 6,2 cm, b = 4 cm, e = 7,5 cm, f = 5 cm. Řešení 1.13: 1. AB; AB = a = 6,2 cm 2. k; k (B; b=4 cm) 3. l; l (A; e=7,5 cm) 4. C; C k l 5. m; m (B; f=5 cm) 6. p; p AB, C p 7. D; D m p 8. lichoběžník ABCD 37

14 4. Příklady k procvičení Příklad 1.14: Konvexní čtyřúhelník pro který platí: AB = 10 cm, CB = 4 cm a délka příčky SaSc je 4 cm. Dále víme, že v tomto čtyřúhelníku jsou dva pravoúhlé trojúhelníky a to trojúhelník ABD s přeponou AB a ABC s přeponou AB. Příklad 1.15: Sestrojte rovnoběžník ABCD, je-li dáno strany a, b, úhlopříčka e. Příklad 1.16: Sestrojte rovnoběžník ABCD, je-li dáno strana a = 4,2 cm, úhlopříčky e = 5,4 cm, f.= 3,8 cm. Příklad 1.17: Sestrojte rovnoramenný lichoběžník ABCD se stranami AB = 6 cm, BC = 3,5 cm, CD = 3 cm. Příklad 1.18: Sestrojte čtyřúhelník ABCD, jehož všechny strany jsou navzájem různoběžné (různoběžník), je-li dáno a = 5 cm, b = 3 cm, e = 5 cm, f = 4,5 cm, = 60 o. Příklad 1.19: Sestrojte rovnoramenný lichoběžník, jestliže je dána střední příčka p = 4 cm, výška v = 5 cm a rameno r = 6 cm. Příklad 1.20: Sestrojte lichoběžník se základnami AB = 8,5 cm, CD = 3,5 cm, znáte-li v = 3,5 cm a velkost úhlu ABC = 60 o. Příklad 1.21: Sestrojte kosočtverec ABCD, jsou-li dány úhlopříčky e = 5,2 cm, f = 3,6 cm. Příklad 1.22: Sestrojte kosočtverec ABCD, je-li dána strana b = 5,4 cm, úhel = 120 o. Příklad 1.23: Sestrojte deltoid ABCD, jsou-li dány strany a = 2,5 cm, b = 3,5 cm, úhel = 145 o. Příklad 1.24: Sestrojte deltoid ABCD, jsou-li dány strany a = 6 cm, b = 3 cm a úhlopříčka f = 7 cm. 38

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní

Více

Rozpis výstupů zima 2008 Geometrie

Rozpis výstupů zima 2008 Geometrie Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...

Více

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená. MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku. Mnohoúhelníky Je dáno n různých bodů A 1, A 2,. A n, z nichž žádné tři neleží na přímce. Geometrický útvar tvořený lomenou čarou a částí roviny touto čarou ohraničenou nazýváme n-úhelníkem A 1 A 2. A n.

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Opakování ZŠ - Matematika - část geometrie - konstrukce

Opakování ZŠ - Matematika - část geometrie - konstrukce Opakování ZŠ - Matematika - část geometrie - konstrukce Základní útvary v rovině Bod je nejzákladnější geometrický pojem. Body zapisujeme písmeny velké abecedy: A, B, N, H, Přímka Přímky zapisujeme písmeny

Více

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti, Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje

Více

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní Růžena Blažková 1. Základní pojmy 1. Zvolte si čtyři různé body v rovině. Kolik různých přímek je těmito body určeno? Jak

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

DIDAKTIKA MATEMATIKY

DIDAKTIKA MATEMATIKY DIDAKTIKA MATEMATIKY GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní a důkazové Růžena Blažková, Irena Budínová Brno 2007 1 1. Základní pojmy 1. Zvolte si čtyři různé body

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30 2) Vypočtěte velikost úhlu : a) 150 10 b) 149 22 c) 151

Více

1. Planimetrie - geometrické útvary v rovině

1. Planimetrie - geometrické útvary v rovině 1. Planimetrie - geometrické útvary v rovině 1. Základní pojmy Body průsečíky čar, značí se velkými tiskacími písmeny A = B bod A je totožný (splývá) s bodem B A B různé body A, B Přímka je dána dvěma

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

6. Čtyřúhelníky, mnohoúhelníky, hranoly

6. Čtyřúhelníky, mnohoúhelníky, hranoly 6. Čtyřúhelníky, mnohoúhelníky, hranoly 7. ročník - 6. Čtyřúhelníky, mnohoúhelníky, hranoly 6.1. Základní pojmy 6.1.1. n úhelník n - úhelník pro n > 2 je geometrický obrazec, který má n vrcholů ( stran,

Více

Základní geometrické tvary

Základní geometrické tvary Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

M - Planimetrie pro studijní obory

M - Planimetrie pro studijní obory M - Planimetrie pro studijní obory Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

Kružnice, úhly příslušné k oblouku kružnice

Kružnice, úhly příslušné k oblouku kružnice KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) ) Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Planimetrie úvod, základní pojmy (teorie)

Planimetrie úvod, základní pojmy (teorie) Planimetrie úvod, základní pojmy (teorie) Geometrie (původně zeměměřictví) nyní část matematiky, zabývající se studiem geometrických objektů Planimetrie rovinná geometrie Stereometrie prostorová geometrie

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º) 6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,

Více

Shodné zobrazení v rovině

Shodné zobrazení v rovině Gymnázium Cheb Shodné zobrazení v rovině seminární práce Cheb, 2007 Lojza Tran Prohlášení Prohlašuji, že jsem seminární práci na téma: Shodné zobrazení v rovině vypracoval zcela sám za použití pramenů

Více

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie

Více

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu! -----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4

Více

Základy geometrie - planimetrie

Základy geometrie - planimetrie Základy geometrie - planimetrie Základní pojmy - bod (A, B, X, Y...), přímka ( p, q, a... ), rovina ( α, β, π... ) - nedefinují se Polopřímka: bod dělí přímku na dvě polopřímky opačně orientované značíme

Více

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ Předmět: Ročník: Vytvořil: Datum: MTEMTIK DRUHÝ Mgr. Tomáš MŇÁK 21. června 2012 Název zpracovaného celku: SHODNÁ ZORZENÍ V ROVINĚ Teoretická část GEOMETRICKÁ ZORZENÍ V ROVINĚ Zobrazení Z v rovině je předpis,

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

Úlohy MO z let navržené dr. Jaroslavem Švrčkem

Úlohy MO z let navržené dr. Jaroslavem Švrčkem Úlohy MO z let 1994 2012 navržené dr. Jaroslavem Švrčkem 1. Je dána polokružnice o středu S sestrojená nad průměrem AB. Sestrojte takovou její tečnu t s dotykovým bodem T (A T B), aby platilo P BCS =

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuk prostřednictvím ICT Číslo a název šablon klíčové aktivit III/2 Inovace a zkvalitnění výuk prostřednictvím

Více

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013 Název školy Obchodní akademie a Střední odborné učiliště Veselí nad Moravou Název a číslo OP OP Vzdělávání

Více

Planimetrie. Příklad 1. Zapište vztahy mezi body a přímkami, které jsou vyznačeny na obrázku. Příklad 2. Určete body K, L, M pomocí přímek p, r, s.

Planimetrie. Příklad 1. Zapište vztahy mezi body a přímkami, které jsou vyznačeny na obrázku. Příklad 2. Určete body K, L, M pomocí přímek p, r, s. Planimetrie Část matematiky, zabývající se studiem rovinných geometrických objekt (rovinná geometrie). bstrakcí z hmotných objektů vznikly základní geometrické pojmy bod přímka Bod Body označujeme velkými

Více

SOUŘADNICE BODU, VZDÁLENOST BODŮ

SOUŘADNICE BODU, VZDÁLENOST BODŮ Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

SHODNÁ ZOBRAZENÍ V ROVINĚ

SHODNÁ ZOBRAZENÍ V ROVINĚ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SHODNÁ

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

Několik úloh z geometrie jednoduchých těles

Několik úloh z geometrie jednoduchých těles Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,

Více

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.

Více

Mgr. Monika Urbancová. a vepsané trojúhelníku

Mgr. Monika Urbancová. a vepsané trojúhelníku Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Monika Urbancová Datum 28. 8. 2014 Ročník 6. ročník Vzdělávací oblast MATEMATIKA A JEJÍ APLIKACE Vzdělávací obor MATEMATIKA

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín. Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šablony Mendelova střední škola, Nový Jičín NÁZEV MATERIÁLU: Rovnoběžníky čtverec, obdélník, kosočtverec, kosodélník Autor: Mgr. Břetislav Macek Rok vydání: 2014

Více

DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI 1 HODINA

DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI 1 HODINA DRUHY ROVNOBŽNÍK A JEJICH VLASTNOSTI HODINA Podívej se na následující obrázek: Na obrázku je rovnobžník s vyznaeným pravým úhlem. Odpovídej na otázky:? Jaká je velikost vnitního úhlu pi vrcholu C? Je rovna

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)

Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4) Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

3. Racionální čísla = celá čísla + zlomky + desetinná čísla 4. Iracionální čísla = čísla, která nelze zapsat konečným desetinným rozvojem

3. Racionální čísla = celá čísla + zlomky + desetinná čísla 4. Iracionální čísla = čísla, která nelze zapsat konečným desetinným rozvojem Číselné obory 1. Přirozená čísla vyjadřují počet. 1,2,3, 2. Celá čísla Kladná: nula Záporná: Kladná + nula = nezáporná čísla Celá čísla = přirozená + nula + záporná celá 3. Racionální čísla = celá čísla

Více

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy

Doučování sekunda. měsíc Probírané učivo Základní učivo září Opakování učiva z primy Doučování sekunda měsíc Probírané učivo Základní učivo září Opakování učiva z primy Desetinná čísla Krychle a kvádr Prvočísla a čísla složená Společný násobek a dělitel Prvočísla a čísla složená Trojúhelník

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny

Více

9.5. Kolmost přímek a rovin

9.5. Kolmost přímek a rovin 9.5. Kolmost přímek a rovin Pro kolmost přímek a rovin platí následující věty, které budeme demonstrovat na krychli ABCDEFGH se středy podstav S, Q. Přímka kolmá k rovině je kolmá ke všem přímkám této

Více

z přímek a kružnic 35. Čtverec s danou stranou: 1. Oblouky A-B, B-A (přímka CED); 2. Oblouk E-AB (F); 3. Přímky AF, BF a vzniklé průsečíky

z přímek a kružnic 35. Čtverec s danou stranou: 1. Oblouky A-B, B-A (přímka CED); 2. Oblouk E-AB (F); 3. Přímky AF, BF a vzniklé průsečíky ČTVERCE A KOSOčTVERCE z přímek a kružnic Jednoduché čtyřúhelníkové konstrukce se dají zvládnout snadno. Abyste sestrojili kružnici opsanou čtverci nebo obdélníku, nejprve zakreslete úhlopříčky a pak narýsujte

Více

Sedlová plocha (hyperbolický paraboloid)

Sedlová plocha (hyperbolický paraboloid) Sedlová plocha (hyperbolický paraboloid) v kosoúhlém promítání do nárysny Řešené úlohy Příklad: osoúhlém promítání do nárysny ν (ω =, q = /2) sestrojte vrchol V, osu o a tečnou rovinu τ v bodě T hyperbolického

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

ZÁKLADNÍ PLANIMETRICKÉ POJMY

ZÁKLADNÍ PLANIMETRICKÉ POJMY ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky

Více

GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti

GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PODOBNÁ

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného Elipsa Výklad efinice a ohniskové vlastnosti prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného řezu na rotační kuželové ploše, jestliže řezná rovina není kolmá k ose

Více

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky. AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna

Více

MATEMATIKA 6. ročník II. pololetí

MATEMATIKA 6. ročník II. pololetí Úhel a jeho velikost: MATEMATIKA 6. ročník II. pololetí 26A Převeď na stupně a minuty: 126 = 251 = 87 = 180 = 26B Převeď na stupně a minuty: 92 = 300 = 146 = 248 = 27A Převeď na minuty: 3 0 = 1 0 25 =

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Syntetická geometrie I

Syntetická geometrie I Kružnice Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Více

Planimetrie pro studijní obory

Planimetrie pro studijní obory Variace 1 Planimetrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Planimetrie Planimetrie

Více

Návody k domácí části I. kola kategorie A

Návody k domácí části I. kola kategorie A Návody k domácí části I. kola kategorie A 1. Najděte všechna prvočísla p, pro něž existuje přirozené číslo n takové, že p n + 1 je třetí mocninou některého přirozeného čísla. 1. Určete všechny trojice

Více

Úlohy domácí části I. kola kategorie B

Úlohy domácí části I. kola kategorie B 65. ročník Matematické olympiády Úlohy domácí části I. kola kategorie B. Pro přirozená čísla k, l, m platí k + m + klm = 05 404. Určete všechny možné hodnoty součinu klm. Řešení. I když rovnice v zadání

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 47. ročník Matematické olympiády Úlohy domácího kola kategorie B 1. Magický čtverec je čtvercová tabulka přirozených čísel, v níž je součet všech čísel v každém řádku, v každém sloupci i na obou úhlopříčkách

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

66. ročníku MO (kategorie A, B, C)

66. ročníku MO (kategorie A, B, C) Příloha časopisu MATEMATIKA FYZIKA INFORMATIKA Ročník 25 (2016), číslo 3 Úlohy I. kola (domácí část) 66. ročníku MO (kategorie A, B, C) KATEGORIE A A I 1 Najděte všechna prvočísla p, pro něž existuje přirozené

Více

ANOTACE VZDĚLÁVACÍCH MATERIÁLŮ IV/ 2 SADA č. 2, PL č. 36

ANOTACE VZDĚLÁVACÍCH MATERIÁLŮ IV/ 2 SADA č. 2, PL č. 36 ANOTACE VZDĚLÁVACÍCH MATERIÁLŮ IV/ 2 SADA č. 2, PL č. 36 Název školy Základní škola a Mateřská škola, Dětřichov nad Bystřicí okres Bruntál, příspěvková organizace Číslo projektu: CZ.1.07/1.4.00/21.21110

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

4.3.2 Koeficient podobnosti

4.3.2 Koeficient podobnosti 4.. Koeficient podobnosti Předpoklady: 04001 Př. 1: Která z následujících tvrzení jsou správná? a) Každé dvě úsečky jsou podobné. b) Každé dva pravoúhlé trojúhelníky jsou podobné. c) Každé dva rovnostranné

Více

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, 1. V oboru celých čísel řešte soustavu rovnic (4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74, kde (n) k značí násobek čísla k nejbližší číslu n. (P. Černek) Řešení. Z první rovnice dané soustavy plyne, že číslo

Více

Geometrie v rovině 2

Geometrie v rovině 2 OSTRAVSKÁ UNIVERZITA V OSTRAVĚ PEDAGOGICKÁ FAKULTA Geometrie v rovině 2 Distanční text pro učitelství 1. stupně základní školy Renáta Vávrová OSTRAVA 2006 Obsah Úvod 5 1 Trojúhelník, lomená čára, mnohoúhelník

Více

16. žákcharakterizujeatřídízákladnírovinnéútvary

16. žákcharakterizujeatřídízákladnírovinnéútvary OČEKÁVANÝ VÝSTUP PODLE RVP ZV 1. žákcharakterizujeatřídízákladnírovinnéútvary Úloha 1 Rovinné útvary v obrázku jsou označeny symboly A L. A B C D E F G H I J K L V tabulce je uveden název obrazce a odpovídající

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].

Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3]. Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY VYUŽITÍ PROGRAMU DYNAMICKÉ GEOMETRIE GEOGEBRA VE VÝUCE ČTYŘÚHELNÍKŮ BAKALÁŘSKÁ PRÁCE Martin Anderle Přírodovědná

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

UNIVERZITA KARLOVA V PRAZE

UNIVERZITA KARLOVA V PRAZE UNIVERZITA KARLOVA V PRAZE Pedagogická fakulta Katedra matematiky a didaktiky matematiky Výuka rovinné geometrie na středních školách Plane geometry teaching at secondary schools Autor: Bc. Lucie Machovcová

Více

Úhly a jejich vlastnosti

Úhly a jejich vlastnosti Úhly a jejich vlastnosti Pojem úhlu patří k nejzákladnějším pojmům geometrie. Zajímavé je, že úhel můžeme definovat několika různými způsoby, z nichž má každý své opodstatnění. Definice: Úhel je část roviny

Více