Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu"

Transkript

1 Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jiří Michálek Ukazatele způsobilosti a výkonnosti C p, C pk, P p, P pk byly zavedeny ve snaze popsat stav výrobního procesu, resp. chování sledovaného znaku jakosti, pomocí několika čísel bezrozměrného charakteru. Zadáním těchto čísel se vlastně vyjadřuje požadavek na stav procesu, aby očekávaný počet neshodných výrobků odpovídal požadovanému počtu a aby proces byl ve stabilizovaném stavu, tzn. pro praxi v téměř stavu neměnícím se v průběhu času. Nejdříve, asi před 0-5 lety; byly zavedeny do praxe ukazatele způsobilosti C p, C pk, jejichž použití vyžaduje po sledovaném znaku jakosti, aby mohl být popsán normálním rozdělením N(µ,σ ), kde µ, je parametr polohy a σ je rozptyl sledovaného znaku. Pro úplnost, zde je jejich vzorec USL LSL USL µ µ LSL C p =, C pk =,. 6 σ 3 σ 3 σ Jejich zadáním se zcela jednoznačně určuje, jaká má být úroveň tzv. inherentní variability znaku jakosti a dvojrozměrná poloha; tj. střední hodnota sledovaného znaku jakosti, neboť z obou ukazatelů vyplývá pouze míra necentrování procesu od průměru specifikačních mezí, nikoliv to, zdali střední hodnota má být napravo či nalevo od tohoto průměru. Lze tedy zadání dvojice C p, C pk chápat tak, že střední hodnota jakostního znaku se muže pohybovat těmito dvěma krajními polohami, aniž by se hodnota C pk, zmenšovala, protože vždy musí být C p C pk, přičemž rovnost nastává jedině tehdy, když proces je přesně centrován na prostředek specifikačního rozmezí. První problém, se kterým se lze v praxi setkat, je již stanovení hodnot pro C p a C pk od konstruktérů či odběratelů produktů z procesu. Mnohdy bohužel tyto hodnoty jsou velice přísné, takže výrobce není schopen se stávající technologií tyto požadavky splnit, protože to mnohdy jednoduše vůbec nejde. Tento problém se často vyskytuje na,př. u plastových výrobků, kde se objevuje druhý

2 problém, a to jak přesně získat hodnoty sledovaného znaku jakosti. Stanovení požadavků na C p a C pk je jedna strana mince, ale otázka, zdali je vůbec schopen výrobní proces toto splnit, je strana druhá. Aby bylo možno obě strany porovnat. musíme z procesu odebrat nějaké produkty, ty přeměřit a získaná data použít pro zjištění způsobilosti našeho procesu. A to jo třetí problém, protože jsme nuceni zpracovat pouze dílčí informaci obsaženou v odebraných produktech, i kdyby produktů byly tisícovky. Aby nástroje matematické statistiky byly využity adekvátně, je nutno respektovat Splnění některých předpokladů. Je to především normalita získaných dat, kterou je možno ověřit pomocí testů dobré shody a stabilita procesu, což znamená poloha procesu µ (tj. střední hodnota sledovaného znaku) se v čase nemění a rovněž tak i úroveň variability σ lze považovat za stálou v čase. Takovému stavu říkáme, že proces je statisticky zvládnut, což je stav, kterého je možno dosáhnout hlavně aplikací regulačních diagramů. Tento stav je nutný proto, abychom mohli spolehlivě odhadnout parametr polohy procesu µ, nejčastěji pomocí aritmetického průměru či výběrového mediánu, a rovněž tak úroveň variability σ, obvykle pomocí výběrového rozpětí R či výběrové směrodatné odchylky s. Dalším problémem je organizace sběru dat; tj. jak často, zdali jednotlivě či ve skupinách a kolik dat budeme potřebovat pro hodnocení způsobilosti procesu. Některé postupy lze najít v literatuře, např. VDA 4.. kde se hodnotí způsobilost strojního zařízení. pak předběžná způsobilost v simulování hromadné výroby a pak dlouhodobá při hromadné výrobě, která může zahrnout i několik dní. Měla by být učiněna dohoda mezi výrobcem a odběratelem, který požaduje hodnocení způsobilosti procesu, jak se přesně bude postupovat při sběru dat, protože počet a organizace sběru dat silně ovlivňuje hodnocení způsobilosti procesu, pokud je prováděno správným způsobem. Poučenému odběrateli zdaleka nemůže stačit fakt, že odhad Ĉ p je větší nežli požadovaná, hodnota C p, což je požadavek téměř všude od zákazníků vyžadovaný, protože matematická statistika garantuje, že pokud proces skutečně splňuje požadavek, např. C p =, 33, že přibližně 50 % odhadů tohoto ukazatele je sice nad hodnotou,33, ale rovněž druhých 50 % odhadů se musí vyskytovat pod touto hodnotou. Tím, že zákazník

3 požaduje, aby Ĉ p C p, nemá vůbec zajištěno; že způsobilost výrobního procesu je na hodnotě ukazatele C p, kterou on stanovil. Vypočtená hodnota odhadu Ĉ p či Ĉ pk sama o sobě nic neříká, pokud ji nebudeme konfrontovat se stanovenými hodnotami. např. pomocí testování statistických hypotéz. Závěr takového testu silně závisí na stanoveném riziku (tzv. hladině významnosti) a hlavně na počtu dat, s nimiž pracujeme. Pokud jako nulovou hypotézu stanovíme, že proces má být způsobilý např. s C p =,33, stále ještě nezamítnutí této hypotézy proti např. alternativní hypotéze C p =, 50, zdaleka nevylučuje skutečnost, že způsobilost procesu není,33, ale jen zhruba,5. Pokud mulovou hypotézu zamítneme, jsme na tom s věrohodností závěru obvykle lépe. ale opět úroveň této věrohodnosti závisí na počtu dat. Hodnotit způsobilost procesu např. z pěti údajů, je naprostý hazard jak pro výrobce, tak i pro odběratele. Představme si, že chceme, aby výrobní proces byl nejhůře na úrovni způsobilostí C p =,33, což je velice častý požadavek v automobilovém průmyslu. Pro úplnost to znamená, že při stabilitě střední hodnoty µ na prostředku tolerančního rozpětí se požaduje, aby očekávaná neshodnost výrobků byla na úrovni 60 ppm. Postavme otázku testování způsobilosti takto: nulová hypotéza bude, že C p <,33 a alternativní hypotéza, že C p >,33. Nulovou hypotézou tedy je, že náš proces není způsobilý, alternativou je jeho způsobilost nejhůře na úrovni C p =,33. Abychom hypotézu o nezpůsobilosti zamítli a, měli velikou záruku, že náš proces je způsobilý, musí hodnota odhadu Ĉ p ukazatele C P počítaná např. z 0 podskupin o pěti kusech ve skupině při riziku 5 % překročit hodnotu,54. U ukazatele C pk je situace o to komplikovanější, že vstupuje do odhadu Ĉ pk navíc odhad parametru polohy µ. Co se vyžaduje od procesu, aby ukazatel C pk, byl správně chápan? Aplikace tohoto ukazatele vyžaduje nejen, aby úroveň variability byla stálá; ale aby i parametr polohy se v čase neměnil. Jinak totiž nesprávně odhadneme polohu procesu např. pomoci aritmetického průměru ze všech dat. Představme si takovou situaci, kdy během odebírání dat se poloha procesu změnila takovým způsobem (třeba nastavením stroje či použitím jiného materiálu na vstupu procesu), že přibližně polovina dat má parametr polohy

4 USL + LSL µ = + δ, σ > 0, druhá polovina USL + LSL µ = δ, σ > 0, kde přitom δ a δ se prakticky neliší. Když spočítáme celkový aritmetický průměr z dat, ten se nebude významně lišit od středu tolerančního rozmezí USL + LSL, což se projeví v hodnosti odhadu Ĉ pk tím, že ta,to hodnota se nebude významně lišit od hodnoty odhadu Ĉ p a člověk, který si neprohlédne průběh dat se může domnívat, že proces je velice dobře centrovaný. Opět vlastní hodnota odhadu Ĉ pk nám nic neříká, pokud není porovnávána se zadanou hodnotou C pk pomocí testování hypotéz; což má smysl pouze tehdy, když proces je stabilní i v parametru polohy. O tom se lze přesvědčit pomocí statistického nástroje MANOVA. Jedná se vlastně o otázku, zdali všechna data potřebná pro odhad Ĉ pk pocházejí z jediné populace se střední hodnotou µ. Když připustíme, že náš proces může v parametru polohy "dýchat", což znamená, že parametr µ není v průběhu výroby fixní, ale může se pohybovat v jistém rozmezí uvnitř tolerančního pásma, např. USL LSL USL LSL µ δ, + δ, kde δ > 0. V metodice Six Sigma se uvažuje, že δ =,5σ, kde σ je směrodatná odchylka zkoumaného znaku jakosti. Protože parametr µ není pevný, uvažovat použití ukazatele C pk v této situaci je nesprávné, protože odhad celkového aritmetického průměru z dat vůbec nic neříká o chování parametru µ. Samozřejmě ihned se naskýtá problém, jak v této situaci hodnotit způsobilost procesu? Odpověď' není zdaleka jednoznačná, protože především závisí na tom, jak se parametr µ chová ve vymezeném intervalu. Pokud bude jeho chování náhodné, které lze popsat nějakým rozdělením pravděpodobnosti, pak by správně pro hodnocení způsobilosti

5 takového procesu východiskem mělo být rozdělení pravděpodobnosti, které je dáno konvolucí normálního rozdělení N(0,σ ), které charakterizuje zdroj inherentní variability, s rozdělením pravděpodobnosti; které popisuje chování parametru µ. Takováto situace nastává např. při opotřebování nástroje během výrobní operace, kdy se do procesu dostává lineární trend v chování parametru polohy, což koresponduje s rovnoměrným rozdělením na intervalu vymezeném pro pohyb parametru polohy. Dalším případem je taková situace, kdy lze data rozdělit, tj. stratifikovat, do jednotlivých kategorií, které jsou odlišeny různými hodnotami parametru polohy. Tento případ na,stává např. tehdy, když data z jednotlivé kategorie odpovídají novému seřízení stroje či jednotlivým šaržím, kdy nelze přesně dodržet parametr polohy na jednom místě a je nutno počítat s jeho změnou v rámci nějakého intervalu kolem prostředku tolerančního rozmezí. Získaná data potom jsou výsledkem směsi normálních rozdělení nejčastěji se stejnou úrovní inherentní variability, ale s různými středními hodnotami. Pokud dovedeme jednotlivé kategorie dat ve směsi identifikovat podle nějakých příznaků (např. operátor, směna, šarže, seřízení stroje apod.), pak lze hodnotit způsobilost výrobního procesu pomocí ukazatele P pk následovně. Pro každou kategorii dat, tj. pro každou složku směsi spočítáme odpovídající aritmetické průměry a odhad směrodatné odchylky. Pomocí nich spočítáme odhady USL xi Pˆ pku =, i =,, K, k 3 si a odhady xi LSL Pˆ pkl =, i =,, K, k. 3 si Pak má smysl odhadnout ukazatel P pk pro celou směs jako Pˆ pk ( minpˆ pkl, minpˆ pku) = min, i k i k kde k je počet kategorií ve směsi. Takto zavedený odhad má zcela racionální smysl, neboť je založen na složkách směsi, které mají střední hodnoty nejdále od prostředku tolerančního rozmezí. Zatím ale zcela chybí teoretické pozadí, které by dalo odpověď' např. na velikost konfidenčního intervalu či možnost prověřit hodnotu odhadu s požadovanou hodnotou ukazatele C pk.

6 Tento stručný rozbor situace jasně dokazuje, že pokud proces není statisticky zvládnut a sledovaná data nelze popsat normálním rozdělením, pak odhady ukazatelů C p a C pk ; nemusí vůbec nic vypovídat o způsobilosti procesu. Pokud sebraná data nelze vysvětlit normálním rozdělením, může být sledovaný znak jakosti popsatelný jiným typem rozdělení (např. logaritmicko-normální, Weibull, překlopené normální), a to čistě třeba z fyzikálních důvodů (např. rovinnost, ovalita apod.) a nebo se jedná o zcela neidentifikovatelnou směs z normálních rozdělení. Pak samozřejmě formální výpočet odhadů C p a C pk je sice možný, ale nic to neříká, o odhadu neshodných kusů ve výrobním procesu. Jak potom postupovat? Bud' dovedeme najít vhodný tvar rozdělení pravděpodobnosti jako model pro popis sledovaného znaku jakosti, ale toto rozdělení musí být vlastní tvaru procesu v tom smyslu, že každá skupina naměřených hodnot je vysvětlitelná tímto typem rozdělení a definice odpovídajících ukazatelů C p a C pk je založena na kvantilovém rozpětí. Tento přístup má svoji velkou slabost právě v odhadu odpovídajících kvantilů, což vyžaduje relativně velký počet, dat pro získání věrohodných závěrů. Druhá možnost je založena na myšlence původní data pomocí vhodné transformace, samozřejmě jedno-jednoznačné převést na nová data. která lze popsat již normálním rozdělením. Vybranou transformací se získají i nové specifikace pro nová data a pro hodnocení způsobilostí se použijí klasické tvary ukazatelů C p a C pk založené na specifických vlastnostech normálního rozdělení. V praxi se v tomto případě nejčastěji používá bud' Box-Coxova transformace či třída Johnsonových transformací, která nová data převádí přímo na rozdělení N(0, ).V následujícím jsou uvedeny dva příklady, které ukazují, že nerespektování předpokladu normality bud' nadhodnotí úroveň způsobilosti procesu či naopak podhodnotí. Na obr. je provedeno hodnocení způsobilosti procesu bez respektování předpokladu o normalitě dat. Takto získaná hodnota odhadu nemůže nic vypovídat o skutečné situaci ve výrobním procesu. Jeden z možných správných postupů je ukázán na obr., kde je použita vhodná Johnsonova transformace na původní data, která jsou převedena na data, které již požadavek na normalitu dat splňují. Porovnáním obou hodnot odhadů ukazatelů je vidět, že vlastně stav procesu je lepší nežli ukazuje obr..

7 Poznámka: Proces je hodnocen pomocí ukazatelů výkonnosti, které jsou zadefinovány níže, protože se jedná o individuální hodnoty a použitý software Minitab po Johnsonově transformaci ukazatele způsobilosti nepočítá. Process Capability of Warping (using 95,0% confidence) Process Data LSL 0 Target * USL 9 Sample Mean,9307 Sample N 00 StDev(Within),68898 StDev (Ov erall),79048 Observ ed Perf ormance PPM < LSL 0,00 PPM > USL 0,00 PPM Total 0,00 LSL 0,0,5 Exp. Within Perf ormance PPM < LSL 4755,60 PPM > USL 60,35 PPM Total 495,95 3,0 4,5 6,0 Exp. Ov erall Performance PPM < LSL 58,8 PPM > USL 344,38 PPM Total 565,56 7,5 USL 9,0 Within Overall Potential (Within) Capability Cp 0,89 Lower CL 0,76 Upper CL,0 CPL 0,58 CPU,0 Cpk 0,58 Lower CL 0,47 Upper CL 0,68 Ov erall Capability Pp 0,84 Lower CL 0,7 Upper CL 0,95 PPL 0,54 PPU,3 Ppk 0,54 Lower CL 0,44 Upper CL 0,64 Cpm * Lower CL * Obr. Nesprávný odhad ukazatele způsobilosti Process Data LSL 0 Target * USL 9 Sample Mean,9307 Sample N 00 StDev,78597 Shape 0,88908 Shape 0, Location -0,3606 Scale 9,4436 After Transformation LSL* -3,336 Target* * USL* 4,89 Sample Mean* 0,096 StDev* 0, Observed Performance PPM < LSL 0,00 PPM > USL 0,00 PPM Total 0,00 Process Capability of Warping Johnson Transformation with SB Distribution Type 0, ,987 * Log( ( X + 0,33 ) / ( 9,3 - X ) ) (using 95,0% confidence) LSL* transformed data USL* Overall Capability Pp,6 Lower CL,09 Upper CL,44 PPL, PPU,4 Ppk, Lower CL 0,95 Upper CL,8 Exp. Overall Performance PPM < LSL 46,36 PPM > USL,73 PPM Total 48, Obr. Hodnocení procesu po transformaci dat

8 Ne pouze problémy přináší praxe, ale i teorie. Na začátku 90. let se objevují z popudu amerického automobilového průmyslu další dva ukazatele, a to ukazatele výkonnosti P p a P pk. Lze ale říci, že jejich zavedení situaci spíše zkomplikovalo nežli zjednodušilo v tom smyslu, že tyto ukazatelé dodají další užitečnou informaci o průběhu výrobního procesu. Jejich vzorce se od vzorců pro C p a C pk liší pouze v tom, že ve jmenovateli se místo směrodatné odchylky σ inherentní variability objevuje tzv. totální směrodatná odchylka σ TOT. Je doporučováno, aby tyto ukazatele. resp. jejich odhady, byly používány u procesů, které nejsou statisticky zvládnuty. Pokud je proces zvládnut a data normálně rozdělena, tak odhady Ĉ p, a Pˆ p by se neměly příliš lišit, protože rozdíl v odhadech ( ) x xi k n σˆ TOT = i j kn i= j= a R s σ ˆ =, resp. σˆ = d C 4 by za této stabilizované situace měl být malý. Pokud ale proces není stabilní. úloha ukazatelů P p a P pk není jasná, protože nemohou predikovat výkonnost procesu. Problém je v tom, že definice těchto ukazatelů nic nevyžaduje, jakým způsobem vzniká totální variabilita. Tudíž nelze odvodit statistické vlastnosti odhadů těchto ukazatelů a nelze je např. testovat, protože statistika potřebuje model, na jehož základě zkonstruuje přijatelný test. To znamená, že např., pokud nějaký software obsahuje konfidenční intervaly pro tyto ukazatele a není řečeno, z čeho se při jejich výpočtu vycházelo, pak jsou naprosto k ničemu. V monografii [] je silně argumentováno proti používání těchto ukazatelů a je řečeno. že jejich zavedení je krokem zpět v hodnocení způsobilosti výrobního procesu. Bohužel ve. vydání příručky pro dodavatele do amerického automobilového průmyslu z roku 005, viz [], se přímo doporučuje použití všech 4 ukazatelů pro charakterizování výrobního procesů na základě normy ANSI Standard Z z roku 996. Na jednoduchém příkladu si dokažme, že skutečně zavedení ukazatele P p "stojí na vodě".

9 Představme si výrobní proces, kde parametr polohy µ sledovaného znaku jakosti silně závisí na vstupu (např. seřízení stroje, různé dávky vstupního materiálu, různí dodavatelé apod.). Uvažujme, že sledujeme výkonnost procesu po takovou dobu, že výsledná data lze popsat jako směs dvou normálních rozdělení N(µ i, σ ), i =,, tedy hustota směsi je h(x) = αf (x) + (-α)f (x), kde f i ( ) je hustota normálního rozdělení N(µ i, σ ). Předpokládejme, že parametr rozptylu σ je pro jednoduchost konstantní v čase, ale parametry polohy µ a µ a rovněž i parametr směsi α se mohou měnit v čase. Takový proces je zřejmě nestabilní v čase. Jeho střední hodnota a rozptyl jsou E { X} = αµ + ( α) µ, { } = σ + α µ + ( α) µ ( E{ X} ), D X pokud složky směsi budeme považovat za nezávislé, což je v praxi přijatelné. Z tohoto procesu odebereme náhodný výběr x, x,..., x N a budeme sledovat co dělá odhad totální směrodatné odchylky σˆ TOT = N N j= (xi x) Pokud výběr bude složen z podílu [αn] ze složky N(µ, σ ) a zbytek z druhé složky N(µ, σ ) a poměr obou složek bude pro každé N zachována, pak lze ukázat, že σˆ D{ X}. TOT N Na základě toho by ukazatel výkonnosti procesu P p měl mít hodnotu P p USL LSL = 6 D{ X}. Je ale vidět, že jeho hodnota silně závisí α, µ, µ a správně bychom odhadovali jeho hodnotu jedině tehdy, když tyto parametry by byly konstantní v čase a náhodný výběr by respektoval poměr zastoupení složek směsi. Z tohoto jednoduchého příkladu ihned plyne, že vlastně obecně nevíme, co odhad ukazatele P p říká, protože ve statistické analýze se nemůžeme opřít o nějaký konkrétní model, /.

10 pokud proces nevykazuje stabilitu v čase. Kdy lze tedy ukazatele výkonnosti použít? Mají smysl jedině tehdy, když získaná data bez ohledu na podskupiny lze popsat nějakým rozdělením pravděpodobnosti, např. normálním. Tento předpoklad je důležitý proto, aby bylo možno stanovit např. konfidenční interval pro hodnotu ukazatele nebo provést statistický test nějaké hypotézy o hodnotě ukazatele. Pouze vlastní hodnota odhadu ukazatele výkonnosti bez vhodného statistického modelu neříká de facto nic. Literatura: [] Kotz. S., Lovelace C. R.: Process Capability Indices in Theory and Practice. Arnold, London (998). [] AIAG - Chrysler, Ford, General Motors. (QS Statistical Process Control (. vydání, 005). Adresa autora: RNDr. Jiří Michálek, CSc., Ústav teorie informace a automatizace AV ČR Praha, Oddělení stochastické informatiky, Pod vodárenskou věží 4, 8 08 Praha 8. Tato práce byla vytvořena za podpory projektu MŠMT M CQR

SW podpora při řešení projektů s aplikací statistických metod

SW podpora při řešení projektů s aplikací statistických metod SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Ústav teorie informace a automatizace RESEARCH REPORT. Nestandardní regulační diagramy pro SPC. No. 2311 December 2011

Ústav teorie informace a automatizace RESEARCH REPORT. Nestandardní regulační diagramy pro SPC. No. 2311 December 2011 kademie věd České republiky Ústav teorie informace a automatizace cademy of Sciences of the Czech Republic Institute of Information Theory and utomation RESERCH REPORT Josef Křepela, Jiří Michálek: Nestandardní

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu

Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu Obsah 1. Úvod 2. Oblast působnosti 3. Definice 3.1 Definice uvedené ve směrnici 3.2 Obecné definice 3.2.1 Nejistoty způsobené postupem

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testování hypotéz na základě jednoho a dvou výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/004. Testování hypotéz Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter

1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter NORMY A STANDARDY KVALITY 1) Jsou normy v ČR závazné a jaká je jejich úloha? normy nejsou v ČR závazné od roku 2000 od roku 2000 mají pouze doporučující charakter pokud u výrobku, který byl vyroben podle

Více

Základy statistického myšlení

Základy statistického myšlení Základy statistického myšlení Jiří Michálek ČSJ 2011 1 Česká společnost pro jakost Novotného lávka 5, 116 68 Praha 1 Základy statistického myšlení RNDr.Jiří Michálek, CSc Vydání 1. Praha 2011 2 3 Obsah

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko pro podporu jakosti Stanovení měr opakovatelnosti a reprodukovatelnosti při kontrole měřením a srovnáváním Ing. Jan Král Úvodní teze Zásah do procesu se děje na základě měření.

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Přehled technických norem z oblasti spolehlivosti

Přehled technických norem z oblasti spolehlivosti Příloha č. 1: Přehled technických norem z oblasti spolehlivosti NÁZVOSLOVNÉ NORMY SPOLEHLIVOSTI IDENTIFIKACE NÁZEV Stručná charakteristika ČSN IEC 50(191): 1993 ČSN IEC 60050-191/ Změna A1:2003 ČSN IEC

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 11. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 11 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Úvod. Postup praktického testování

Úvod. Postup praktického testování Testování vzorků kalů odebraných v rámci Doškolovacího semináře Manažerů vzorkování odpadů 21. 10. 2014 v ČOV Liberec, akciové společnosti Severočeské vodovody a kanalizace Úvod Společnost Forsapi, s.r.o.

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

VY_32_INOVACE_PEL-3.EI-20-ANALYZA ZPUSOBILOSTI PROCESU. Střední odborná škola a Střední odborné učiliště, Dubno

VY_32_INOVACE_PEL-3.EI-20-ANALYZA ZPUSOBILOSTI PROCESU. Střední odborná škola a Střední odborné učiliště, Dubno Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_PEL-3.EI-20-ANALYZA ZPUSOBILOSTI PROCESU Střední odborná škola a Střední odborné učiliště,

Více

Různé metody manažerství kvality. Práce č.11: Analýza měřicího systému (MSA)

Různé metody manažerství kvality. Práce č.11: Analýza měřicího systému (MSA) - Různé metody manažerství kvality - Práce č.11: Analýza měřicího systému (MSA) Datum: 5-6-015 Martin Bažant Obsah Obsah... 1 Úvod... 3 1.1 Měřící systém... 3 Analýza měřícího systému - Measurement system

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D.

STATISTIKA LS 2013. Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. STATISTIKA LS 2013 Garant předmětu: Ing. Martina Litschmannová, Ph.D. Přednášející: Ing. Martina Litschmannová, Ph.D. Cvičící: Ing. Ondřej Grunt RNDr. Pavel Jahoda, Ph.D. Ing. Kateřina Janurová Mgr. Tereza

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/

Matematická vsuvka I. trojčlenka. http://www.matematika.cz/ Matematická vsuvka I. trojčlenka http://www.matematika.cz/ Trojčlenka přímá úměra Pokud platí, že čím více tím více, jedná se o přímou úměru. Čím více kopáčů bude kopat, tím více toho vykopají. Čím déle

Více

Míra přerozdělování příjmů v ČR

Míra přerozdělování příjmů v ČR Míra přerozdělování příjmů v ČR Luboš Marek, Michal Vrabec Anotace V tomto článku počítají autoři hodnoty Giniho indexu v České republice. Tento index je spočítán nejprve za celou ČR, poté pro skupinu

Více

Lean Six Sigma - DMAIC

Lean Six Sigma - DMAIC Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Lean Six Sigma - DMAIC Technická univerzita v Liberci Výrobní systémy 2 Technická

Více

StatSoft Jak se pozná normalita pomocí grafů?

StatSoft Jak se pozná normalita pomocí grafů? StatSoft Jak se pozná normalita pomocí grafů? Dnes se podíváme na zoubek speciální třídě grafů, podle názvu článku a případně i ilustračního obrázku vpravo jste jistě již odhadli, že půjde o třídu pravděpodobnostních

Více

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat

Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Stručný úvod do vybraných zredukovaných základů statistické analýzy dat Statistika nuda je, má však cenné údaje. Neklesejme na mysli, ona nám to vyčíslí. Z pohádky Princové jsou na draka Populace (základní

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Modul Základní statistika

Modul Základní statistika Modul Základní statistika Menu: QCExpert Základní statistika Základní statistika slouží k předběžné analýze a diagnostice dat, testování předpokladů (vlastností dat), jejichž splnění je nutné pro použití

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

Porovnání softwarových produktů pro podporu hodnocení způsobilosti technologických procesů. Bc. Jan VERBERGER

Porovnání softwarových produktů pro podporu hodnocení způsobilosti technologických procesů. Bc. Jan VERBERGER Porovnání softwarových produktů pro podporu hodnocení způsobilosti technologických procesů Bc. Jan VERBERGER Diplomová práce 2006 UTB ve Zlíně, Fakulta technologická 3 UTB ve Zlíně, Fakulta technologická

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D

Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Hodnocení vlastností materiálů podle ČSN EN 1990, přílohy D Milan Holický Kloknerův ústav ČVUT v Praze 1. Úvod 2. Kvantil náhodné veličiny 3. Hodnocení jedné veličiny 4. Hodnocení modelu 5. Příklady -

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Pokročilejší metody SPC

Pokročilejší metody SPC OSSM ČSJ Praha 17. 10. 2013 Pokročilejší metody SPC Darja Noskievičová Katedra kontroly a řízení jakosti FMMI, VŠB-TU Ostrava KONCEPTUÁLNÍ RÁMEC Komplexní aplikace statistické regulace procesu (SPC) Fáze

Více

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických

zcela převažující druh průměru, který má uplatnění při řešení téměř všech úloh statistiky široké využití: v ekonomických STŘEDNÍ HODNOTY VÝZNAM Rozdělení četností poskytuje užitečnou informaci a přehled o zkoumaném statistickém souboru. Porovnávat několik souborů pomocí tabulek rozděleni četností by však bylo.a. Proto se

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

A05 Stanovení způsobů ověření Praktické předvedení praktická neznamená jen manuální nebo ruční

A05 Stanovení způsobů ověření Praktické předvedení praktická neznamená jen manuální nebo ruční A05 Stanovení způsobů ověření Způsob ověření se stanovuje pro každé jednotlivé kritérium. Určuje, jakým postupem je kritérium ověřováno. Základní způsoby ověření jsou: - praktické předvedení - písemné

Více

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka

2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka 2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Spokojenost se životem

Spokojenost se životem SEMINÁRNÍ PRÁCE Spokojenost se životem (sekundárních analýza dat sociologického výzkumu Naše společnost 2007 ) Předmět: Analýza kvantitativních revize Šafr dat I. Jiří (18/2/2012) Vypracoval: ANONYMIZOVÁNO

Více

Téma: Investice do akcií společnosti ČEZ

Téma: Investice do akcií společnosti ČEZ Matematika a byznys Téma: Investice do akcií společnosti ČEZ Alena Švédová A07146 Investice do akcií společnosti ČEZ ÚVOD Tímto tématem, které jsem si pro tuto práci zvolila, bych chtěla poukázat na to,

Více

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář

Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi. Geografický seminář 30. března 2011 Pavel Bednář Aplikovaná statistika pro učitele a žáky v hodinách zeměpisu aneb jak využít MS Excel v praxi Geografický seminář 30. března 2011 Pavel Bednář Výchozí stav Sebehodnocení práce s MS Excel studujícími oboru

Více

Pracovní list č. 3 Charakteristiky variability

Pracovní list č. 3 Charakteristiky variability 1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte

Více

Úvod. Struktura respondentů

Úvod. Struktura respondentů Výsledky pilotního průzkumu postojů studentů Policejní akademie ČR v Praze k problematice zálohování dat Ing. Bc. Marek Čandík, Ph.D. JUDr. Štěpán Kalamár, Ph.D. The results of the pilot survey of students

Více