Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu

Rozměr: px
Začít zobrazení ze stránky:

Download "Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu"

Transkript

1 Jak správně interpretovat ukazatele způsobilosti a výkonnosti výrobního procesu Jiří Michálek Ukazatele způsobilosti a výkonnosti C p, C pk, P p, P pk byly zavedeny ve snaze popsat stav výrobního procesu, resp. chování sledovaného znaku jakosti, pomocí několika čísel bezrozměrného charakteru. Zadáním těchto čísel se vlastně vyjadřuje požadavek na stav procesu, aby očekávaný počet neshodných výrobků odpovídal požadovanému počtu a aby proces byl ve stabilizovaném stavu, tzn. pro praxi v téměř stavu neměnícím se v průběhu času. Nejdříve, asi před 0-5 lety; byly zavedeny do praxe ukazatele způsobilosti C p, C pk, jejichž použití vyžaduje po sledovaném znaku jakosti, aby mohl být popsán normálním rozdělením N(µ,σ ), kde µ, je parametr polohy a σ je rozptyl sledovaného znaku. Pro úplnost, zde je jejich vzorec USL LSL USL µ µ LSL C p =, C pk =,. 6 σ 3 σ 3 σ Jejich zadáním se zcela jednoznačně určuje, jaká má být úroveň tzv. inherentní variability znaku jakosti a dvojrozměrná poloha; tj. střední hodnota sledovaného znaku jakosti, neboť z obou ukazatelů vyplývá pouze míra necentrování procesu od průměru specifikačních mezí, nikoliv to, zdali střední hodnota má být napravo či nalevo od tohoto průměru. Lze tedy zadání dvojice C p, C pk chápat tak, že střední hodnota jakostního znaku se muže pohybovat těmito dvěma krajními polohami, aniž by se hodnota C pk, zmenšovala, protože vždy musí být C p C pk, přičemž rovnost nastává jedině tehdy, když proces je přesně centrován na prostředek specifikačního rozmezí. První problém, se kterým se lze v praxi setkat, je již stanovení hodnot pro C p a C pk od konstruktérů či odběratelů produktů z procesu. Mnohdy bohužel tyto hodnoty jsou velice přísné, takže výrobce není schopen se stávající technologií tyto požadavky splnit, protože to mnohdy jednoduše vůbec nejde. Tento problém se často vyskytuje na,př. u plastových výrobků, kde se objevuje druhý

2 problém, a to jak přesně získat hodnoty sledovaného znaku jakosti. Stanovení požadavků na C p a C pk je jedna strana mince, ale otázka, zdali je vůbec schopen výrobní proces toto splnit, je strana druhá. Aby bylo možno obě strany porovnat. musíme z procesu odebrat nějaké produkty, ty přeměřit a získaná data použít pro zjištění způsobilosti našeho procesu. A to jo třetí problém, protože jsme nuceni zpracovat pouze dílčí informaci obsaženou v odebraných produktech, i kdyby produktů byly tisícovky. Aby nástroje matematické statistiky byly využity adekvátně, je nutno respektovat Splnění některých předpokladů. Je to především normalita získaných dat, kterou je možno ověřit pomocí testů dobré shody a stabilita procesu, což znamená poloha procesu µ (tj. střední hodnota sledovaného znaku) se v čase nemění a rovněž tak i úroveň variability σ lze považovat za stálou v čase. Takovému stavu říkáme, že proces je statisticky zvládnut, což je stav, kterého je možno dosáhnout hlavně aplikací regulačních diagramů. Tento stav je nutný proto, abychom mohli spolehlivě odhadnout parametr polohy procesu µ, nejčastěji pomocí aritmetického průměru či výběrového mediánu, a rovněž tak úroveň variability σ, obvykle pomocí výběrového rozpětí R či výběrové směrodatné odchylky s. Dalším problémem je organizace sběru dat; tj. jak často, zdali jednotlivě či ve skupinách a kolik dat budeme potřebovat pro hodnocení způsobilosti procesu. Některé postupy lze najít v literatuře, např. VDA 4.. kde se hodnotí způsobilost strojního zařízení. pak předběžná způsobilost v simulování hromadné výroby a pak dlouhodobá při hromadné výrobě, která může zahrnout i několik dní. Měla by být učiněna dohoda mezi výrobcem a odběratelem, který požaduje hodnocení způsobilosti procesu, jak se přesně bude postupovat při sběru dat, protože počet a organizace sběru dat silně ovlivňuje hodnocení způsobilosti procesu, pokud je prováděno správným způsobem. Poučenému odběrateli zdaleka nemůže stačit fakt, že odhad Ĉ p je větší nežli požadovaná, hodnota C p, což je požadavek téměř všude od zákazníků vyžadovaný, protože matematická statistika garantuje, že pokud proces skutečně splňuje požadavek, např. C p =, 33, že přibližně 50 % odhadů tohoto ukazatele je sice nad hodnotou,33, ale rovněž druhých 50 % odhadů se musí vyskytovat pod touto hodnotou. Tím, že zákazník

3 požaduje, aby Ĉ p C p, nemá vůbec zajištěno; že způsobilost výrobního procesu je na hodnotě ukazatele C p, kterou on stanovil. Vypočtená hodnota odhadu Ĉ p či Ĉ pk sama o sobě nic neříká, pokud ji nebudeme konfrontovat se stanovenými hodnotami. např. pomocí testování statistických hypotéz. Závěr takového testu silně závisí na stanoveném riziku (tzv. hladině významnosti) a hlavně na počtu dat, s nimiž pracujeme. Pokud jako nulovou hypotézu stanovíme, že proces má být způsobilý např. s C p =,33, stále ještě nezamítnutí této hypotézy proti např. alternativní hypotéze C p =, 50, zdaleka nevylučuje skutečnost, že způsobilost procesu není,33, ale jen zhruba,5. Pokud mulovou hypotézu zamítneme, jsme na tom s věrohodností závěru obvykle lépe. ale opět úroveň této věrohodnosti závisí na počtu dat. Hodnotit způsobilost procesu např. z pěti údajů, je naprostý hazard jak pro výrobce, tak i pro odběratele. Představme si, že chceme, aby výrobní proces byl nejhůře na úrovni způsobilostí C p =,33, což je velice častý požadavek v automobilovém průmyslu. Pro úplnost to znamená, že při stabilitě střední hodnoty µ na prostředku tolerančního rozpětí se požaduje, aby očekávaná neshodnost výrobků byla na úrovni 60 ppm. Postavme otázku testování způsobilosti takto: nulová hypotéza bude, že C p <,33 a alternativní hypotéza, že C p >,33. Nulovou hypotézou tedy je, že náš proces není způsobilý, alternativou je jeho způsobilost nejhůře na úrovni C p =,33. Abychom hypotézu o nezpůsobilosti zamítli a, měli velikou záruku, že náš proces je způsobilý, musí hodnota odhadu Ĉ p ukazatele C P počítaná např. z 0 podskupin o pěti kusech ve skupině při riziku 5 % překročit hodnotu,54. U ukazatele C pk je situace o to komplikovanější, že vstupuje do odhadu Ĉ pk navíc odhad parametru polohy µ. Co se vyžaduje od procesu, aby ukazatel C pk, byl správně chápan? Aplikace tohoto ukazatele vyžaduje nejen, aby úroveň variability byla stálá; ale aby i parametr polohy se v čase neměnil. Jinak totiž nesprávně odhadneme polohu procesu např. pomoci aritmetického průměru ze všech dat. Představme si takovou situaci, kdy během odebírání dat se poloha procesu změnila takovým způsobem (třeba nastavením stroje či použitím jiného materiálu na vstupu procesu), že přibližně polovina dat má parametr polohy

4 USL + LSL µ = + δ, σ > 0, druhá polovina USL + LSL µ = δ, σ > 0, kde přitom δ a δ se prakticky neliší. Když spočítáme celkový aritmetický průměr z dat, ten se nebude významně lišit od středu tolerančního rozmezí USL + LSL, což se projeví v hodnosti odhadu Ĉ pk tím, že ta,to hodnota se nebude významně lišit od hodnoty odhadu Ĉ p a člověk, který si neprohlédne průběh dat se může domnívat, že proces je velice dobře centrovaný. Opět vlastní hodnota odhadu Ĉ pk nám nic neříká, pokud není porovnávána se zadanou hodnotou C pk pomocí testování hypotéz; což má smysl pouze tehdy, když proces je stabilní i v parametru polohy. O tom se lze přesvědčit pomocí statistického nástroje MANOVA. Jedná se vlastně o otázku, zdali všechna data potřebná pro odhad Ĉ pk pocházejí z jediné populace se střední hodnotou µ. Když připustíme, že náš proces může v parametru polohy "dýchat", což znamená, že parametr µ není v průběhu výroby fixní, ale může se pohybovat v jistém rozmezí uvnitř tolerančního pásma, např. USL LSL USL LSL µ δ, + δ, kde δ > 0. V metodice Six Sigma se uvažuje, že δ =,5σ, kde σ je směrodatná odchylka zkoumaného znaku jakosti. Protože parametr µ není pevný, uvažovat použití ukazatele C pk v této situaci je nesprávné, protože odhad celkového aritmetického průměru z dat vůbec nic neříká o chování parametru µ. Samozřejmě ihned se naskýtá problém, jak v této situaci hodnotit způsobilost procesu? Odpověď' není zdaleka jednoznačná, protože především závisí na tom, jak se parametr µ chová ve vymezeném intervalu. Pokud bude jeho chování náhodné, které lze popsat nějakým rozdělením pravděpodobnosti, pak by správně pro hodnocení způsobilosti

5 takového procesu východiskem mělo být rozdělení pravděpodobnosti, které je dáno konvolucí normálního rozdělení N(0,σ ), které charakterizuje zdroj inherentní variability, s rozdělením pravděpodobnosti; které popisuje chování parametru µ. Takováto situace nastává např. při opotřebování nástroje během výrobní operace, kdy se do procesu dostává lineární trend v chování parametru polohy, což koresponduje s rovnoměrným rozdělením na intervalu vymezeném pro pohyb parametru polohy. Dalším případem je taková situace, kdy lze data rozdělit, tj. stratifikovat, do jednotlivých kategorií, které jsou odlišeny různými hodnotami parametru polohy. Tento případ na,stává např. tehdy, když data z jednotlivé kategorie odpovídají novému seřízení stroje či jednotlivým šaržím, kdy nelze přesně dodržet parametr polohy na jednom místě a je nutno počítat s jeho změnou v rámci nějakého intervalu kolem prostředku tolerančního rozmezí. Získaná data potom jsou výsledkem směsi normálních rozdělení nejčastěji se stejnou úrovní inherentní variability, ale s různými středními hodnotami. Pokud dovedeme jednotlivé kategorie dat ve směsi identifikovat podle nějakých příznaků (např. operátor, směna, šarže, seřízení stroje apod.), pak lze hodnotit způsobilost výrobního procesu pomocí ukazatele P pk následovně. Pro každou kategorii dat, tj. pro každou složku směsi spočítáme odpovídající aritmetické průměry a odhad směrodatné odchylky. Pomocí nich spočítáme odhady USL xi Pˆ pku =, i =,, K, k 3 si a odhady xi LSL Pˆ pkl =, i =,, K, k. 3 si Pak má smysl odhadnout ukazatel P pk pro celou směs jako Pˆ pk ( minpˆ pkl, minpˆ pku) = min, i k i k kde k je počet kategorií ve směsi. Takto zavedený odhad má zcela racionální smysl, neboť je založen na složkách směsi, které mají střední hodnoty nejdále od prostředku tolerančního rozmezí. Zatím ale zcela chybí teoretické pozadí, které by dalo odpověď' např. na velikost konfidenčního intervalu či možnost prověřit hodnotu odhadu s požadovanou hodnotou ukazatele C pk.

6 Tento stručný rozbor situace jasně dokazuje, že pokud proces není statisticky zvládnut a sledovaná data nelze popsat normálním rozdělením, pak odhady ukazatelů C p a C pk ; nemusí vůbec nic vypovídat o způsobilosti procesu. Pokud sebraná data nelze vysvětlit normálním rozdělením, může být sledovaný znak jakosti popsatelný jiným typem rozdělení (např. logaritmicko-normální, Weibull, překlopené normální), a to čistě třeba z fyzikálních důvodů (např. rovinnost, ovalita apod.) a nebo se jedná o zcela neidentifikovatelnou směs z normálních rozdělení. Pak samozřejmě formální výpočet odhadů C p a C pk je sice možný, ale nic to neříká, o odhadu neshodných kusů ve výrobním procesu. Jak potom postupovat? Bud' dovedeme najít vhodný tvar rozdělení pravděpodobnosti jako model pro popis sledovaného znaku jakosti, ale toto rozdělení musí být vlastní tvaru procesu v tom smyslu, že každá skupina naměřených hodnot je vysvětlitelná tímto typem rozdělení a definice odpovídajících ukazatelů C p a C pk je založena na kvantilovém rozpětí. Tento přístup má svoji velkou slabost právě v odhadu odpovídajících kvantilů, což vyžaduje relativně velký počet, dat pro získání věrohodných závěrů. Druhá možnost je založena na myšlence původní data pomocí vhodné transformace, samozřejmě jedno-jednoznačné převést na nová data. která lze popsat již normálním rozdělením. Vybranou transformací se získají i nové specifikace pro nová data a pro hodnocení způsobilostí se použijí klasické tvary ukazatelů C p a C pk založené na specifických vlastnostech normálního rozdělení. V praxi se v tomto případě nejčastěji používá bud' Box-Coxova transformace či třída Johnsonových transformací, která nová data převádí přímo na rozdělení N(0, ).V následujícím jsou uvedeny dva příklady, které ukazují, že nerespektování předpokladu normality bud' nadhodnotí úroveň způsobilosti procesu či naopak podhodnotí. Na obr. je provedeno hodnocení způsobilosti procesu bez respektování předpokladu o normalitě dat. Takto získaná hodnota odhadu nemůže nic vypovídat o skutečné situaci ve výrobním procesu. Jeden z možných správných postupů je ukázán na obr., kde je použita vhodná Johnsonova transformace na původní data, která jsou převedena na data, které již požadavek na normalitu dat splňují. Porovnáním obou hodnot odhadů ukazatelů je vidět, že vlastně stav procesu je lepší nežli ukazuje obr..

7 Poznámka: Proces je hodnocen pomocí ukazatelů výkonnosti, které jsou zadefinovány níže, protože se jedná o individuální hodnoty a použitý software Minitab po Johnsonově transformaci ukazatele způsobilosti nepočítá. Process Capability of Warping (using 95,0% confidence) Process Data LSL 0 Target * USL 9 Sample Mean,9307 Sample N 00 StDev(Within),68898 StDev (Ov erall),79048 Observ ed Perf ormance PPM < LSL 0,00 PPM > USL 0,00 PPM Total 0,00 LSL 0,0,5 Exp. Within Perf ormance PPM < LSL 4755,60 PPM > USL 60,35 PPM Total 495,95 3,0 4,5 6,0 Exp. Ov erall Performance PPM < LSL 58,8 PPM > USL 344,38 PPM Total 565,56 7,5 USL 9,0 Within Overall Potential (Within) Capability Cp 0,89 Lower CL 0,76 Upper CL,0 CPL 0,58 CPU,0 Cpk 0,58 Lower CL 0,47 Upper CL 0,68 Ov erall Capability Pp 0,84 Lower CL 0,7 Upper CL 0,95 PPL 0,54 PPU,3 Ppk 0,54 Lower CL 0,44 Upper CL 0,64 Cpm * Lower CL * Obr. Nesprávný odhad ukazatele způsobilosti Process Data LSL 0 Target * USL 9 Sample Mean,9307 Sample N 00 StDev,78597 Shape 0,88908 Shape 0, Location -0,3606 Scale 9,4436 After Transformation LSL* -3,336 Target* * USL* 4,89 Sample Mean* 0,096 StDev* 0, Observed Performance PPM < LSL 0,00 PPM > USL 0,00 PPM Total 0,00 Process Capability of Warping Johnson Transformation with SB Distribution Type 0, ,987 * Log( ( X + 0,33 ) / ( 9,3 - X ) ) (using 95,0% confidence) LSL* transformed data USL* Overall Capability Pp,6 Lower CL,09 Upper CL,44 PPL, PPU,4 Ppk, Lower CL 0,95 Upper CL,8 Exp. Overall Performance PPM < LSL 46,36 PPM > USL,73 PPM Total 48, Obr. Hodnocení procesu po transformaci dat

8 Ne pouze problémy přináší praxe, ale i teorie. Na začátku 90. let se objevují z popudu amerického automobilového průmyslu další dva ukazatele, a to ukazatele výkonnosti P p a P pk. Lze ale říci, že jejich zavedení situaci spíše zkomplikovalo nežli zjednodušilo v tom smyslu, že tyto ukazatelé dodají další užitečnou informaci o průběhu výrobního procesu. Jejich vzorce se od vzorců pro C p a C pk liší pouze v tom, že ve jmenovateli se místo směrodatné odchylky σ inherentní variability objevuje tzv. totální směrodatná odchylka σ TOT. Je doporučováno, aby tyto ukazatele. resp. jejich odhady, byly používány u procesů, které nejsou statisticky zvládnuty. Pokud je proces zvládnut a data normálně rozdělena, tak odhady Ĉ p, a Pˆ p by se neměly příliš lišit, protože rozdíl v odhadech ( ) x xi k n σˆ TOT = i j kn i= j= a R s σ ˆ =, resp. σˆ = d C 4 by za této stabilizované situace měl být malý. Pokud ale proces není stabilní. úloha ukazatelů P p a P pk není jasná, protože nemohou predikovat výkonnost procesu. Problém je v tom, že definice těchto ukazatelů nic nevyžaduje, jakým způsobem vzniká totální variabilita. Tudíž nelze odvodit statistické vlastnosti odhadů těchto ukazatelů a nelze je např. testovat, protože statistika potřebuje model, na jehož základě zkonstruuje přijatelný test. To znamená, že např., pokud nějaký software obsahuje konfidenční intervaly pro tyto ukazatele a není řečeno, z čeho se při jejich výpočtu vycházelo, pak jsou naprosto k ničemu. V monografii [] je silně argumentováno proti používání těchto ukazatelů a je řečeno. že jejich zavedení je krokem zpět v hodnocení způsobilosti výrobního procesu. Bohužel ve. vydání příručky pro dodavatele do amerického automobilového průmyslu z roku 005, viz [], se přímo doporučuje použití všech 4 ukazatelů pro charakterizování výrobního procesů na základě normy ANSI Standard Z z roku 996. Na jednoduchém příkladu si dokažme, že skutečně zavedení ukazatele P p "stojí na vodě".

9 Představme si výrobní proces, kde parametr polohy µ sledovaného znaku jakosti silně závisí na vstupu (např. seřízení stroje, různé dávky vstupního materiálu, různí dodavatelé apod.). Uvažujme, že sledujeme výkonnost procesu po takovou dobu, že výsledná data lze popsat jako směs dvou normálních rozdělení N(µ i, σ ), i =,, tedy hustota směsi je h(x) = αf (x) + (-α)f (x), kde f i ( ) je hustota normálního rozdělení N(µ i, σ ). Předpokládejme, že parametr rozptylu σ je pro jednoduchost konstantní v čase, ale parametry polohy µ a µ a rovněž i parametr směsi α se mohou měnit v čase. Takový proces je zřejmě nestabilní v čase. Jeho střední hodnota a rozptyl jsou E { X} = αµ + ( α) µ, { } = σ + α µ + ( α) µ ( E{ X} ), D X pokud složky směsi budeme považovat za nezávislé, což je v praxi přijatelné. Z tohoto procesu odebereme náhodný výběr x, x,..., x N a budeme sledovat co dělá odhad totální směrodatné odchylky σˆ TOT = N N j= (xi x) Pokud výběr bude složen z podílu [αn] ze složky N(µ, σ ) a zbytek z druhé složky N(µ, σ ) a poměr obou složek bude pro každé N zachována, pak lze ukázat, že σˆ D{ X}. TOT N Na základě toho by ukazatel výkonnosti procesu P p měl mít hodnotu P p USL LSL = 6 D{ X}. Je ale vidět, že jeho hodnota silně závisí α, µ, µ a správně bychom odhadovali jeho hodnotu jedině tehdy, když tyto parametry by byly konstantní v čase a náhodný výběr by respektoval poměr zastoupení složek směsi. Z tohoto jednoduchého příkladu ihned plyne, že vlastně obecně nevíme, co odhad ukazatele P p říká, protože ve statistické analýze se nemůžeme opřít o nějaký konkrétní model, /.

10 pokud proces nevykazuje stabilitu v čase. Kdy lze tedy ukazatele výkonnosti použít? Mají smysl jedině tehdy, když získaná data bez ohledu na podskupiny lze popsat nějakým rozdělením pravděpodobnosti, např. normálním. Tento předpoklad je důležitý proto, aby bylo možno stanovit např. konfidenční interval pro hodnotu ukazatele nebo provést statistický test nějaké hypotézy o hodnotě ukazatele. Pouze vlastní hodnota odhadu ukazatele výkonnosti bez vhodného statistického modelu neříká de facto nic. Literatura: [] Kotz. S., Lovelace C. R.: Process Capability Indices in Theory and Practice. Arnold, London (998). [] AIAG - Chrysler, Ford, General Motors. (QS Statistical Process Control (. vydání, 005). Adresa autora: RNDr. Jiří Michálek, CSc., Ústav teorie informace a automatizace AV ČR Praha, Oddělení stochastické informatiky, Pod vodárenskou věží 4, 8 08 Praha 8. Tato práce byla vytvořena za podpory projektu MŠMT M CQR

SW podpora při řešení projektů s aplikací statistických metod

SW podpora při řešení projektů s aplikací statistických metod SW podpora při řešení projektů s aplikací statistických metod Jan Král, Josef Křepela Úvod Uplatňování statistických metod vyžaduje počítačovou podporu. V současné době je rozšiřována řada vynikajících

Více

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ

HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost

Více

Vyhodnocování způsobilosti a výkonnosti výrobního procesu

Vyhodnocování způsobilosti a výkonnosti výrobního procesu Vyhodnocování způsobilosti a výkonnosti výrobního procesu Jiří Michálek CQR 2009 Vyhodnocování způsobilosti a výkonnosti výrobního procesu Jiří Michálek Centrum pro jakost a spolehlivost ve výrobě CQR

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU

STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU STATISTICKÉ ŘÍZENÍ PROCESŮ SE SW PODPOROU RNDr. Jiří Michálek, CSc. Centrum pro kvalitu a spolehlivost CQR při Ústavu teorie informace a automatizace AVČR e-mail: michalek@utia.cas.cz Ing. Jan Král ISQ

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

MSA-Analýza systému měření

MSA-Analýza systému měření MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Výkonnost procesů v případě nenormálně rozděleného znaku kvality. Jiří Michálek

Výkonnost procesů v případě nenormálně rozděleného znaku kvality. Jiří Michálek Výkonnost procesů v případě nenormálně rozděleného znaku kvality Jiří Michálek 1 Hodnocení způsobilosti a výkonnosti výrobních procesů je prováděno především u dodavatelů do automobilového průmyslu, kde

Více

Národní informační středisko pro podporu kvality

Národní informační středisko pro podporu kvality Národní informační středisko pro podporu kvality Nestandardní regulační diagramy J.Křepela, J.Michálek REGULAČNÍ DIAGRAM PRO VŠECHNY INDIVIDUÁLNÍ HODNOTY xi V PODSKUPINĚ V praxi se někdy setkáváme s požadavkem

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Statistické řízení jakosti - regulace procesu měřením a srovnáváním

Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistické řízení jakosti - regulace procesu měřením a srovnáváním Statistická regulace výrobního procesu (SPC) SPC = Statistical Process Control preventivní nástroj řízení jakosti, který na základě včasného

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Analýza způsobilosti. procesu. StatSoft

Analýza způsobilosti. procesu. StatSoft StatSoft Analýza způsobilosti procesu Analýza způsobilosti je jedna z nejběžnějších analýz vyžadovaných v oblasti zpracování průmyslových dat. V tomto článku si představíme indexy způsobilosti a podrobně

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT

Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,

Více

t-test, Studentův párový test Ing. Michael Rost, Ph.D.

t-test, Studentův párový test Ing. Michael Rost, Ph.D. Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Testování hypotéz. 4. přednáška 6. 3. 2010

Testování hypotéz. 4. přednáška 6. 3. 2010 Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo

Více

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů

Inferenční statistika - úvod. z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Inferenční statistika - úvod z-skóry normální rozdělení pravděpodobnost rozdělení výběrových průměrů Pravděpodobnost postupy induktivní statistiky vycházejí z teorie pravděpodobnosti pravděpodobnost, že

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká

Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy. Kateřina Brodecká Ekonomické aspekty statistické regulace pro vysoce způsobilé procesy Kateřina Brodecká Vysoce způsobilé procesy s rozvojem technologií a důrazem kladeným na aktivity neustálého zlepšování a zeštíhlování

Více

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY

SAMOSTATNÁ STUDENTSKÁ PRÁCE ZE STATISTIKY SAMOSTATÁ STUDETSKÁ PRÁCE ZE STATISTIKY Váha studentů Kučerová Eliška, Pazdeříková Jana septima červen 005 Zadání: My dvě studentky jsme si vylosovaly zjistit statistickým šetřením v celém ročníku septim

Více

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času

Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.

veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího

Více

Vybrané praktické aplikace statistické regulace procesu

Vybrané praktické aplikace statistické regulace procesu ČSJ, OSSM Praha, 19. 4. 2012 Vybrané praktické aplikace statistické regulace procesu Prof. Ing. Darja Noskievičová, CSc. Katedra kontroly a řízení jakosti Fakulta metalurgie a materiálového inženýrství

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY

Test z teorie VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY VÝBĚROVÉ CHARAKTERISTIKY A INTERVALOVÉ ODHADY Test z teorie 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

Poznámky k předmětu Aplikovaná statistika, 9.téma

Poznámky k předmětu Aplikovaná statistika, 9.téma Poznámky k předmětu Aplikovaná statistika, 9téma Princip testování hypotéz, jednovýběrové testy V minulé hodině jsme si ukázali, jak sestavit intervalové odhady pro některé číselné charakteristiky normálního

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Statistická analýza výroby a povlakování pístků. Václav Chmelík

Statistická analýza výroby a povlakování pístků. Václav Chmelík Statistická analýza výroby a povlakování pístků Václav Chmelík Úvod Statistická analýza výroby je důležitý prostředek pro poznání stavu výrobních procesů. Bez důkladné analýzy není možné seriozně vyhodnotit

Více

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace

Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace České vysoké učení technické v Praze Fakulta elektrotechnická Semestrální práce z předmětu Pravděpodobnost, statistika a teorie informace Životnost LED diod Autor: Joel Matějka Praha, 2012 Obsah 1 Úvod

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

10. Předpovídání - aplikace regresní úlohy

10. Předpovídání - aplikace regresní úlohy 10. Předpovídání - aplikace regresní úlohy Regresní úloha (analýza) je označení pro statistickou metodu, pomocí nichž odhadujeme hodnotu náhodné veličiny (tzv. závislé proměnné, cílové proměnné, regresandu

Více

Statistické regulační diagramy

Statistické regulační diagramy Statistické regulační diagramy Statistickou regulací procesu měření rozumíme jeho udržení ve statisticky zvládnutém stavu. Jen tak se zabezpečí shoda výsledků měření se specifickými požadavky na měření.

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Induktivní statistika. z-skóry pravděpodobnost

Induktivní statistika. z-skóry pravděpodobnost Induktivní statistika z-skóry pravděpodobnost normální rozdělení Z-skóry umožňují najít a popsat pozici každé hodnoty v rámci rozdělení hodnot a také srovnávání hodnot pocházejících z měření na rozdílných

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ

SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ SYSTÉM TECHNICKO-EKONOMICKÉ ANALÝZY VÝROBY TEKUTÉHO KOVU - CESTA KE SNIŽOVÁNÍ NÁKLADŮ FIGALA V. a), KAFKA V. b) a) VŠB-TU Ostrava, FMMI, katedra slévárenství, 17. listopadu 15, 708 33 b) RACIO&RACIO, Vnitřní

Více

Ústav teorie informace a automatizace RESEARCH REPORT. Nestandardní regulační diagramy pro SPC. No. 2311 December 2011

Ústav teorie informace a automatizace RESEARCH REPORT. Nestandardní regulační diagramy pro SPC. No. 2311 December 2011 kademie věd České republiky Ústav teorie informace a automatizace cademy of Sciences of the Czech Republic Institute of Information Theory and utomation RESERCH REPORT Josef Křepela, Jiří Michálek: Nestandardní

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

IMPLEMENTING SPC IN INDUSTRIAL PROCESS ZAVÁDĚNÍ SPC VE VÝROBNÍM PROCESU. Dostál P., Černý M. ABSTRACT

IMPLEMENTING SPC IN INDUSTRIAL PROCESS ZAVÁDĚNÍ SPC VE VÝROBNÍM PROCESU. Dostál P., Černý M. ABSTRACT IMPLEMENTING SPC IN INDUSTRIAL PROCESS ZAVÁDĚNÍ SPC VE VÝROBNÍM PROCESU Dostál P., Černý M. Department of Engineering and Automobile Transport, Faculty of Agronomy, Mendel University of Agriculture and

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci

Více

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1

Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 Statistická analýza dat podzemních vod. Statistical analysis of ground water data. Vladimír Sosna 1 1 ČHMÚ, OPZV, Na Šabatce 17, 143 06 Praha 4 - Komořany sosna@chmi.cz, tel. 377 256 617 Abstrakt: Referát

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Regresní a korelační analýza

Regresní a korelační analýza Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Regresní analýza Cíl regresní analýzy: stanovení formy (trendu, tvaru, průběhu)

Více

Regulace výrobního procesu v soft. Statistica

Regulace výrobního procesu v soft. Statistica Regulace výrobního procesu v soft. Statistica Newsletter Statistica ACADEMY Téma: Regulační diagramy, možnosti softwaru Typ článku: Teorie, návod V tomto článku bychom Vám rádi ukázali další typy analýz,

Více

QI Analyst Sledování a řízení kvality výrobních procesů

QI Analyst Sledování a řízení kvality výrobních procesů QI Analyst Sledování a řízení kvality výrobních procesů Jaroslav Jarka Pantek (CS) s.r.o. Strana 2 Úvod Do komplexní nabídky softwaru pro průmyslovou automatizaci od firmy Wonderware byl začleněn nový

Více

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013

Cvičení ze statistiky. Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Filip Děchtěrenko ZS 2012/2013 Cvičení ze statistiky Pondělí 16:40, C328 http://www.ms.mff.cuni.cz/~dechf7am Praktické zaměření Proč potřebuji statistiku, když chci dělat (doplň)?

Více

Popisná statistika kvantitativní veličiny

Popisná statistika kvantitativní veličiny StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Přejímka jedním výběrem

Přejímka jedním výběrem Přejímka jedním výběrem Menu: QCExpert Přejímka Jedním výběrem Statistická přejímka jedním výběrem slouží k rozhodnutí, zda dané množství nějakých výrobků vyhovuje našim požadavkům na kvalitu, která je

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT

3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT PROKAZOVÁNÍ SHODY VÝROBKŮ část 3, díl 8, kapitola 4, str. 1 3/8.4 PRAKTICKÉ APLIKACE PŘI POUŽÍVÁNÍ NEJISTOT Vyjadřování standardní kombinované nejistoty výsledku zkoušky Výsledek zkoušky se vyjadřuje v

Více

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI

VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI VYUŽITÍ MATLAB WEB SERVERU PRO INTERNETOVOU VÝUKU ANALÝZY DAT A ŘÍZENÍ JAKOSTI Aleš Linka 1, Petr Volf 2 1 Katedra textilních materiálů, FT TUL, 2 Katedra aplikované matematiky, FP TUL ABSTRAKT. Internetové

Více

ANAL YZA ZPUSOBILOSTI FORMOVACICH SMESi, JAKO SOUCAST TQM VE SLEV ARNE

ANAL YZA ZPUSOBILOSTI FORMOVACICH SMESi, JAKO SOUCAST TQM VE SLEV ARNE 32/8 Solidifil ation of Metais and Alloys, No. 32, 1997 Kr~:epnięcie Metali i Stopów, Nr 32, 1997 PAN - Oddział Katowice PL ISSN 0208-9386 ANAL YZA ZPUSOBILOSTI FORMOVACICH SMESi, JAKO SOUCAST TQM VE SLEV

Více

Obecné zásady interpretace výsledků - mikrobiologie vody

Obecné zásady interpretace výsledků - mikrobiologie vody Obecné zásady interpretace výsledků - mikrobiologie vody Hodnocení rozborů vody Konzultační den RNDr. Jaroslav Šašek ČSN P ENV ISO 13843: 2002 Jakost vod - Pokyny pro validaci mikrobiologických metod Mez

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE

VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE VYUŽITÍ SIMULACE PŘI MODELOVÁNÍ PROVOZU NA SVÁŽNÉM PAHRBKU SEŘAĎOVACÍ STANICE 1 Úvod Michal Dorda, Dušan Teichmann VŠB - TU Ostrava, Fakulta strojní, Institut dopravy Seřaďovací stanice jsou železniční

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

O MOŽNOSTI ADJUSTACE IMISNÍCH KONCENTRACÍ NA METEOROLOGICKÉ PODMÍNKY. RNDr. Josef Keder, CSc.

O MOŽNOSTI ADJUSTACE IMISNÍCH KONCENTRACÍ NA METEOROLOGICKÉ PODMÍNKY. RNDr. Josef Keder, CSc. O MOŽNOSTI ADJUSTACE IMISNÍCH KONCENTRACÍ NA METEOROLOGICKÉ PODMÍNKY RNDr. Josef Keder, CSc. Zadání úlohy V souladu s požadavkem zadavatele (MŽP) bude zpracována metodika, umožňující oprostit průměrné

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

BAYESOVSKÉ ODHADY. Michal Friesl V NĚKTERÝCH MODELECH. Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni BAYESOVSKÉ ODHADY V NĚKTERÝCH MODELECH Michal Friesl Katedra matematiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Slunce Řidiči IQ Regrese Přežití Obvyklý model Pozorování X = (X 1,..., X

Více

Výsledky základní statistické charakteristiky

Výsledky základní statistické charakteristiky Výsledky základní statistické charakteristiky (viz - Vyhláška č. 343/2002 Sb. o průběhu přijímacího řízení na vysokých školách a Vyhláška 276/2004 Sb. kterou se mění vyhláška č. 343/2002 Sb., o postupu

Více

Teorie síťových modelů a síťové plánování

Teorie síťových modelů a síťové plánování KSI PEF ČZU Teorie síťových modelů a síťové plánování Část přednášky doc. Jaroslava Švasty z předmětu systémové analýzy a modelování. Zápis obsahuje základní vymezení projektu, časového plánování a popis

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické

MODELY ŘÍZENÍ ZÁSOB nákladově orientované modely poptávka pořizovací lhůta dodávky předstih objednávky deterministické stochastické MODELY ŘÍZENÍ ZÁSOB Význam zásob spočívá především v tom, že - vyrovnávají časový nebo prostorový nesoulad mezi výrobou a spotřebou - zajišťují plynulou výrobu nebo plynulé dodávky zboží i při nepředvídaných

Více

Biostatistika a matematické metody epidemiologie- stručné studijní texty

Biostatistika a matematické metody epidemiologie- stručné studijní texty Biostatistika a matematické metody epidemiologie- stručné studijní texty Bohumír Procházka, SZÚ Praha 1 Co můžeme sledovat Pro charakteristiku nebo vlastnost, kterou chceme sledovat zvolíme termín jev.

Více

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme

diskriminaci žen letní semestr 2012 1 = výrok, o jehož pravdivosti chceme rozhodnout tvrzení o populaci, o jehož platnosti rozhodujeme motivační příklad Párový Párový Příklad (Platová diskriminace) firma provedla šetření s cílem zjistit, zda dochází k platové diskriminaci žen Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky

Více

Protokol č. 1. Tloušťková struktura. Zadání:

Protokol č. 1. Tloušťková struktura. Zadání: Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále

Více