Fyzika vysokých energií. Jiří Kvita, MFF UK

Rozměr: px
Začít zobrazení ze stránky:

Download "Fyzika vysokých energií. Jiří Kvita, MFF UK"

Transkript

1 Fyzika vysokých energií Jiří Kvita, MFF UK

2 Fyzika vysokých energií Z experimentálního pohledu O čem budu povídat? Co chceme (a mů můžeme) pozorovat v mikrosvě mikrosvětě. Částice a Standardní Standardní Model. Detektory. Urychlovač Urychlovače. Příklady a obrá obrázky. Osobní Osobní zkuš zkušenost ::- )

3 Fyzika vysokých energií Aneb fyzika částicová Proč potřebujeme ke studiu částic vysoké energie? Jaké experimentální zařízení je třeba postavit? Jak se ovlivňuje teorie a experiment? Jaká je komunita lidí částicové fyziky? Co všichni ti lidé dělají? Jaké jsou aplikace? Studium malých objektů si paradoxně vyžaduje značně velké aparatury a prostředky. Další zajímavá paralela je mezi mikrokosmem a kosmologií: vysoké energie a hustoty hmoty které připravujeme v současných experimentech jsou podobné těm, které existovaly těsně po Velkém třesku.

4 Fyzika vysokých energií aneb Fyzika částicová Studium malých objektů si paradoxně vyžaduje značně velké aparatury a prostředky. Další zajímavá paralela je mezi mikrokosmem a kosmologií: vysoké energie a hustoty hmoty které připravujeme v současných experimentech jsou podobné těm, které existovaly těsně po Velkém třesku. Většina principů je však jednoduchých a vysvětlitelných, nejsou to žádné zázraky :-) Spousta hezkých myšlenek pochází z jiných odvětví fyziky, která se tak vskutku demonstruje jako univerzální věda. Kritické myšlení, touha po poznání a pravdě je společná všem vědním disciplínám.

5 Co je to částice? Jaké vlastnosti můžeme měřit? A jak? your suggestions here Jsou to kuličky? :-) Jak je můžeme vidět, sáhnout si na ně? Mikroskopy, měření polohy Kvantová mechanika: vlnový i korpuskulární charakter, relace neurčitosti. Nerozlišitelnost stejných částic. Bosony a fermiony. Kvantová teorie pole: kvanta polí, které se určitým způsobem transformují vůči Lorentzově transformaci:-) Kreační a anihilační operátory, částicová interpretace. Částice a antičástice.

6 Co je to částice? Jaké vlastnosti můžeme měřit? A jak? Náboj, spin, hmota. Parita, isospin, podivnost Baryonové číslo, leptonové číslo. Kinematika: hybnost, energie, poloha (s omezenou přesností). Jsou to kuličky? :-) Jak je můžeme vidět, sáhnout si na ně? Mikroskopy, měření polohy Kvantová mechanika: vlnový i korpuskulární charakter, relace neurčitosti. Nerozlišitelnost stejných částic. Bosony a fermiony. Kvantová teorie pole: kvanta polí, které se určitým způsobem transformují vůči Lorentzově transformaci:-) Kreační a anihilační operátory, částicová interpretace. Částice a antičástice.

7 Rozptylový experiment Rozhodujícím momentem byl objev atomového jádra, a to nejen výsledkem (většina hmoty v atomu koncentrována v nepatrném objemu), ale i konceptem: ostřelováním atomů zlaté fólie alfa částicemi: jeden z prvních rozptylových experimentů! Mikroskop bombarduje vzorek fotony o určité vlnové délce, která určuje naši rozlišovací schopnost. Chceme-li vidět ještě menší věci, potřebujeme elektronový mikroskop. Chceme-li se podívat na stále jemnější struktury, musíme pro zkrácení vlnové délky zvyšovat energii nalétávajícího svazku, neb podle de Broglieovy hypotézy a Einsteina p = h / λ E 2 = p 2 c 2 + m 2 c 4.

8 Jak částice vypadají? Snímek z bublinové komory: v přehřáté kapalině dochází lokálně k varu podél prolétávajících částic (ionizace). Dráhy zakřiveny v magnetickém poli.

9 Standardní model mikrosvěta Částice a síly I Částice: Leptony: elektron a neutrino + dvě další rodiny Kvarky: tvoří hadrony - mezony: kvark+antikvark (piony) - baryony: 3 kvarky (proton, neutron) Intermediální bosony W ±, Z, γ, 8 gluonů. Předpovězený Higgsův boson. Síly (interakce): Gravitační zanedbáváme :-) Slabá + Elektromagnetická = Elektroslabá Silná

10 Kvarky a Hadrony Hadronová spektroskopie: Kvarkové složení neurčuje částici jednoznačně. Exotické částice lze chápat jako excitace základních stavů (podobně jako vyšší stavy atomového obalu, jen jde o silnou namísto elektromagnetickou interakci)

11 Průchod částic hmotou a co se při tom děje? Nabitá částice ionizuje, vyráží elektrony z obalů a ztrácí tak energii. Fotony: Comptonův efekt, Fotoefekt, kreace elektron-pozitronových párů. Fotojaderné procesy. Elektrony: brzdné záření (v poli jader zpomaluje, září), ionizace. Jaderné interakce: hlavně hadrony (piony, proton), štěpení jáder. Miony: těžší elektrony, zanedbatelné brzdné ztráty, neinteragují silně, pronikají daleko (téměř pouze ionizace). Čerenkovovo záření: Je-li rychlost částice vyšší než rychlost světla v daném prostředí, vzniká elektromagnetická rázová vlna. Realizace: radiátor s vhodným indexem lomu, detektor (fotonásobič). cos θ = 1 / nβ

12 Některé společné rysy experimentů Stále jde v principu o rozptylový experiment: srážíme částice nebo bombardujeme terčíky a sledujeme vzniklé produkty, jejich energie, změny úhlu a usuzujeme tak vnitřní strukturu, nové objekty Pro velkou statistiku často vysokáčetnost srážek: nutnost rychle se rozhodnout, zda událost je zajímavá a chceme ji zaznamenat, všechny zapsat nemůžeme ( trigger - spoušť). Frekvence zápisu dat limitována možnostmi zápisu na magnetické pásky (kolem 100 Hz). Harddisk dlouhodobě nespolehlivý:) Rekonstrukce události ze signálů v elektronice: od světelných impulsůči zásahů v křemíku a sesbíraného náboje až k měřené energii či zrekonstruované dráze. Detektor je pouze složitý fotoaparát! Zákon zachování příčné hybnosti.

13 Některé společné rysy experimentů Dráhové detektory: hledání tracků, měření hybnosti. Elektromagnetický kalorimetr: elektrony, fotony, částečně hadronové spršky ( jety ). Hadronový kalorimetr: jety (hadronová sprška, jaderné interakce). Mionové komory (miony málo ionizují, neinteragují silně: pronikají daleko). Podle tohoto schématu navržena většina víceúčelových detektorů: CDF, D0 (Fermilab) H1, Zeus (Desy) OPAL, Delphi, Aleph, L2 (byly na urychlovači LEP, CERN) ATLAS, CMS (budují se v Cernu) Star, Phenix (RHIC, Brookhaven)

14 Měření energie (Kalorimetrie) Prolétávající částice ionizuje. Energii lze odhadnout měřením náboje. Scinitilační detektory: speciální materiály schopné fluorescence. Energie úměrná počtu fotonů. Jaké materiály a typy detektorů použijeme? Organické scintilátory: π elektrony (antracen, polystyren) Anorganické scintilátory: NaI, olovnaté sklo. Světlo můžeme sbírat z celého objemu detektoru: výhoda dobrého rozlišení (malá chyba měření).

15 Měření energie (Kalorimetrie) Scintilátory: Např. olovnaté sklo či speciální krystaly. Výhoda: vidíme celou spršku a můžeme pozorovat veškerou energii. Např. CMS EM kalorimetr. Samplovací kalorimetry: Aktivní vrstvy (probíhá v nich měření) se střídají s absorbérem. Kalorimetr tak může být menší a zastaví energetičtější částice. Daň je statistická fluktuace v měření energie, nevidíme celou spršku, jen si ji vzorkujeme. Materiály a způsoby řešení: Scintilátor + Absorbér (Fe, Cu, Ni, U). Sběr světla optickými vlákny, fotonásobiče. Kapalný Argon (LqAr), drift elektronů v eletrickém poli (vysoké napětí).

16 Jaké Fyzikální veličiny chceme měřit?

17 Jaké Fyzikální veličiny chceme měřit? Pravděpodobnost určitého typu srážky, dané události (účinný průřez, dynamika daného procesu). Hmotnosti a doby života částic. Spektra energií, impulsů, úhlová rozdělení Způsoby rozpadu nestabilních částic (rozpadové kanály). To vše lze srovnávat s teoretickými předpověďmi! Stanovit limity na pozorování nových jevů. Objevit nové částice či interakce:-) Kvantová mechanika je pravděpodobnostní: nikdy nelze přesně předpovědět, co se stane, a ze snímku dané události nelze s jistotou identifikovat vzniklé produkty: spousta zajímavých událostí má i velmi podobné (nezajímavé) pozadí. Detailním studiem srážkových procesů získáváme hluboké znalosti o struktuře Mikrosvěta, ale také podmínek krátce po vzniku Vesmíru: propojení částicové fyziky a astrofyziky.

18 Jak si částice a jejich svazky připravíme? Přirozená radioaktivita: limitovaná hustota svazku a energie, jen první objevy. Stále se však používá pro zdroje neutronů (alfa zářič stěpí příměs, např. Am+Be). Kosmické záření: doposud nejvyšší známé energie, ale těžko opakovatelné a vzácné události. Významné do cca 50. let při objevech pozitronu, pionů, kaonů V současnosti už ne jako zdroj individuálních částic, ale jako fenomén ke studiu jako takový. Urychlovače: svazky s vlastnostmi, jaké chceme: typ, množtví, hustota, energie, divergence svazku

19 Co můžeme srážet? Co lze urychlovat? Proč srážet? Proč urychlovat? Co měříme? Urychlovače I Proton-proton collisions are like smashing to pocket watches together to see what they are made of aneb Co se stane při srážce dvou protonů? Z každého protonu se srazí jeden kvark nebo gluon (parton), každý nese část energie původního protonu. Energie srážejících se částic se tak mění: výhodné pro hledání nové částice s neznámou hmotou, nevýhodné pro rekonstrukci dané srážky: neznáme podélnou hybnost. Alespoň suma příčných hybností však musí být nula (zákon zachování příčného impulsu:-) Typické typy kolizí: e + -e -, e-p, p-p, proton-antiproton. (Q: proč proton-proton nebo proton-antiproton?)

20 Urychlovače II Experimenty s pevným terčem: jednoduché uspořádání malá energie v těžišťovém systému. Terč: kapalný vodík, kovové terče pro produkci sekundárních svazků. Vstřícné svazky: technicky náročné srážet vysoká energie srážek. Částice+antičástice: jedna trubice, jeden urychlovač, jedna optika.

21 It s all about circles CERN, Fermilab, Brookhaven, DESY

22 Urychlovače - Kruhové Dipólové magnety: zakřivování svazku. Kvadrupólové: fokusace. Synchrotronové záření: Vyzařováno částicí při změně směru. Intenzita úměrná R/m 2. Problém hlavně pro elektrony. Někdy se však používá a záměrně generuje!

23 Příklad: Fermilab Fermi National Accelerator Laboratory Batavia, Illinois, USA Urychlovač Tevatron: proton-antiprotonové srážky při energii 1.96 TeV. Poloměr 1km, komplex více urychlovačů. Dva hlavní collider experimenty: CDF, D0. Další fixed target experimenty. Neutrinová fyzika.

24 Urychlovače: Komplex Tevatronu ve Fermilabu Tevatron: Svazek částic rozdělen do několika (36) buřtů (bunches). 12 bunches = superbunch. Interval mezi kolizemi: 396 ns. Oběh téměř rychlostí světla: 21µs (6.28 km :-). Protonový buřt: částic. Antiprotonový buřt: částic. Luminosita: kvalita svazku a srážení: Jak jsou bunche husté, jak dobře se trefujeme.

25 DØ Detector at Fermilab

26 DØ Detector at Fermilab

27 Jak se částice produkují? Částice se rodí ve srážkách: jestliže něco chceme narodit, musíme něco jiného zase rozbít :-) Foton s dostatečnou energií se může přeměnit na elektron-pozitronový pár. Úplně stejně může pozitron s elektronem anihilovat třeba na dva fotony, nebo na chvíli (virtuálně) zase na jeden. Virtuální foton se pak může přeměnit třeba na mion-antimionový pár nebo pár kvark-antikvark. Tak se rodí nové částice (a zase se rozpadají). Při dostatečné energii se nemusí narodit foton, ale jeho těžší kolega : Z boson. Podobně se při srážce dvou kvarků nemusí stát skoro nic: kvarky si prohodí gluon, a rozptýlí se. Ale také se může narodit Wči Z boson, či nový typ kvarkuantikvarku. A jak poznáme, že se něco nového nebo zajímavého stalo? :-) Pozorujeme pouze sekundární objekty, primární se většinou stihnou rozpadnout, než doletí do detektoru. Pravděpodobnost produkce daných produktů je často zvýšená když se s energií naladíme blízko k hmotnosti dané částice analogie s rezonancí.

28 Z e + e - případ (event) Events Mass - Z Candidate Data PMCS+QCD QCD bkg D0 Run II Preliminary invariant mass(gev)

29 Top-antitop pár, jak viděno DØ Detektorem Pár top-anti top rozpadající se na WbWb a následně na 4 jety, elektron a neutrino. Red: EM Calorimeter Blue: Hadronic Calorimeter Yellow: Missing Energy (neutrino signature)

30 Top Kvark jako rezonance aneb Jak se částice rozpadají Elektron může vyzářit foton (brzdné záření). Podobně top kvark vyzáří W boson a změní se na b kvark. W boson se dále rozpadá třeba na elektron a neutrino nebo pár kvark-antikvark. Kvarky v detektoru vidíme jako spršky částic (jety). Sečtením energií a hybností rozpadových produktů můžeme zrekonstruovat mateřskou částici a její hmotnost: m 2 = E 2 p 2

31 Studium vlastností top kvarku Studium top kvarků v DØ může posunout naše limity na nové fyzikální jevy doposud ukryté v pozadí. Velká hmota top kvarku jej činí zajímavým pro hledání rezonancíči nových interakcí. Rozdělení kinematických veličin je důležitý test teoretických předpovědí.

32 Jak vypadá všední pracovní den

33 Jak vypadá všední pracovní den

34 Účast na experimentu DØ Data jsou tím nejcennějším, co experiment produkuje. Abychom k nim měli přístup, musí se česká skupina podílet na provozu detektoru, na servisních úkolech prospěšných celé kolaboraci (kalibrace, identifikace částic, simulace srážek ). Je dobré pracovat na tématech, která se budou hodit pro konečnou fyzikální analýzu, pracovat s lidmi v laboratoři. When things go wrong Or: Should I call an expert? a co ve Fermilabu dělám já?

35 DØ Kalorimetr - Kalibrace Cca buněk, z kterých vyčítáme signál. Kapalný argon jako ionizované médium, uran, železo a měď jako absorbér. Detektor na rozdíl od plánů není uniformní Buňky se od sebe liší v elektronice, fyzických deformacích, a měří tak vždy trochu jinou energii. Je třeba je nakalibrovat, najít špatné kanály (dead cells, noisy cells).

36 Kalibrace energií jetů Částice z rozpadů objektů v místě srážky vstupují do detekturu a vyvíjejí složitou spršku. Elektrony a fotony se brzo zastaví v prvních vrstvách kalorimetru, hadrony mají delší dosah a složitější profil spršek jetů (výtrysků částic). Změřená energie spršky je jiná než energie částic vstupujících do detektoru, kterou bychom chtěli znát. Je třeba oškálovat (nakalibrovat) tzv. Jet Energy Scale: neuniformity detektoru a různé odezvy uranu či železa, fluktuace v měření energie

37 What s up now? :-) V současnosti běží proton-antiprotonový srážkovač Tevatron ve Fermilabu (přibližně 2TeV energie), který v roce 1995 objevil top kvark v prudukci top-antitop párů, nyní evidence produkce samostatných top kvarků (single top production, press release ), oscilace B s mezonů V Cernu se staví proton-protonový urychlovač LHC 7+7 TeV: 2007 :-) Ve světě probíhají experimenty při nižších energiích, které jsou naladěny na energie zajímavých částic pro studium symetrií mezi hmotou a antihmotou (b factories). Také se zkoumají srážky těžkých iontů, kosmické záření Hitem jsou bezesporu neutrina, nedávno prokázané oscilace znamenají, že jejich hmota není nulová. Není rozřešeno, zda neutrino je svou vlastní antičásticí či nikoli. Chybějící kamínek do Standardního Modelu je Higgův boson: pokud existuje, bude objeven na LHC. V plánu je projekt lineárního urychlovače, jenž podrobněji proměří Higgs nebo cokoli jiného, co LHC objeví (extra dimenze, supersymetrické částice )

38 Závěrem Částicová fyzika je velmi komplexním propojením teorie a experimentu s bohatou historií, živou současností a tajemnou (a neznámou:) budoucností. Využívá a podněcuje poslední technologie od elektroniky a materiály po software, komunikaci, koordinaci a statistickou analýzu dat. Aplikace po skončení základního výzkumu sahají od průmyslu a techniky po medicínské aplikace (diagnostika, imaging, terapie). Jakkoli abstraktní, vzdálenáči obrovitá se může zdát, stále je fyzikou s jednoduchými a krásnými myšlenkami a přináší radost z poznání a práce s lidmi na společných projektech.

39 Support slides

40 Laboratoře s urychlovači a detektory ve světě (bez pokusu o kompletnost) CERN (FR / CH) LEP (ukončen), LHC ve výstavbě DESY (Německo) HERA Fermilab (USA) - Tevatron Brookhaven (USA) RHIC, Relativistické srážky těžkých iontů. SLAC (USA) lineární urychlovače, fyzika mezonů. KEK, Kamioka (Japonsko) neutrina, mezony. Frascati, Gran Sasso, (Itálie) Sudbury (Kanada) neutrina. Orsay, Saclay, Grenoble (Francie) PSI (CH), Bonn

41 Příklady a obrázky:-) Neutrino jak viděno v SuperKamiokande detektoru: Čerenkovský kroužek od rozptýleného leptonu. Uvnitř detektoru: fotonásobiče, citlivé detektory světla.

42 Příklady a obrázky:-) Messy heavy ion collisions:-) Studium husté horké hmoty, termodynamiky a fázových přechodů v QCD. Kvark gluonové plasma? Simulace atmosférické spršky indukované kosmickým zářením.

43 Atlas Budoucí detektor na urychlovači LHC v Cernu Plán versus současný stav :-)

44 Některé objevy Radioaktivita Elektron: katodové paprsky Proton: nejlehčí jádro Neutron: α + 9 Be 12 C + n (pronikavé neutrální záření) Pozitron: kosmické záření (Anderson 1932) Neutrino: reaktorová antineutrina, roztok CdCl 2 ν + Cl X + n + e + (inverzní beta rozpad) n + Cd Cd* Cd + γ (záchyt neutronu) Objev struktury protonu. Gluon, barva kvarků. Podivnéčástice : rodí se v silných interakcích, ale rozpadají se pomalu (slabá interakce). Objev s kvarku: mlžné komory.

45 Některé objevy Pozitron: kosmické záření (Anderson 1932) Jak poznáme, že jde o elektron či pozitron? Magnetické pole zakřivuje dráhu. Stupeň ionizace a znalost hybnosti: Lze určit druh částice. Olověná deska: sníží energii.

46 Průchod částic hmotou Ionizační ztráty: Bethe-Blochova formule. Brzdné záření (bremsstrahlung): významné u elektronů. Radiační délka. Kritická energie: ionizační ztráty = brzdné ztráty. Závislost předávané energie podél jednotkové dráhy na hybnosti pro miony:

47 Urychlovače - Kruhové Accelerator = urychlovač :-) Collider = srážkovač :-) Urychlování: radiofrekvenční kavity Urychlované částice: Nejčastěji elektrony, pozitrony, protony, antiprotony. e + -e - kolize (LEP, Cern, ukončen) laditelná a přesná energie. e-p kolize (HERA, Hamburg) p-pbar kolize (Fermilab, now!) různé energie srážek partonů p-p kolize (LHC, Cern, 2007)

48 Bublinová komora Takto by to ale dále dlouho nešlo (ruční prohlížení fotografií)

49 Top kvark Objev top kvarku ve Fermilabu vedl k dalšímu studiu jeho role ve Standardním Modelu. Jen několik vlastností top kvarku bylo zatím přímo měřeno (např. hmota, helicita W z rozpadu top kvarku)

High Energy Physics Jiří Kvita, MFF UK

High Energy Physics Jiří Kvita, MFF UK High Energy Physics Jiří Kvita, MFF UK High Energy Physics Experimentalist s point of View O čem budu povídat? Co chceme (a mů můžeme) pozorovat v mikrosvě mikrosvětě. Částice a Standardní Standardní Model.

Více

Jak se dělajíčástice Jiří Kvita, MFF UK

Jak se dělajíčástice Jiří Kvita, MFF UK Jak se dělajíčástice 19.12.2007 1 Jiří Kvita, MFF UK Fyzika vysokých energií Z experimentálního pohledu O čem budu povídat? Co chceme (a můžeme) pozorovat v mikrosvětě. Částice a síly v mikrosvětě. Jak

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Urychlovače částic principy standardních urychlovačů částic

Urychlovače částic principy standardních urychlovačů částic Urychlovače částic principy standardních urychlovačů částic Základní info technické zařízení, které dodává kinetickou energii částicím, které je potřeba urychlit nabité částice jsou v urychlovači urychleny

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

Prověřování Standardního modelu

Prověřování Standardního modelu Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

postaven náš svět CERN

postaven náš svět CERN Standardní model elementárních částic a jejich interakcí aneb Cihly a malta, ze kterých je postaven náš svět CERN Jiří Rameš, Fyzikální ústav AV ČR, v.v.i. Czech Teachers Programme, CERN, 3.-7. 3. 2008

Více

Standardní model částic a jejich interakcí

Standardní model částic a jejich interakcí Standardní model částic a jejich interakcí Jiří Rameš Fyzikální ústav AV ČR, v. v. i., Praha Přednáškové dopoledne Částice, CERN, LHC, Higgs 24. 10. 2012 Hmota se skládá z atomů Každý atom tvoří atomové

Více

Mezony π, mezony K, mezony η, η, bosony 1

Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 1 Pracovní úkol 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

Standardní model a kvark-gluonové plazma

Standardní model a kvark-gluonové plazma Standardní model a kvark-gluonové plazma Boris Tomášik Fakulta jaderná a fyzikálně inženýrská, ČVUT International Particle Physics Masterclasses 2012 7.3.2012 Struktura hmoty molekuly atomy jádra a elektrony

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

A Large Ion Collider Experiment

A Large Ion Collider Experiment LHC není pouze Large Hadron Collider ATLAS ALICE CMS LHCb A Large Ion Collider Experiment Alenka v krajině ě velmi horké a husté éjaderné éhmoty a na počátku našeho vesmíru Díky posledním pokrokům se v

Více

Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil.

Experiment ATLAS. Shluky protiběžných částic se srážejí každých 25 ns. tj. s frekvencí. Počet kanálů detektoru je 150 mil. Experiment ATLAS Shluky protiběžných částic se srážejí každých 25 ns tj. s frekvencí 40 MHz Počet srážek 40 MHz x 20 = 800 milionů / s Počet kanálů detektoru je 150 mil. Po 1. úrovni rozhodování (L1 trigger)

Více

Nedělejme z Higgs vědu Aneb Jak se dělají částice

Nedělejme z Higgs vědu Aneb Jak se dělají částice Nedělejme z Higgs vědu Aneb Jak se dělají částice Plán Interakce a částice Cern ATLAS Higgs (+Top Kvark) 2 Stavební kameny chemie 3 Stavební kameny fyziky 4 Stavební kameny fyziky 5 Stavební kameny fyziky

Více

Kalorimetry 10/29/2004 1

Kalorimetry 10/29/2004 1 Kalorimetry měření energie s pomocí totální absorpce kombinované s prostorovou rekonstrukcí kalorimetrie je destruktivní metoda odezva detektoru E kalorimetrie funguje pro nabité částice (e+, e- a hadrony)

Více

Alexander Kupčo. kupco/qcd/ telefon:

Alexander Kupčo.   kupco/qcd/   telefon: QCD: Přednáška č. 1 Alexander Kupčo http://www-hep2.fzu.cz/ kupco/qcd/ email: kupco@fzu.cz telefon: 608 872 952 F. Halzen, A. Martin: Quarks and leptons Kvarky, partony a kvantová chromodynamika cesta

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

O čem se mluví v CERNu? Martin Rybář

O čem se mluví v CERNu? Martin Rybář O čem se mluví v CERNu? 29.11. 2012 Martin Rybář CERN Evropská organizace pro jaderný výzkum (Conseil Européen pour la recherche nucléaire) Založen roku 1954 ČR součástí od roku 1993 nejrozsáhlejší výzkumné

Více

zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků

zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků detektory statistické metody Skupina částicové fyziky SLO/UPOL zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků na stručnou prezentaci výsledků své práce a nabídku neuronové sítě statistické metody

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Jiří Chudoba; Rupert Leitner; Michal Suk Hledání top kvarku v experimentech na urychlovačích částic Pokroky matematiky, fyziky a astronomie, Vol. 40 (1995), No.

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

Experimentální metody ve fyzice vysokých energií Alice Valkárová

Experimentální metody ve fyzice vysokých energií Alice Valkárová Experimentální metody ve fyzice vysokých energií Alice Valkárová alice@ipnp.troja.mff.cuni.cz 10/20/2004 1 Literatura o detektorech částic Knihy: C.Grupen, Particle detectors,cambridge University Press,1996

Více

Jak můžeme vidět částice?

Jak můžeme vidět částice? Jak můžeme vidět částice? J. Žáček Ústav částicové a jaderné fyziky, Matematicko-fyzikální fakulta Karlova Univerzita v Praze H1 po 20. rokoch, Prírodovedecká fakulta UPJŠ v Košiciach Proč chceme částice

Více

Statický kvarkový model

Statický kvarkový model Statický kvarkový model Supermulltiplet: charakterizován I a hypernábojem Y=B+S Skládání multipletů spinových či izotopických, např. dvě částice se spinem 1/2 Tři částice se spinem 1/2 Kvartet a dva dublety

Více

Kosmické záření a Observatoř Pierra Augera. připravil R. Šmída

Kosmické záření a Observatoř Pierra Augera. připravil R. Šmída Kosmické záření a Observatoř Pierra Augera připravil R. Šmída Astročásticová fyzika Astronomie (makrosvět) Částicová fyzika (mikrosvět) Kosmické záření Objev kosmického záření 1896: Objev radioaktivity

Více

(v zrcadle výtvarné estetiky)

(v zrcadle výtvarné estetiky) Několik vět o nejmenším: kosmickém záření a elementárních částicích (v zrcadle výtvarné estetiky) Jan Hladký, Fyzikální ústav v. v. i., AV ČR Praha. Proč studia částic a KZ provádíme? - základní výzkum

Více

Měření hmoty Higgsova bosonu podle doby letu tau leptonu

Měření hmoty Higgsova bosonu podle doby letu tau leptonu Měření hmoty Higgsova bosonu podle doby letu tau leptonu Jana Nováková, Tomáš Davídek UČJF Higgs -> tau tau na LHC v oblasti malých hmot Higgse dává významný příspěvek měřitelné v oblasti m H [115, 140]

Více

Od kvarků k prvním molekulám

Od kvarků k prvním molekulám Od kvarků k prvním molekulám Petr Kulhánek České vysoké učení technické v Praze Hvězdárna a planetárium hl. m. Prahy Aldebaran Group for Astrophysics kulhanek@aldebaran.cz www.aldebaran.cz ZÁKLADNÍ SLOŽKY

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

Paul Adrien Maurice Dirac

Paul Adrien Maurice Dirac Hmota a antihmota Paul Adrien Maurice Dirac 1926 (24) - objevil souvislost Poissonových závorek s kvantovou teorií. 1926 (24) - nezávisle na Fermim odvodil statistické rozdělení pro soustavu částic s

Více

Podivnosti na LHC. Abstrakt

Podivnosti na LHC. Abstrakt Podivnosti na LHC O. Havelka 1, J. Jerhot 2, P. Smísitel 3, L. Vozdecký 4 1 Gymnýzium Trutnov, ondra10ax@centrum.cz 2 SPŠ Strojní a elektrotechnická, České Budějovice, jerrydog@seznam.cz 3 Gymnázium Vyškov,

Více

o Mají poločíselný spin (všechny leptony a kvarky, všechny baryony - například elektron, neutrino, proton, neutron, baryony Λ hyperon...).

o Mají poločíselný spin (všechny leptony a kvarky, všechny baryony - například elektron, neutrino, proton, neutron, baryony Λ hyperon...). Rozdělení částic Elementární částice můžeme dělit buď podle "rodové příslušnosti" na leptony, kvarky, intermediální částice a Higgsovy částice nebo podle statistického chování na fermiony a bosony. Dělení

Více

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka

[KVANTOVÁ FYZIKA] K katoda. A anoda. M mřížka 10 KVANTOVÁ FYZIKA Vznik kvantové fyziky zapříčinilo několik základních jevů, které nelze vysvětlit pomocí klasické fyziky. Z tohoto důvodu musela vzniknout nová teorie, která by je přijatelně vysvětlila.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO

Fyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO 1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Rupert Leitner; Michal Suk Velké detekční systémy ve fyzice částic Pokroky matematiky, fyziky a astronomie, Vol. 42 (1997), No. 6, 313--324 Persistent URL: http://dml.cz/dmlcz/138098

Více

Kalorimetr Tilecal a rekonstrukce signálu. Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1

Kalorimetr Tilecal a rekonstrukce signálu. Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1 Kalorimetr Tilecal a rekonstrukce signálu Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1 Kalorimetry (1) Základní úkoly: identifikace a měření směru a energie elektronů, pozitronů a fotonů (elektromagnetické

Více

STŘEDOČESKÝ KRAJ ANTIHMOTA

STŘEDOČESKÝ KRAJ ANTIHMOTA ENERSOL 2011 STŘEDOČESKÝ KRAJ ANTIHMOTA Adresa autora projektu: Jméno, příjmení autorů projektu Enersol 2011: Jakub Rohan, Richard Měcháček Učební, studijní obor, ročník studia: Informační technologie,

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Rupert Leitner; Michal Suk Nobelova cena za fyziku v roce 1995 Pokroky matematiky, fyziky a astronomie, Vol. 41 (1996), No. 3, 157--160 Persistent URL: http://dml.cz/dmlcz/137769

Více

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace

Lineární urychlovače. Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Jan Pipek jan.pipek@gmail.com 24.11.2011 Dostupné na http://fjfi.vzdusne.cz/urychlovace Lineární urychlovače Elektrostatické urychlovače Indukční urychlovače Rezonanční urychlovače

Více

Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013

Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013 Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013 Novinky z jaderné a částicové fyziky Pokud označíme snahu o nalezení příznaků nové fyziky pomocí

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Josef Knot Velké urychlovače částic. Katedra didaktiky fyziky

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Josef Knot Velké urychlovače částic. Katedra didaktiky fyziky Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Josef Knot Velké urychlovače částic Katedra didaktiky fyziky Vedoucí bakalářské práce: doc. RNDr. Zdeněk Doležal, Dr., ÚČJF MFF

Více

Kosmické záření a jeho detekce stanicí CZELTA

Kosmické záření a jeho detekce stanicí CZELTA Kosmické záření a jeho detekce stanicí CZELTA Jiří Slabý slabyji2@fjfi.cvut.cz 30.10.2008, Fyzikální seminář, Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze Co nás čeká

Více

Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI. Jiri Kral University of Jyväskylä

Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI. Jiri Kral University of Jyväskylä Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI Jiri Kral University of Jyväskylä Zimní škola EJF 2013 Kalorimetrie Hardware IJZ, věže detektoru Elektronizace a on-line kalibrace Digitalizace

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost

VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost VAROVÁNÍ Přemýšlení o kvantové mechanice způsobuje nespavost Od atomů (a molekul) ke kvantové mechanice Vojtěch Kapsa 1 Od atomů (a molekul) ke kvantové mechanice Od atomů (a molekul) ke kvantové mechanice

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

Kam kráčí současná fyzika

Kam kráčí současná fyzika Kam kráčí současná fyzika Situace před II. světovou válkou Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie velkého

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

Struktura atomů a molekul

Struktura atomů a molekul Struktura atomů a molekul Obrazová příloha Michal Otyepka tento text byl vysázen systémem L A TEX2 ε ii Úvod Dokument obsahuje všechny obrázky tak, jak jsou uvedeny ve druhém vydání skript Struktura atomů

Více

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak. Referát z Fyziky Detektory ionizujícího záření Vypracoval: Valenčík Dušan MVT-bak. 2 hlavní skupiny detektorů používaných v jaderné a subjaderné fyzice 1) počítače interakce nabitých částic je převedena

Více

Jiří Grygar: Velký třesk za všechno může... 1/ 22

Jiří Grygar: Velký třesk za všechno může... 1/ 22 Jiří 1/ 22 C2CR 2005: Od urychlovačů ke kosmickým paprskům 9. 9. 2005 Urychlovače č na nebi a pod zemí, aneb může Jiří Grygar Fyzikální ústav AV ČR, Praha Grafika: Michael Prou Jiří 2/ 22 Cesta do mikrosvěta

Více

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

FYZIKA MIKROSVĚTA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník FYZIKA MIKROSVĚTA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Mikrosvět Svět o rozměrech 10-9 až 10-18 m. Mikrosvět není zmenšeným makrosvětem! Chování v mikrosvětě popisuje kvantová

Více

ČÁST VIII - M I K R O Č Á S T I C E

ČÁST VIII - M I K R O Č Á S T I C E ČÁST VIII - M I K R O Č Á S T I C E 32 Základní částice 33 Dynamika mikročástic 34 Atom - elektronový obal 35 Atomové jádro 36 Radioaktivita 37 Molekuly 378 Pod pojmem mikročástice budeme rozumět tzv.

Více

Kosmické záření a astročásticová fyzika

Kosmické záření a astročásticová fyzika Kosmické záření a astročásticová fyzika Jan Řídký Fyzikální ústav AV ČR Obsah Kosmické záření a současná fyzika. Historie pozorování kosmického záření. Současné znalosti o kosmickém záření. Jak jej pozorujeme?

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA

MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA MAKRO- A MIKRO- MAKROSVĚT ~ FYZIKA MAKROSVĚTA (KLASICKÁ) FYZIKA STAV... (v dřívějším okamţiku)...... info o vnějším působení STAV... (v určitém okamţiku) ZÁKLADNÍ INFO O... (v tomto okamţiku) VŠCHNY DALŠÍ

Více

Interakce jaderného záření s prostředím a metody detekce. Spektrometrie jaderného záření. Umělé zdroje jaderného záření.

Interakce jaderného záření s prostředím a metody detekce. Spektrometrie jaderného záření. Umělé zdroje jaderného záření. 18 Jaderné záření Interakce jaderného záření s prostředím a metody detekce. Spektrometrie jaderného záření. Umělé zdroje jaderného záření. 18.1 Průchod tě«kých nabitých částic látkou Za tě«ké částice pova«ujeme

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Alice Valkárová Metody a techniky ve světě fyziky částic Pokroky matematiky, fyziky a astronomie, Vol. 47 (2002), No. 4, 280--286 Persistent URL: http://dml.cz/dmlcz/141143

Více

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa

laboratorní řád, bezpečnost práce metody fyzikálního měření, chyby měření hustota tělesa Vyučovací předmět Fyzika Týdenní hodinová dotace 2 hodiny Ročník 1. Roční hodinová dotace 72 hodin Výstupy Učivo Průřezová témata, mezipředmětové vztahy používá s porozuměním učivem zavedené fyzikální

Více

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha

Mlžnákomora. PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Mlžnákomora PavelMotal,SOŠaSOUKuřim Martin Veselý, FJFI ČVUT Praha Historie vývoje mlžné komory Jelikož není možné částice hmoty pozorovat pouhým okem, bylo vyvinutozařízení,ježzviditelňujedráhytěchtočásticvytvářenímmlžné

Více

Pozitron teoretická předpověď

Pozitron teoretická předpověď Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul

Více

Spektrometrie záření gama

Spektrometrie záření gama Spektrometrie záření gama M. Kroupa, Gymnázium Děčín, trellac@centrum.cz B. Dvorský, Gymnázium Šternberk, bohuslav.dvorsky@seznam.cz Abstrakt Tento článek pojednává o spektroskopii záření gama. Bylo měřeno

Více

Struktura atomu. Beránek Pavel, 1KŠPA

Struktura atomu. Beránek Pavel, 1KŠPA Struktura atomu Beránek Pavel, 1KŠPA Co je to atom? Částice, kterou již nelze chemicky dělit Fyzikálně ji lze dělit na elementární částice Modely atomů Model z antického Řecka (Démokritos) Pudinkový model

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Urychlovače nabitých částic

Urychlovače nabitých částic Urychlovače nabitých částic Osnova přednášky 1. Úvod, základní třídění urychlovačů, historie, 2. Pohyb částice v elektrickém a magnetickém poli, vedení svazků částic 3. Lineární urychlovače elektrostatické,

Více

Fyzika elementárn (Standardní model)

Fyzika elementárn (Standardní model) Fyzika elementárn rních částic (Standardní model) Zdenka.Broklova@mff.cuni.cz Délková škála 2 Jak pozorovat malé objekty? Částice mají i vlnové vlastnosti (dualismus, QM) Vlnová délka částice je nepřímo

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Relativistická kinematika

Relativistická kinematika Relativistická kinematika 1 Formalismus čtyřhybnosti Pro řešení relativistických kinematických úloh lze často s výhodou použít formalismus čtyřhybnosti. Čtyřhybnost je čtyřvektor, který v sobě zahrnuje

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Jiří Dolejší; Jiří Hořejší; Jiří Chýla; Alexander Kupčo; Rupert Leitner Nobelova cena za fyziku za rok 2013 udělena za objev Higgsova bosonu Pokroky matematiky,

Více

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A

2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A 2. Jaderná fyzika 9 2. 1 S T R U K T U R A A V L A S T N O S T I A T O M O V É H O J Á D R A V této kapitole se dozvíte: o historii vývoje modelů stavby atomového jádra od dob Rutherfordova experimentu;

Více

Encyklopedický slovník. T. D. Lee, Rev. Mod. Phys. 47, 267, 1975

Encyklopedický slovník. T. D. Lee, Rev. Mod. Phys. 47, 267, 1975 Jaderná a částicová fyzika Vladimír Wagner Nejsilnější síla HADES studuje vlastnosti částic ve velmi horkém a hustém prostředí Hádes v řecké mytologii bůh mrtvých, podsvětí a podzemních pokladů, syn Kronův

Více

CENTRUM PODPORY PROJEKTŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

CENTRUM PODPORY PROJEKTŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ CERN brána do hlubin mikrosvěta Petr Závada Fyzikální ústav AV ČR, Praha CENTRUM PODPORY PROJEKTŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 24.10. 2012 Program: Co je CERN, co je mikrosvět? Co se v CERNu dnes odehrává?

Více

E e = hf -W. Kvantové vysvětlení fotoelektrického jevu. Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové

E e = hf -W. Kvantové vysvětlení fotoelektrického jevu. Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové Kvantové vysvětlení fotoelektrického jevu Fotoelektrický jev vysvětlil Einstein pomocí Planckovy kvantové hypotézy Fotoelektrický jev : Světlo vyráží z povrchu kovů elektrony. Jedno kvantum světla může

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

2. 4 F Y Z I K A E L E M E N T Á R N Í C H ČÁSTIC

2. 4 F Y Z I K A E L E M E N T Á R N Í C H ČÁSTIC 2. Jaderná fyzika 69 2. 4 F Y Z I K A E L E M E N T Á R N Í C H ČÁSTIC V této kapitole se dozvíte: co je předmětem studia fyziky elementárních částic; jak se částice na základě svých vlastností třídí do

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

Stavba atomů a molekul

Stavba atomů a molekul Stavba atomů a molekul Michal Otyepka V prezentaci jsou použity obrázky z řady zdrojů, které nejsou důsledně citovány, tímto se všem dotčeným omlouvám. Vidět znamená věřit Úvod l cíle seznámit studenty

Více

6.3.5 Radioaktivita. Předpoklady: Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny

6.3.5 Radioaktivita. Předpoklady: Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny 6.3.5 Radioaktivita Předpoklady: 6304 Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny Vazebná energie na částici [MeV] 10 9 8 Vazebná energie [MeV] 7 6 5 4 3 1 0 0 50

Více

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

ATOMOVÁ FYZIKA JADERNÁ FYZIKA ATOMOVÁ FYZIKA JADERNÁ FYZIKA 12. JADERNÁ FYZIKA, STAVBA A VLASTNOSTI ATOMOVÉHO JÁDRA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÁ FYZIKA zabývá strukturou a přeměnami atomového jádra.

Více

06 - mikrosvět a energie jader

06 - mikrosvět a energie jader 1 06 - mikrosvět a energie jader Projevy mikrosvěta Pro popis jevů, které se odehrávají na úrovni atomů a částic, nelze použít běžnou fyziku. Mechanika, jak jsme se ji učili, se opírá o lidskou intuici.

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Standardní model. Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR

Standardní model. Projekt je spolufinancován z prostředků ESF a státního rozpočtu ČR Standardní model Standardní model je v současné době všeobecně uznávanou teorií, vysvětlující stavbu a vlastnosti hmoty. Výzkum částic probíhal celé dvacáté století, poslední předpovězené částice byly

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE III FOTOELEKTRICKÝ JEV OBJEV ATOMOVÉHO JÁDRA 1911 Rutherford některé radioaktivní prvky vyzařují částice α, jde o kladné částice s nábojem 2e a hmotností 4 vodíkových

Více

NEZADRŽITELNÝ VZESTUP ASTROČÁSTICOVÉ FYZIKY. Fyzikální ústav AV ČR, Praha

NEZADRŽITELNÝ VZESTUP ASTROČÁSTICOVÉ FYZIKY. Fyzikální ústav AV ČR, Praha NEZADRŽITELNÝ VZESTUP ASTROČÁSTICOVÉ FYZIKY Jiří GRYGAR Fyzikální ústav AV ČR, Praha JAK VZNIKLA ASTROČÁSTICOVÁ FYZIKA? 1929 kosmologie: (rozpínání vesmíru) 1965 reliktní záření 1890 astrofyzika: díky

Více

Fyzika atomového jádra

Fyzika atomového jádra Fyzika atomového jádra (NJSF064) František Knapp http://www.ipnp.cz/knapp/jf/ frantisek.knapp@mff.cuni.cz Literatura [1] S.G. Nilsson, I. Rangarsson: Shapes and shells in nuclear structure [2] R. Casten:

Více